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Abstract

We give a complete description of the Voronoi diagram oféHiees inR3. In particular, we show that
the topology of the Voronoi diagram is invariant for thregels in general position, that is, that are pairwise
skew and not all parallel to a common plane. The trisectosisté of four unbounded branches of either a
non-singular quartic or of a cubic and line that do not irgetsn real space. Each cell of dimension two
consists of two connected components on a hyperbolic pkndhbat are bounded, respectively, by three
and one of the branches of the trisector. The proof techniyhéch relies heavily upon modern tools of
computer algebra, is of interest in its own right.

This characterization yields some fundamental propedfethe Voronoi diagram of three lines. In
particular, we present linear semi-algebraic tests foassmg the two connected components of each two-
dimensional Voronoi cell and for separating the four cote@components of the trisector. We also show
that the arcs of the trisector are monotonic in some diractibhese properties imply that points on the
trisector of three lines can be sorted along each branclg wsily linear semi-algebraic tests.
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1 Introduction

The Voronoi diagram of a set of disjoint objects is a decomposition ofesipé cells, one cell per object, such
that the cell associated with an object consists of all points that are clabat twbject than to any other object.
In this paper, we consider the Voronoi diagram of line®funder the Euclidean metric.

Voronoi diagrams have been the subject of a tremendous amount afaesé&or points, these diagrams,
their complexity and optimal algorithms are well understood and robust efficigolementations exist for
computing them in any dimension (see for instance [1, 2, 4, 5, 6, 7, 1843beven though some important
problems remain and are addressed in recent papers. The same isrtsegrfents and polygons in two
dimensions [17].

For lines, segments, and polyhedra in three dimensions much less is knovparticular, determining
the combinatorial complexity of the Voronoi diagramrolines or line segments iR? is an outstanding open
problem. The best known lower bound$n?) and the best upper bound@®n3+¢) [35]. It is conjectured that
the complexity of such diagrams is near-quadratic. In the restricted cassetbin lines with a fixed number,
¢, of possible orientations, Koltun and Sharir have shown an upper bafudh?*¢), for anye > 0 [19].

There are few algorithms for computing exactly the Voronoi diagram of tinbgects. Most of this work
has been done in the context of computing the medial axis of a polyhedzgithe Voronoi diagram of the
faces of the polyhedron [9, 23]. Recently, some progress has bedmanahe related problem of computing
arrangements of quadrics (each cell of the Voronoi diagram is a csliaf an arrangement) [3, 18, 24, 31,
32]. Finally, there have been many papers reporting algorithms for congpajpiproximations of the Voronoi
diagram (see for instance [10, 13, 16, 36]).

In this paper, we address the fundamental problem of understandistyticture of the Voronoi diagram
of three lines. A robust and effective implementation of Voronoi diagrahtisree-dimensional linear objects
requires a complete and thorough treatment of the base cases, that igtaendiaf three and four lines, points
or planes. We also strongly believe that this is required in order to makegs®ogn complexity issues, and
in particular for proving tight worst-case bounds. We provide herdlafd complete characterization of the
geometry and topology of the elementary though difficult case of the Vodiagram of three lines in general
position.

Main results. Our main result, which settles a conjecture of Koltun and Sharir [19], is theniog (see
Figure 1).

Theorem 1 The topology of the Voronoi diagram of three pairwise skew lines thahatell parallel to a
common plane is invariant. The trisector consists of four infinite branchegtteer a non-singular quartfc

or of a cubic and line that do not intersect #¥(R). Each cell of dimension two consists of two connected
components on a hyperbolic paraboloid that are bounded, respectbsetiiree and one of the branches of the
trisector.

The proof technique, which relies heavily upon modern tools of computebedgis of interest in its own
right.

This characterization yields some fundamental properties of the Voraegiaan of three lines which are
likely to be critical for the analysis of the complexity and the development afieffi algorithms for computing
Voronoi diagrams and medial axis of lines or polyhedra. In particulagtain the following.

Theorem 2 Each of the branches of the trisector of three pairwise skew lines thatatrall parallel to a
common plane is monotonic in some direction. Furthermore, there is a Isezai-algebraic test for
() deciding on which of the two connected components of a two-dimensielhal point lies,
(i) deciding on which of the four branches of the trisector a point lies,
(iif) ordering points on each branch of the trisector.

