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ABSTRACT
Let f be a polynomial in Q[X1, . . . , Xn] of degree D. We pro-
vide an efficient algorithm in practice to compute the global
supremum supx∈Rn f(x) of f (or its infimum infx∈Rn f(x)).

The complexity of our method is bounded by DO(n). In
a probabilistic model, a more precise result yields a com-
plexity bounded by O(n7D4n) arithmetic operations in Q.
Our implementation is more efficient by several orders of
magnitude than previous ones based on quantifier elimina-
tion. Sometimes, it can tackle problems that numerical tech-
niques do not reach. Our algorithm is based on the computa-
tion of generalized critical values of the mapping x→ f(x),
i.e. the set of points {c ∈ C | ∃(x`)`∈N ⊂ Cn f(x`) →
c, ||x`||||dx`

f || → 0 when ` → ∞}. We prove that the
global optimum of f lies in its set of generalized critical val-
ues and provide an efficient way of deciding which value is
the global optimum.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.1.6 [Mathematics of

computing]: Numerical Analysis—Optimization; F.2.2 [Theory

of Computation]: Analysis of algorithms and problem
complexity—Non numerical algorithms and problems: Geo-
metrical problems and computation

General Terms
Algorithms

Keywords
Global optimization, Polynomial system solving, real solu-
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Let f ∈ Q[X1, . . . , Xn] be a multivariate polynomial of de-
gree D. We consider below the problem of computing the
global supremum of f , i.e. supx∈Rn f(x).

Motivation and description of the problem. Global op-
timization of multivariate polynomials is a classical problem
of scientific computing which appears in numerous appli-
cations from various fields (control theory, chemistry, eco-
nomics, etc.). Hence, obtaining certified and efficient algo-
rithms in practice solving this problem is a question of first
importance.
Recently, numerical methods have been developed to tackle
this problem. The algorithm of [32] is designed for uncon-
strained optimization and solves in fact an LMI (Linear Ma-
trix Inequality) relaxation of the polynomial optimization
problem. The algorithm of [26] is designed for polynomial
constraint optimization and constructs also, in a different
way, an LMI relaxation of the initial problem. The prob-
lem is that, according to [21, 13], a lot of LMI problems
are ill-conditioned. In general, mixing numerical instability
and ill-conditioning provides bad results in terms of quality
of the output. As far as we know, in the context of global
polynomial optimization, the conditioning of LMI problems
and their numerical stability is a subject which has not been
intensively investigated.
In this paper, we focus on symbolic methods to compute
supx∈Rn f(x) without assumption on f . Our aim is to de-
sign an efficient algorithm in practice which can be comple-
mentary to numerical methods when they fail. We focus on
certified algorithms, but we also consider probabilistic ones,
for complexity estimates.
The first way of computing supx∈Rn f(x) by computer al-
gebra techniques is to rewrite this problem as a quantifier
elimination problem: ∃e ∈ R ∀x ∈ Rn f(x) ≤ e and ∀ε ∈
R ∃x ∈ Rnε > 0 f(x) > e − ε. This problem can be solved
using the cylindrical algebraic decomposition algorithm [9].
Nevertheless, it has a complexity which is doubly exponen-
tial in the number of variables and polynomial in the degree
of f . The best implementations of this algorithm are lim-
ited to problems having 3 or 4 variables. Quantifier elimi-
nation problems can also be solved using the critical point
method (see [6] and [7, Chapter 14]). The complexity of
these methods is doubly exponential in the number of quan-
tifiers. Thus, in the case of global polynomial optimization,
this yields an algorithm (see [7, Chapter 14, Section 14.4])



whose complexity is DO(n) since the number of quantifiers
is fixed. Nevertheless, the reduction of global optimization
problems to quantifier elimination induces a growth of the
complexity constant. Moreover, the algorithms in [7, Chap-
ter 14] are exclusively designed to obtain deterministic com-
plexity results. Algebraic manipulations and infinitesimals
which are introduced to obtain complexity results spoil prac-
tical computations. This explains why no efficient imple-
mentations have been derived from these algorithms. Fi-
nally, note that obtaining algorithms for the computation of
the global supremum of a polynomial without reducing this
problem to a quantifier elimination one was an open problem
in the scope of computer algebra.

Main results. The main result of this paper is an efficient
algorithm computing the global supremum of a polynomial
without reduction to quantifier elimination.
It is well known that computing supx∈B f(x) where B is
compact can be tackled by computing the critical values of
the mapping x → f(x) and studying the values taken by f
over the boundary of B. These techniques are not sufficient
to compute supx∈Rn f(x). Indeed, consider the polynomial
f = X2 + (XY − 1)2. It is always positive and consider-
ing its values at the sequence of points ( 1

`
, `), it is easy to

see that supx∈Rn (−f(x)) = 0, while {x ∈ Rn | f(x) = 0}
is obviously empty. The phenomenon which occurs here is
that the polynomial f tends to a supremum“at infinity”, i.e.
each sequence of points (x`)`∈N ⊂ Rn such that f(x`) → 0
when ` tends to ∞ is such that ||x`|| tends to ∞ when `
tends to ∞. On the other hand, it is well known that if,
for such a sequence of points, ||gradx`

f || does not tend to
0 when ` tends to ∞, f(x`) can’t have a finite limit. This
leads to consider the notion of generalized critical values of
a polynomial mapping x ∈ Cn → f(x) ∈ C introduced in
[23]. The set of generalized critical values is defined as the
set of complex numbers c such that there exists a sequence
of points (x`)`∈N

⊂ Cn satisfying f(x`) → c and for all

(i, j) ∈ {1, . . . , n}2,
“
Xi

∂f
∂Xj

”
(x`)→ 0 when ` tends to ∞.

The first result (see Theorem 5 below) relates supx∈Rn f(x)
to the set of asymptotic critical values of the mapping x ∈
Rn → f(x). More precisely, the statement of Theorem 5
is: Let f ∈ Q[X1, . . . , Xn] and E = {e1, . . . , e`} (with e1 <
. . . < e`) be the set of real generalized critical values of the
mapping x ∈ Rn → f(x). Then supx∈Rn f(x) < ∞ if and
only if there exists 1 ≤ i0 ≤ ` such that supx∈Rn f(x) = ei0 .
It remains to show how to determine if the supremum of f
over Rn is finite and, in this case, which of the generalized
critical values is supx∈Rn f(x). This is the aim of Theorem 6
whose statement is: Let E = {e1, . . . , e`} be the set of real
generalized critical values of the mapping x ∈ Rn → f(x)
such that e1 < . . . < e`. Consider {r0, . . . , r`} a set of
rationals such that r0 < e1 < r1 < . . . < e` < r`. The
supremum of f over Rn is finite if and only if there ex-
ists i0 ∈ {1, . . . , `} such that {x ∈ Rn | f(x) = ri0−1} 6=
∅ and ∀j ≥ i0 {x ∈ Rn | f(x) = rj} = ∅ if and only if
supx∈Rn f(x) = ei0 (in this case supx∈Rn f(x) = ei0).
Hence, the algorithm we obtain consists first in comput-
ing the set of generalized critical values of the mapping
x ∈ Rn → f(x). Then, it tests the emptiness of the real
counterpart of smooth hypersurfaces defined by f − rj = 0.
This allows us to compute supx∈Rn f(x) without any reduc-
tion to a quantifier elimination problem. The computations

are based on algebraic elimination and finding the real so-
lutions of zero-dimensional polynomial systems. Our imple-
mentation uses Gröbner bases. At the end of the paper,
we present some experiments showing the efficiency of this
strategy compared to the ones reducing global optimization
problems to a quantifier elimination one.
The complexity of the algorithm of [7, Chapter 14] reduc-
ing global optimization problems to quantifier elimination
is DO(n). It is thus important to ensure that the algorithm
which is designed here is in the same complexity class.
We make the distinction between algorithms whose prob-
ability of success depends on the entries (this is the case
of some numerical algorithms running with fixed precision),
algorithms whose probability of success depend on random
choices done during the computation, and certified algo-
rithms (the result is always correct but the complexity of
such algorithms can depend on random choices done during
the computation).
Substituting the computations of Gröbner bases by the geo-
metric resolution algorithm designed in [30], one gets a prob-
abilistic algorithm whose complexity isO(n7D4n) arithmetic
operations in Q. As far as we know, such a complexity bound
had never been obtained previously.
The running of our algorithms depend on some random
choices of matrices and points which are valid outside a
proper Zariski-closed subset. This is a first obstacle to get
a complexity result in a deterministic framework. An other
problem comes from the computation of critical values of a
polynomial using Gröbner bases. We show how to compute
the critical values using Gröbner bases with a complexity
bounded by DO(n). The deformation technique we use is
interesting in itself. Indeed, by generalizing the strategy de-
veloped in [39] (which had lead to practical improvements),
it can be used to real solve general singular polynomial sys-
tems. Finally, we prove that, under the assumption that
the first random choices are valid, the complexity of this
algorithm is DO(n).
Related works. In the scope of numerical techniques, look-
ing for the global supremum of a polynomial is tackled by
looking for the smallest ε > 0 such that ε−f > 0. In general,
the strategy consists in rewriting ε − f as a sum of squares
via LMI relaxations (see the works of Parillo-Sturmfels [32,
33] and the works of Lasserre [26] for methods based on
moment theory), while it is well-known that a polynomial
can be positive without being a sum of squares. More re-
cently, Nie, Demmel and Sturmfels [31] proposed a method
based on computations over the ideal generated by the par-
tial derivatives of the studied polynomial (when this ideal
is zero-dimensional and radical). In particular, this tech-
nique seems to be more numerically stable than the previous
ones. Lasserre developed an other approach for computing
the real radical of zero-dimensional systems [27]. In any
case, computing over the gradient ideal does not allow us to
obtain the supremum of the considered polynomial. In [45],
Schweighofer introduces the use of asymptotic critical val-
ues to obtain a numerical procedure computing the global
supremum (or infimum) of a polynomial. Nevertheless, the
conditioning and the numerical stability of this method is
not studied.
The notion of generalized critical values we use in this paper
was introduced in [23]. A first algorithm computing them is
given. Efficient algorithms are given in [42, 40]. This com-
putation is used in algorithms solving polynomial systems