1By non-singular quartic, we mean an irreducible curve of degreevithmo singular point ifP3(C).
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Figure 1: Voronoi diagram of 3 lineg, ¢», and/sz in general position: (a) Voronoi 2D face éf and/,, i.e.,

set of points equidistant t§ and/, and closer to them than #. (b) Orthogonal projection of a 2D face on a
plane? with coordinate systertX,Y) such that the plane’s normal is parallel to the common perpendicular of
/1 and/; and such that th¥ andY-axis are parallel to the two bisector lines () of the projection o¥; and

¢, on P; the face is bounded by four branches of a non-singular quartic.

The rest of the paper is organized as follows. The next section giege¢iof of Theorem 1. In Section 3,
we present some fundamental properties of the Voronoi diagram & lines and prove Theorem 2. Finally,
we give, in Section 4, a geometric characterization of the configuratiotisex lines in general position such
that their trisector contains a line.

2 Proof of Theorem 1

We consider three lines general positionthat is, that are pairwise skew and not all parallel to the same plane.
The idea is to prove that the topology of the trisector is invariant by contsdetormation on the set of all
triplets of three lines in general position and that this set is connected etk then follows from the analysis
of any example.

We show that the trisector is always homeomorphic to four lines that do imetipa intersect. To prove
this, we show that the trisector is always non-singuldPi(iR) and has four simple real points at infinity. To
show that the trisector is always non-singular, we study the type of theéut#wn of two bisectors, which are
hyperbolic paraboloids.

We use the classic result that the intersection of two quadrics is a norlasingartic (inP3(C)) unless the
characteristic equation of their pencil has (at least) a multiple root. In ¢toddgtermine when this equation
has a multiple root, we determine when its discriminaig zero.

This discriminant has several factors, some of which are trivially alyaggive. The remaining, so-called
“gros facteut, can be shown, using Safey’s software [26], to be never negalitds implies that it is zero
only when all its partial derivatives are zero. We thus consider theraytbtat consists of thgros facteurand
all its partial derivatives, and compute itsdbner basis. This gives three equations of degree six. We consider
separately two components of solutions, one for which a (simple) polyndmkzero, the other for which
F #0.

WhenF # 0, some manipulations and simplifications, which are interesting in their own rigiels,
another Gobner basis, with the same real roots, which consists of three equatioleg@e four. We show
that one of these equations has no real root which implies that the syssemo ln@al root and thus thAt=0
has no real root on the considered component. We can thus conclade this case, the trisector is always a
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Figure 2: (a) 3 lines in general position. (b) Ordering of the conneatetponents of the cells of the Voronoi
diagram above each region induced by the projection of the trisectoilandette curves of the bisectotd;;
andT;; denote the connected components of the\éelhat are bounded by one and three arcs of the trisector,
respectively; the ordering over the small cell in the middI&is< T3 < Toz < Tos.

non-singular quartic iiP3(R). WhenF = 0, we show, by substituting = 0 in A and by using the classification
of the intersection of quadrics over the reals [12], that the trisector ibia and a line that do not intersect in
P3(R).

We can thus conclude that the trisector is always a non-singular quadicubic and a line that do not
intersect in real space and thus that the trisector is always non-singH3(R).

In the rest of this section, we prove Theorem 1.

2.1 Preliminaries

Let ¢4, £2, andl3 be three lines in general positidrg., that are pairwise skew and not all parallel to a common
plane. Refer to Figure 2(a). L€X,Y,Z) denote a Cartesian coordinate system. Without loss of generality, we
assume that; and/, are both horizontal, pass throu¢® 0, 1) and(0,0, —1) respectively, and have directions
that are symmetric with respect to theZ-plane. More precisely, we assume that liias defined by point
p1 = (0,0,1) and vectov; = (1,a,0), and linel, by point p, = (0,0,—1) and vectonv, = (1,—a,0), a€ R.
Moreover, since the three lines are not all parallel to a common plaiienot parallel to the plane= 0, and
so we can assume that lidigis defined by poinps = (x,y,0) and vectons = (a,B,1), X,y,a,B € R.

We denote by ; the bisector of lineg; and/; and byV;; the Voronoi cell of lineg; and/j, i.e., the set
of points equidistant té; and/; and closer to them than @@, k # i, j. We recall the following well-known
elementary facts. The bisector of two pairwise skew lines is a right hypegaraboloid, that is, has equation
of the formZ = yXY, y€ R, in some coordinate system (see for instance[19]). The Voronoi cellsomnected
and star-shaped [21].