of inequalities in the RAGlib maple package [41].
An other ingredient of this paper is the emptiness test of
the real counterpart of a smooth hypersurface. Single expo-
nential algorithms in the number of variables are given in
[18, 19, 20, 35]. They are based on computations of crit-
ical points and have not lead to efficient implementations.
Algorithms given in [43, 44] and some of their variants are
implemented in RAGlib [41]. A particular study leading to
efficient algorithms dealing with the case of singular hyper-
surfaces is done in [39]. Algorithms relying on the critical
point method and using evaluation and lifting techniques to
encode polar varieties are given in [3, 2, 5, 4].
Conclusions and perspectives. We provide the first cer-
tified algorithm based on computer algebra techniques com-
puting the supremum of polynomials over the reals without
using quantifier elimination. This leads to an efficient im-
plementation which allows us to deal with problems which
are intractable by previous methods. The complexity of the
method is singly exponential in the number of variables. We
plan to extend these results in two ways. The first ques-
tion which arises is to decide if the computed global supre-
mum is reached and provide at least one point at which it is
reached if it is. The second one is: given a singular point of a
polynomial, decide if it is a local optimum. Finally, solving
global optimization problems under some constraints is an
area where the techniques we develop here can be used.
Plan of the paper. Section 2 provides the definition, useful
properties and an algorithm for the computation of the set
of generalized critical values of a polynomial mapping. In
Section 3, we recall the basics of an efficient algorithm com-
puting sampling points in the real counterpart of a smooth
hypersurface which is used to test the emptiness of the con-
sidered real hypersurfaces. Then, in Section 4, we give the
algorithm computing supx∈Rn f(x) and its proof. Section 5
is devoted to complexity results. Section 6 presents some
practical results we obtained with the algorithm designed
here.

2. PROPERTIES AND COMPUTATION OF
GENERALIZED CRITICAL VALUES

In this section, we recall the definitions and basic properties
of generalized critical values which can be found in [23].

Definition 1. [23] A complex number c ∈ C is a critical

value of the mapping ef : y ∈ Cn → f(y) if and only if
there exists z ∈ Cn such that f(z) = c and ∂f

∂X1
(z) = · · · =

∂f
∂Xn

(z) = 0.
A complex number c ∈ C is an asymptotic critical value of

the mapping ef : y ∈ Cn → f(y) if and only if there exists a
sequence of points (z`)`∈N ⊂ Cn such that:
a) f(z`) tends to c when ` tends to ∞.
b) ||z`|| tends to +∞ when ` tends to ∞.
c) for all (i, j) ∈ {1, . . . , n}2 ||Xi(z`)||.||

∂f
∂Xj

(z`)|| tends to 0

when ` tends to ∞. The set of generalized critical values is
the union of the sets of critical values and asymptotic critical

values of ef .

In the sequel, we denote by K0(f) the set of critical values of
ef , by K∞(f) the set of asymptotic critical values of ef , and by

K(f) the set of generalized critical values of ef (i.e. K(f) =
K0(f) ∪ K∞(f)). In [23], the authors prove the following
result which can be seen as a generalized Sard’s theorem

for generalized critical values. Bounds on the number of
generalized critical values can be found also in [22].

Theorem 1. Let f be a polynomial in Q[X1, . . . , Xn] of
degree D. The set of generalized critical values K(f) of the

mapping ef : x ∈ Cn → f(x) ∈ C is Zariski-closed in C.
Moreover, D]K∞(f) + ]K0(f) ≤ Dn − 1

Given two topological spaces V and W , a polynomial map-
ping F : V → W , and a subset W of W , we say that F
realizes a locally trivial fibration on V \ F−1(W) if for all
connected open set U ⊂ W \ W, for all e ∈ U , denoting
by π the projection on the second member of the cartesian
product F−1(e) × U , there exists a diffeomorphism ϕ such
that the following diagram

F−1(e)× U
ϕ

π

F−1(U)

F

U

is commutative. The main interest of the set of generalized
critical values relies on its topological properties which are
summarized below and proved in [23].

Theorem 2. [23] The mapping fC : x ∈ Cn → f(x) ∈ C
realizes a locally trivial fibration in Cn \ f−1

C
(K(fC)).

The mapping fR : x ∈ Rn → f(x) ∈ R realizes a locally
trivial fibration in Rn \ f−1

R
(K(fR)).

The set of critical values of f can be computed by the rou-
tine CriticalValues given below. It takes as input f ∈
Q[X1, . . . , Xn] and returns a univariate polynomial whose

set of roots is the set of critical values of ef .
CriticalValues

Input: a polynomial f ∈ Q[X1, . . . , Xn].
Output: a univariate polynomial whose set of roots is the
set of critical values of the mapping x→ f(x).
• Compute a Gröbner basis for a monomial ordering

eliminating [X1, . . . , Xn] of the ideal generated by
f − T, ∂f

∂X1
, . . . , ∂f

∂Xn
(where T is a new variable).

• Let G be the Gröbner basis previously computed,
return the element of G lying in Q[T ].

We show now how to compute the set of asymptotic critical

values of ef . In the sequel, we consider maps between com-
plex or real algebraic varieties. The notion of properness of
such maps will be relative to the topologies induced by the
metric topologies of C or R. A map φ : V → W of topolog-
ical spaces is said to be proper at w ∈ W if there exists a
neighborhood B of w such that φ−1(B) is compact (where
B denotes the closure of B). The map φ is said to be proper
if it is proper at all w ∈ W .
Notation 1. In order to describe the routine computing the

set of asymptotic critical values of ef we introduce the fol-
lowing notations:

• Let A ∈ GLn(Q) and g ∈ Q[X1, . . . , Xn]. We denote
by gA the polynomial g(A.X) where X = [X1, . . . , Xn]

• Dimension is a procedure taking as input a finite set
of polynomials in Q[X1, . . . , Xn] and return the dimen-
sion of the ideal they generate.



• Consider an ideal, encoded by a Gröbner basis G, defin-
ing a curve C in Cn and a projection π : C → E ⊂ Cn

where E is a 1-dimensional affine space.

We denote by SetOfNonProperness(G, π) a polyno-
mial whose set of roots is the set of non-properness of
π; SetofNonProperness denoting a procedure com-
puting it. Such a routine is given in [44, 28].

Theorem 3. [42, 40] Suppose that for all 1 ≤ i ≤ n,
deg(f, Xi) ≥ 1. If the determinant of the hessian matrix
associated to f is identically null, the set of asymptotic crit-
ical values of the mapping x → f(x) is empty. Else, there
exists a Zariski-closed subset A ( GLn(C) such that for all
A ∈ GLn(Q) \ A the Zariski-closure of the constructible set
defined by

f
A − T =

∂fA

∂X1
= · · · =

∂fA

∂Xn−1
= 0,

∂fA

∂Xn
6= 0

has dimension 1.

The routine given below and denoted by AsymptoticCrit-

icalValues is given in [40]. It improves the one of [42]. It
computes a finite set of points containing the set of general-

ized critical values of ef . The input is a polynomial f and the
output is a univariate polynomial whose set of roots contain

the set of asymptotic critical values of ef .
AsymptoticCriticalValues

Input: a polynomial f ∈ Q[X1, . . . , Xn] such that
deg(f, Xi) ≥ 1 for i = 1, . . . , n.
Output: a univariate polynomial non identically null
whose set of roots contains the set of asymptotic criti-
cal values of x→ f(x).
• If the determinant of the Hessian matrix of f is 0

return 1.

• Choose A ∈ GLn(Q) and compute a Gröbner basis

GA of IA = 〈fA−T, ∂fA

∂X1
, . . . , ∂fA

∂Xn−1
, L ∂fA

∂Xn
− 1〉∩

Q[X1, . . . , Xn]

• While Dimension(IA) 6= 1 do

– Choose an other matrix A ∈ GLn(Q)

• Return SetofNonProperness(GA, π) where π is
the projection (x1, . . . , xn, t)→ t.

Remark 1. Note that if there exists 1 ≤ i ≤ n, the
asymptotic critical values of f can still be computed by con-
sidering f in Q[X1, . . . , Xi−1, Xi+1, . . . , Xn]. Note also that
the curve defined as the Zariski-closure of the complex-solu-

tion set of fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0

has a degree bounded by (D − 1)n−1. Thus, the set of non-
properness of the projection on T restricted to this curve has
a degree bounded by (D − 1)n−1.

In the sequel, for the sake of simplicity, we identify a poly-
nomial f ∈ Q[X1, . . . , Xn] with the mapping fC : x ∈ Cn →
f(x) ∈ C.

3. DECIDING THE EMPTINESS OF THE
REAL COUNTERPART OF A SMOOTH
HYPERSURFACE

We study now how to decide the emptiness of the real coun-
terpart of a smooth hypersurface H defined by f = 0 (where
f ∈ Q[X1, . . . , Xn]), i.e. {x ∈ H | ∂f

∂X1
(x) = · · · = ∂f

∂Xn
(x) =

0} is empty. The routine we present is based on [43] since
it is, in practice, the most efficient. From the complexity
viewpoint, it also provides slightly better complexity bounds
than the ones obtained in [3, 2, 5, 4] in a probabilistic model.
Denote by πi the canonical projection (x1, . . . , xn) →
(x1, . . . , xi), by pn = (p1, . . . , pn) an arbitrarily chosen point
in Qn and by pi the point (p1, . . . , pi) ∈ Qi. The geometric
scheme of resolution is based on the following results. Up to
a generic linear change of variables,
- the set of critical points of the restriction of π1 to H is
either zero-dimensional or empty;
- dim

`
H ∩ π−1

1 (p1)
´

= dim(H) − 1;
- each connected component C of H ∩ Rn has a closed im-
age by π1. Hence, either π1(C) = R which implies that
C ∩

`
H ∩ π−1

1 (p1)
´
6= ∅ or C contains a critical point of

the restriction of π1 to H. Computing at least one point in
each connected component is then reduced to computing the
critical points of the restriction of π1 to H and performing
a recursion on H ∩ π−1

1 (p1) (whose dimension is less than
the one of H). More precisely, the following result is proved
in [43]. We use in the following the notations introduced in
the previous section. Additionally, given an algebraic vari-
ety V ⊂ Cn and a polynomial mapping ϕ : Cn → Ck (for
some k ∈ {1, . . . , n}), C(ϕ, V ) denotes the critical locus of ϕ
restricted to V .

Theorem 4. [43] Let H ⊂ Cn be a smooth hypersurface
defined by f = 0 (with f ∈ Q[X1, . . . , Xn]). There exists a
proper Zariski-closed subset A ⊂ GLn(C) such that for all
A ∈ GLn(Q) \ A, the set of points

C

“
π1,H

A

”
∪

“
HA ∩ πn−1(pn−1)

” n[

i=2

C

“
πi,H

A ∩ π
−1
i−1(pi)

”

has at most dimension 0 and a non-empty intersection with
each connected component with HA ∩ Rn.

Remark 2. In [43], the authors prove that A must be
chosen such that the projection πi restricted to C

`
πi+1,H

A
´

is proper. An algorithm performing this test is given in [44]
(see also [28]).
The algorithm below is called IsEmpty. It takes as input a
square-free polynomial f whose complex set of solutions is
a smooth hypersurface. It returns false if f = 0 has real
solutions, else it returns true. This algorithm requires a rou-
tine ZeroDimSolve taking as input a polynomial system of
equations defining a zero-dimensional variety and returning
its real points (encoded by numerical approximations).
IsEmpty

Input: a polynomial f ∈ Q[X1, . . . , Xn] defining a smooth
hypersurface H ⊂ Cn

Output: a boolean which equals true if and only if H∩Rn

is empty.
• Choose randomly A ∈ GLn(Q), and p ∈ Qn.