2.2 Algebraic structure of the trisector, Part |

The trisector of our three lines is the intersection of two right hyperbolialpzloids, say#; , and#, 3. The
intersection of two arbitrary hyperbolic paraboloids may be singular; it neagt hodal or cuspidal quartic,
two secant conics, a cubic and a line that intersect, a conic and two linesrggon the conic, etc (see [12,
Table 4]). We show here that the trisector is always non-singular byisigithe characteristic polynomial of
the pencil ofH; » and #, 3.

Let Q12 andQq 3 be matrix representations 6f; , and #4 3, i.e. the Hessian of the quadratic form asso-
ciated with the surface (see, for instance, [11]). Peacilof Q2 andQ 3 is the set of linear combinations



of them, that isP(A\) = {AQ12+ Q1 3, VA € R}. Thecharacteristic polynomiabf the pencil is the determi-
nant, D(A) = det(P(A)), which is a degree four polynomial in The intersection of any two quadrics is a
non-singular quartic, itP3(C), if and only if the characteristic equation of the corresponding penci doe
have any multiple roots (i) [33] (see also [12]). A non-singular quarticBf(C) is, in P3(R), either empty
or a non-singular quartic. Thus, since the trisector of our three linestée the empty set iR3, the trisector

is a smooth quartic iiP3(R) if and only if the characteristic equation of the pencil does not have any nieultip
roo?éénéct?éracteristic polynomial of the pencil is fairly complicated (roughlypage in the format of Eq. (1)).
However, by a change of variable— 2\ (14 a? +B?) and by dividing out the positive factdf 4 a?)?(1+

a? +B?)3, the polynomial simplifies, without changing its roots, to the following, which tiledenote by
D(A) for simplicity.

D) = (a® +B?+1) a2A* — 2a(2ap® +ayB+aax— Ba +2a+2a0® — Baa?) \®
+ (B? +6a%p® — 2Bxa® — 6Baa’+6yBa’ — 6aBa — 2aBx+ 6axal +y?a® — 2any+x2a? — 2yaa® +6a%0” + a*a® + 4a%) A2
—2 (xa—yad —2Ba® —p+2aa+aa’) (xa—y—PB+aa) A+ (1+a%) (xa—y—B+aa)® (1)

In the sequel, all polynomials are considered over the reals, that ssdion, 3, %,y in R, unless specified
otherwise. We start by studying the signDfA).

Lemma 3 The characteristic polynomiab(A) is never negative.

Proof. We prove that the real semi-algebraic Set {x = (\,a,x,y,a,B) € R® | D(x) < 0} is empty using a
development version of the RAGk Maple library [26] which is based on the algorithm presented in [28]. The
algorithm computes at least one point per connected component of s@chialgebraic set and we observe
that, in our case, this set is empty. Before presenting our computation sivedgcribe the general idea of this
algorithm.

Suppose first thas # R® and letC denote any connected componentsof We consider here as a
function of all its variables( = (A\,a,x,y,a,B) € R. The algorithm first computes the set of generalized
critical valueg of D (see [28] for an algorithm computing them). The image/yf C is an interval whose
endpointg are zero and either a negative generalized critical value or minus infimibarfyv in this interval,
there is a poinko € C such thatD(xo) = v, and the connected component containgggf the hypersurface
D(x) = vis included in the connected componghtHence, a point irC can be found by computing a point
in each connected component®fy) = v. It follows that we can compute at least a point in every connected
component of the semi-algebraic sedefined byD(x) < 0 by computing at least one point in every connected
component of the real hypersurface definedlx) = v wherev is any value smaller than zero and larger than
the largest negative generalized critical value, if any. Finally, a randehidgen poinp in R® also needs to
be added, ifD(p) < 0, to ensure that we find a point in every connected componesitiofthe case where
S =R,

Now, computing at least one pointin every connected component ofas$wyiace defined bf(x) =vcan
be done by computing the critical points of the distance function betweenrflaesand a point, say the origin,

2Recall that the (real) critical values @f are the values of at its critical pointsy, i.e., the pointx at which the gradient of is
zero. The asymptotic critical values are similarly defined as, roughlgkspg, the values taken k¥ at critical points at infinity, that
is, the valueg € R such that the hyperplarze= c is tangent to the surface= D(x) at infinity (this definition however only holds for
two variablesj.e., X € R2). More formally, the asymptotic critical values were introduced by Kisedgt al. [20] as the limits oD ()
where(Xk)ken IS @ sequence of points that goes to infinity whijg|l - [|grady, D(xk)|| tends to zero. The generalized critical values
are the critical values and asymptotic critical valuBise set of generalized critical values contains all the extrema of fun@icgven
those that are reached at infinity.