• If ZeroDimSolve(fA, ∂fA

∂X2
, . . . , ∂fA

∂Xn
) 6= ∅ return

false

• For i ∈ {1, . . . , n − 2} if ZeroDimSolve(X1 −

p1, . . . , Xi − pi, f
A, ∂fA

∂Xi+2
, . . . , ∂fA

∂Xn
) 6= ∅ return

false

• If ZeroDimSolve(fA, X1−p1, . . . , Xn−1−pn−1) 6=
return false else return true.



4. THE ALGORITHM
The algorithm computing the supremum of a polynomial
f ∈ Q[X1, . . . , Xn] is based on computations of generalized
critical values and computations testing the emptiness of the
real counterpart of smooth hypersurfaces.
The result below shows that if a polynomial f has a finite op-
timum, this optimum is either a critical value or an asymp-
totic critical value of f .

Theorem 5. Let f ∈ Q[X1, . . . , Xn] and E = {e1, . . . , e`}
(with e1 < . . . < e`) be the set of real generalized critical
values of the mapping x ∈ Rn → f(x). Then supx∈Rn f(x) <
∞ if and only if there exists 1 ≤ i0 ≤ ` such that supx∈Rn f

(x) = ei0 .

Proof. Suppose that the supremum of f is finite and let e =
supx∈Rn f(x). This is equivalent to the following assertion:
there exists α > 0 small enough such that for all ε ∈]e, e+α[,
the real counterpart of f−1(ε) is empty and for all ε ∈]e −
α, e[ the real counterpart of f−1(ε) is not empty. Denote by
I the interval ]e− α, e + α[.
Suppose now that e is not a generalized critical value of f .
Then, from Theorem 2, f realizes a locally trivial fibration
over f−1(]e− α, e + α[). Hence, for all ε ∈ I, there exists a
diffeomorphism ϕ such that the following diagram

f−1(ε)× I
ϕ

π

f−1(I)

f

I

commutes. Consider ε ∈]e−α, e[, ε′ ∈]e, e+α[ (then f−1(ε′)
∩ Rn = ∅) and x ∈ f−1(ε) ∩ Rn. From the above diagram,
f(ϕ(x, ε′)) = ε′ implies that ϕ(x, ε′) ∈ f−1(ε′)∩Rn. This is
a contradiction. �

From Theorem 5, if the supremum of a polynomial mapping
is finite, it is a generalized critical value. Determining which
of these values the supremum is, can be tackled by solving
the following quantifier elimination problem: ∃e ∈ E ∀ε >
0, ∃x ∈ Rnf(x) ≥ e − ε and 6 ∃x ∈ Rnf(x) > e where E
is the set of generalized critical values of the mapping x ∈
Rn → f(x). The following result shows how to determine
if a generalized critical value given by an isolating interval
is an optimum of the polynomial f without performing a
quantifier elimination.

Theorem 6. Let E = {e1, . . . , e`} be the set of real gen-
eralized critical values of the mapping x ∈ Rn → f(x) such
that e1 < . . . < e`. Consider {r0, . . . , r`} a set of rationals
such that r0 < e1 < r1 < . . . < e` < r`.
The supremum of f over Rn is finite if and only if there
exists i0 ∈ {1, . . . , `} such that {x ∈ Rn | f(x) = ri0−1} 6=
∅ and ∀j ≥ i0 {x ∈ Rn | f(x) = rj} = ∅ if and only if
supx∈Rn f(x) = ei0 (in this case supx∈Rn f(x) = ei0).

Proof. Suppose the supremum of f over Rn to be finite.
From Theorem 5, there exists a generalized critical value ei0

of f such that supx∈Rn = ei0 . Equivalently, we have that
for all e > ei0 , f−1(x)∩Rn is empty and there exists α > 0
small enough such that for all ε ∈]ei0 − α, ei0 [ f−1(ε) ∩ Rn

is not empty.
By convention, if i0 = 1, ei0−1 = −∞. Denote by I the
interval ]ei0−1, ei0 [. Now, it remains to prove that for all

ε ∈ I, f−1(ε) ∩ Rn is not empty. From Theorem 2, given
ε ∈]ei0 − α, ei0 [, there exists a diffeomorphism ϕ such that
the following diagram

f−1(ε)× I
ϕ

π

f−1(I)

f

I

commutes. Supposing now that there exists ε′ ∈ I such
that f−1(ε′) ∩ Rn is empty and consider x ∈ f−1(ε). Since
f(ϕ(x, ε′)) = ε′, implies ϕ(x, ε′) ∈ f−1(ε′) ∩ Rn, this yields
a contradiction. �

Finally, computing the supremum of a polynomial is reduced
to test the emptiness of the real counterpart of smooth hy-
persurfaces. This problem can be tackled using the routine
IsEmpty described in Section 3.
Denoting by FindRationals a routine taking as input a
univariate polynomial with coefficients in Q whose real roots
are denoted by e1 < . . . < e` and returning a list of rational
numbers r0 < . . . < r` such that r0 < e1 < r1 < e2 < . . . <
e` < r`, we obtain the following algorithm.
Optimize

Input: a polynomial f ∈ Q[X1, . . . , Xn]
Output: if supx∈Rn f(x) is infinite, it returns∞ else it re-
turns an interval isolating supx∈Rn f(x) and a polynomial
whose set of roots contains supx∈Rn f(x).
• P ←AsymptoticCriticalValues(f)

• Q←CriticalValues(f)

• L←FindRationals(PQ), N ← ]L, i← N

• while i > 0 and IsEmpty(f-L[i]) do i← i− 1

• if i = 0 return ∞ else return an interval isolating
the i-th root of PQ and the polynomial PQ.

5. COMPLEXITY RESULTS

Complexity estimates using the geometric resolution
algorithm. One can substitute Gröbner bases computations
in the routines CriticalValues, AsymptoticCritical-

Values and IsEmpty by the geometric resolution algorithm
[17, 30]. This algorithm is probabilistic. It is based on evalu-
ation and lifting techniques taking advantage of the encoding
of polynomials by straight-line programs. These techniques
are introduced in [16, 14, 15]. This leads to complexity
estimates for solving zero-dimensional polynomial systems
which are polynomial in the complexity of evaluation of the
input system, the number of variables and an intrinsic geo-
metric degree bounded by Dn (where D bounds the degree
of the polynomials given as input).
In [42, 40], we describe algorithms computing critical values
and asymptotic critical values using the geometric resolu-
tion algorithm given in [30] having a complexity bounded
by O(n7D4n) arithmetic operations in Q. The algorithm
of [43] has a complexity bounded by O(n7D3n). Since the
number of generalized critical values is bounded by O(Dn),
there are, in the worst case, at mostO(Dn) hypersurfaces for
which one has to test the emptiness of their real counterpart
(see Remark 1). This leads to the following result.

Theorem 7. There exists a probabilistic algorithm com-
puting the global supremum of a polynomial f ∈ Q[X1, . . . ,



Xn] of degree D with a complexity within O(n7D4n) arith-
metic operations in Q.

The rest of this section is devoted to prove that there exists
a certified algorithm computing the global supremum of f ,
without reduction to quantifier elimination, with a complex-
ity within DO(n) arithmetic operations in Q if some random
choices done internally are generic enough. Note that prov-
ing this is equivalent to prove the same result for the compu-
tation of asymptotic critical values of f , which is the aim of
the next paragraph. Indeed, the computation of real critical
values of f can be done by computing the values taken by
f at sampling points of the real counterpart of the algebraic
variety defined by ∂f

∂X1
= · · · = ∂f

∂Xn
= 0 with a complexity

within DO(n) arithmetic operations in Q using [7, Chapter
13]. The same algorithm can be used to test the emptiness
of the real counterpart of smooth hypersurfaces. We give
below an other way to get a complexity bounded by DO(n)

arithmetic operations in Q to compute the critical values of
f . The method we use is of interest for itself since it gen-
eralizes [39] to the case of singular polynomial systems and
can lead to efficient implementations.
Computation of asymptotic critical values. Suppose the
determinant of the hessian matrix of f to be not identi-
cally null (the cost of this computation is dominated by

DO(n). From [40], there exists A ⊂ GLn(C) such that for
all A ∈ GLn(Q) \ A the ideal IA = JA ∩ Q[X1, . . . , Xn, T ]

where JA = 〈fA − T, ∂fA

∂X1
, . . . , ∂fA

∂Xn−1
, L ∂fA

∂Xn
− 1〉 is radical

and has dimension 1. The degree of this ideal is bounded
by (D − 1)n−1 (see also [40] for more accurate bounds on
the degree of this curve depending on intrinsic quantities).
Moreover, there exists a proper Zariski-closed subset Z ⊂ C
such that for all θ ∈ Q \ Z, the ideal IA + 〈T − θ〉 has di-
mension at most 0. Choosing (D − 1)n−1 + 1 such points
x and computing a rational parametrization with respect
to a separating element u of these ideals has a cost which is
dominated by DO(n). If A is well-chosen there exists at least
one θ such that IA + 〈T − θ〉 is radical which can be decided
looking at the rational parametrization of its set of solutions
(see [37]). If the separating element is generic enough, it is a
separating element for all valid choices of θ. Once these ra-
tional parametrizations are computed, using interpolation,
one obtains a rational parametrisation encoding the curve
defined by IA. If the first choices of matrix A, the rationals
θ and u are correct, the cost of the whole computation is
dominated by DO(n) arithmetic operations in Q. Following
[42, Section 4], one can retrieve the set of non-properness of
the projection (x1, . . . , xn, t)→ t restricted to C

A from such
a rational parametrization, with a complexity bounded by
DO(n) arithmetic operations in Q.

Theorem 8. If the first choices of A, θ and u are correct,
the procedure described above has a complexity within DO(n)

arithmetic operations in Q and returns the set of asymptotic
critical values of the mapping x→ f(x).

Computation of critical values. If the singular locus of
f is zero-dimension, [24, 25] and FGLM algorithm allow
us to compute the critical values of f with a complexity
within DO(n) arithmetic operations in Q. We show now how
to modify CriticalValues to obtain a complexity result
without assumption on the dimension of the singular locus of
f . To this end, we use deformation techniques. The method

is interesting in itself. It generalizes to the case of singular
polynomial systems the approach developed in [39]. This
had lead to significative practical improvement for finding
the real solutions of singular hypersurfaces. The complexity
of the method we present here is DO(n).
Given (q, i0) ∈ N×Z, an infinitesimal ε, and a Puiseux series

field a =
P

i≥i0
aiε

i/q (with ai0 6= 0) in C〈ε〉, lim0(a) exists

if i0 ≥ 0 and equals a0. Given x = (x1, . . . , xn) ∈ C〈ε〉,
if for all i, lim0(xi) exists, x is said to have a bounded
limit lim0(x) = (lim0(x1), . . . , lim0(xn)), else x is said to
have a non-bounded limit. If V is a subset of C〈ε〉n (or
R〈ε〉n), lim0(V ) denotes the set of bounded limits of the
points in V . We consider in the sequel algebraic varieties
defined in C〈ε〉n. Given I = {i1, . . . , i`} ⊂ {1, . . . , n} and
σ ∈ {−1, 1}n, denote by V

a,σ
ε,I the algebraic variety defined

by the system S
a,σ
ε,I

∂f
∂Xi1

−σi1ai1ε = · · · = ∂f
∂Xi`

−σi`
ai`

ε = 0

(where ε is an infinitesimal). Given a point A ∈ Qn, de-

note by W
A,a,σ
ε,I the set of critical points of the square of the

euclidean distance function from A restricted to V
a,σ

ε,I . If
y ∈ Rn and E ⊂ Rn, dist(y, E) denotes the minimum dis-
tance from y to E. Finally, denote by S ⊂ Cn the algebraic
variety defined by ∂f

∂X1
= · · · = ∂f

∂Xn
= 0.

Lemma 1. There exists a Zariski-closed subset A ( Cn

such that for all a ∈ Qn \ A, S
a,σ
ε,I generates a radical ideal

and V
a,σ

ε,I is smooth of dimension n − ]I if it is not empty.
Given such a a, there exists a Zariski-closed subset Aa ( Cn

such that for all A ∈ Qn \ Aa, W
A,a,σ
ε,I is zero-dimensional

or empty.
Proof. This is a consequence of the algebraic Sard’s the-
orem applied to the mapping x ∈ Cn → (fi1 (x), . . . , fi`

(x))
and of [1, Theorem 2.3] (see also [4]) applied to the system
fi1 − σi1ai1ε = · · · = fi`

− σi`
ai`

ε = 0. �

Theorem 9. Given A = (a1, . . . , an) ∈ Qn and C, a con-
nected component of S∩Rn, there exists I ⊂ {1, . . . , n} such

that
“
lim0(W

A,a,σ
ε,I ) ∩ S

”
∩ C 6= ∅.

Proof. Consider a point of C which is at minimal distance
to A and suppose, without loss of generality, that in any
neighbourhood of x, there exists a point at which all the
partial derivatives of f are positive. Consider the maximal
subset I ⊂ {1, . . . , n} (for the order inclusion) such that in
each neighbourhood of x there exists x′

ε such that fi(x
′) −

aiε = 0 for all i ∈ I. Remark that lim0 x′
ε exists and equals

x. We follow now mutatis mutandis the proof of [38, Lemma
3.7], to obtain the result.
Consider the setM of points of C at minimal distance from
A. Let r > 0 be small enough so that the closed and bounded
semi-algebraic set T = {x ∈ Rn | ∃y ∈ M dist(y,M ≤ r}
does not intersect S \C. According to the above lim0(xε) ∈
M. Denoting T ′ = {x ∈ Rn | ∃y ∈ M dist(y,M = r},

remark that the points of lim0(W
A,a,σ
ε,I )∩S∩T ′ are infinites-

imally close of points of S∩T ′ which are not at minimal dis-
tance from A. So the minimal distance from A to W

A,a,σ
ε,I ∩T

is not obtained on T ′. Thus, this minimal distance is ob-
tained at a point which is a critical point of the square of
the distance function to A on V and it is clear that the limits
of these points lie inM. �

In order to compute rational parametrizations W
A,a,σ
ε,I , we

follow a similar strategy than the one designed in the above
paragraph, by specializing ε in rational values, using interpo-
lation to obtain rational parametrizations with coefficients



in Q(ε) and [38] to compute lim0(x) for each point x encoded
by these rational parametrizations. We obtain a complexity
within DO(n) arithmetic operations in Q. Finally, note that
the number of I to consider is bounded by DO(n).

Theorem 10. If the first choices of a, A, specialisation
values of ε and a separating element are generic enough, one
can compute at least one point in each connected component
of S ∩ Rn within a complexity bounded by DO(n).

6. IMPLEMENTATION AND PRACTICAL
EXPERIMENTS

The algorithm we implemented uses the routines described
in Sections 2, 3 since, up to the experiments we did, they
are more efficient than the ones described in Section 5 to
obtain complexity results. The implementation is done in
Maple. Our implementation uses internal functions of the
RAGlib Maple package [41]. They are based on FGb [12]
(implemented in C by J.-C Faugère) for the computations of
Gröbner bases. They also use RS [36] (implemented in C by
F. Rouillier) for finding the real solutions of zero-dimensional
systems and the isolation of real roots of univariate poly-
nomials with rational coefficients. The computations have
been done on an Intel(R) Xeon(TM) CPU 3.20GHz (2048
KB of cache) with 6 GB of RAM.
The polynomials

Pn
i=1

Q
j 6=i(Xi − Xj) which are called in

the sequel LLn are used as a benchmark for numerical meth-
ods based on LMI-relaxations (see [45]). In the sequel we
consider LL5 (which has degree 4 and contains 4 variables),
LL7 (which has degree 6 and contains 6 variables) and LL9

(which has degree 8 and contains 8 variables) .
The following polynomial (denoted by Vor1) appears in [11].
The initial question was to decide if its discriminant (de-
noted by Vor2) with respect to the variable u is always
positive. Answering to this question can be done by comput-
ing its infimum. The polynomial Vor2 has 253 monomials
and is of degree 18.

16 a2(α2 + 1 + β2)u4 + 16 a(−α β a2 + axα + 2 aα2 + 2 a + 2 aβ2 + ayβ−

α β)u3 + ((24 a2 + 4 a4)α2 + (−24 β a3
− 24 aβ − 8 ya3 + 24 xa2

− 8 ay)

α + 24 a2β2 + 4 β2
− 8 β xa3 + 4 y2a2 + 24 yβ a2

− 8 axβ + 16 a2 + 4 x2a2)

u2 + (−4 α a3 + 4 ya2
− 4 ax − 8 aα + 8 β a2 + 4 β)(β − aα + y − ax)u+

(a2 + 1)(β − aα + y − ax)2

The following polynomial appears in [10]. In this paper,
one has to decide if this polynomial is always positive. We
compute its infimum to answer this question.

1 − 8 c2d2
− 196608 e3a2d2c + 1536 ead4c2 + 21504 e2ad2c − 4096 e2ac3d2

−384 ead2 + 1024 e2ac + 16 c4d4
− 72 c2d4 + 1024 c2e2 + 36864 e2a2d4

−

3456 ead4 + 262144 e4a2c2 − 32768 e3ac2 + 256 c3d2e−

576 ced2 + 81 d4 + 64 ce − 18 d2

The following polynomial appears in [29].4 a6c2d2 + 2 a2b2d6
− 6 a2b2d4 + a4c4 + 2 a4c2d6

− 6 a2b2c4 − 6 a4b2c4

+4 a6b2d2 + a8b4 + 6 b4c2d2
− 2 b6c4d2 + a8d4 + 6 a2b6d2

− 8 a4b4d2
−

4 a4b2d6
− 6 b4c4d2

− 8 a4b4c2 + 6 a6b2c2 − 8 a2b4c2 + 6 a4b4d4

−2 b4c2d4
− 4 a2b4c6 − 4 a6b4c2 − 6 a2b4d4

− 2 a4c4d2+

10 a4b2d4
− 2 a2b8c2 − 6 a2b6c4 + a4b8 + 6 a2b2d2 + 6 a6b4d2

− 4 a4b6d2

+b4d4 + b4c8 + 10 a2b4c4 + 6 a2b2c2 + 4 a2b6c2 + a4d8 + 4 b6c2d2+

6 a4b6c2 − 8 a4b2d2 + 4 a4b2c2 − 2 a8b2d2 + 6 a4c2d2 + 4 a2b4d2
−

6 a6b2d4 + 6 a4b4c4 − 2 a6c2d4 + 2 b4c6d2 + 2 a2b2c6 − 6 a4c2d4 + b8c4+

2 a4b2 − 4 a4d2 + a4
− 2 b6 − 2 a6 + a8 + b8 + b4 + 2 a2b4 + 2 b6c6 − 2 b8

c2 − 6 b6c4 + 2 a6b4 − 2 a2b2 − 2 a6b6 + 2 a4b6 − 2 a2b8 − 6 a4b2c4d2+

2 a2b4c4d2 + 2 a4b2c2d4
− 6 a2b4c2d4

− 6 a4b2c2d2
− 6 a2b4c2d2+

4 a2b2c4d4 + 2 a2b2c2d6 + 2 a2b2c4d2 + 2 a2b2c2d4
− 10 a2b2c2d2+

6 a2b6c2d2
− 6 a4b4 + 2 a2b6 − 2 a8b2 + 2 a6b2 + 6 a6b2c2d2

−

10 a4b4c2d2
− 4 b4c6 + 6 b4c4 + 6 b6c2 − 2 a6c2 + 2 a2b2c6d2 + a4c4d4

−

2 a4c2 − 2 b6d2
− 4 a4d6 + 2 a6d6

− 2 a8d2
− 6 a6d4 + 6 a6d2+

b4c4d4
− 4 b4c2 + 6 a4d4

− 2 b4d2(a2
− b2)

In the sequel, we give the timings we obtained with an im-
plementation of the algorithm we describe in this paper in
the column Algo. Timings obtained by the numeric SOS
Solver SOSTools [34] are given in the column SOS. The

column CAD contains the timings we obtained to solve the
quantifier elimination problem induced by the global opti-
mization problem by using the QEPCAD software [8]. The
symbol ∞ below means that no result has been obtained
after 1 week of computations.

Algo SOS CAD

LL5 67 sec. 1 sec. ∞
LL7 10 hours 12 sec. ∞
LL9 ∞ ∞ ∞
Vor1 40 sec. 53 sec. ∞
Vor2 2 hours ∞ ∞
IT 10 sec. 2 sec. 5 sec.

Comparatively to CAD, the algorithm we describe in this
paper is clearly more efficient since it can tackle problems
that are not reachable by QEPCAD. We observe that on
most of these examples numerical methods are faster. Nev-
ertheless, on these examples, numerical methods have not
allowed us to tackle problems that are not reachable by our
method. Note also that they can’t solve Vor2. Neverthe-
less, we believe that these techniques may return on answer
on problems that are not tractable by our method. Finally,
we observed numerical instability or wrong results for the
problems LL5, LL7 and Vor1. This shows that obtaining
global optimization solvers based on computer algebra tech-
niques is important and can be complementary to numerical
methods.
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complexity of semi-algebraic sets. In Proceedings
IFIP’89 San Francisco, North-Holland, 1989.

[20] J. Heintz, M.-F. Roy, and P. Solernò. On the
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