3sinces # RS, the boundary of is not empty and consists of pointssuch thatD(x) = 0. The image of the connected geby
the continuous functiom is an interval. Hence, zero is an endpoint of the inte®éf"). The other endpoint is either an extremum of
D (and thus a generalized critical value) or minus infinity.



that is, by solving the system?(x) = v, x x grad D)(x) = 0. This conceptually simple approach, developed
in [27], is, however, not computationally efficient. The efficient algoritmasented in [28] computes instead
critical points of projections, combining efficiently the strategies given if &@ [29].

Table 1 (in Appendix F) shows the result of the computation of at least oirg¢ m every connected
component ofs.* We observe that this set is empty, implying th2gy) > 0 for all x € R®. It should be noted
that these computations are very fast: they take roughly 3 seconds séélame on a standard PC. 0

Let A be the discriminant of the characteristic polynomia(A) (with respect taA). Recall thatD(A)
admits a multiple root if and only if its discriminant is zero.

Corollary 4 The discriminani) is never negative.
Proof. By Lemma 3,D(]A) is either always positive or has a multiple root. If a degree-four polynomial

is always positive, then it easily follows from the definition that its discriminargositive [8, 83 p. 119].
Furthermore, if a polynomial has a multiple root then its discriminant is zero. O

Remark. The proof that\ is never negative can also be proved with RWGLIB library, as in the proof of
Lemma 3, but the computation is then a lot more time consuming (roughlguk® imstead of 3 seconds).

The discriminanfA of the characteristic polynomial, computed with Maple [22], is equal to
16a* (ax—y—B+aa)?(y+ax—aa —pB)? )

times a factor that we refer to as tges facteurwhich is a rather large polynomial of which we only show 2
out of 22 lines:

grosfacteur= 8ala%y? + 7a*3?* — 4aB3x + 16a°3** + 32a%0?y? + 28802344 + 38280 4 2y*B2a’a’? + 44880224
-4 22a%? B2 + yPaP 4 a?yBa® — 2B xayPal + x8al + 10Bxa’a? + 2yala’x? — 32a3%02y?Bx + 28a°BAxPay — 24a2Blyax.  (3)

Lemma 5 The discriminaniA is equal to zero if and only if thgros facteuand all its partial derivatives are
equal to zero.

Proof. The polynomial (2) is not equal to zero under our general positionngsson. Indeeda =0 is
equivalent to saying that lineg and/, are parallel and the two other factors of (2) are equal to the square
of det(p; — ps,Vi,Vva), fori = 1,2, and thus are equal to zero if and onlyjifand/; are coplanar, for=1,2.

It follows that (2) is always strictly positive. Thus, the discrimin&nis equal to zero if and only if thgros
facteuris zero. Furthermore, by Corollary 4, tiggos facteuris never negative, thus, if there exists a point
where thegros facteurvanishes, it is a local minimum of thgros facteurand thus all its partial derivatives
(with respect td{a, x,y,a, 3}) are zero. O

Note that Lemma 5 says, in other words, that the zerdsark the singular pointof the gros facteur
We now state our main lemma which implies that the discriminant is zero only if a simpthticonis
satisfied.

Main Lemma The discriminanf\ is equal to zero only if yaa = 0or ax+ 3 =0.

Proof. ByLemmab5A s zero if and only if thegros facteurand all its partial derivatives are zero. We prove
below that this implies thaty +aa) (ax+B) (14 a2+ B?) I =0, where

M= (2a(ya—Bx)—a+ 1)2+3 (ax+B)*+3a2 (y+aa)®+3 (1+ a2)2. (4)

4As an example where the set is not empty, we also present, in Table &stileaf the computation of at least one point in every
connected component of the setyo& R such thatD(x) > 0.
5Recall that the singular points of a surface are the points where all petightives are zero.
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As the two termg1+a? -+ ?) andrl” clearly do not have any real solutions, this proves the lemma. (We discuss
later how we found these terms.)

Consider the system in the variables x, y, a, B,u,v,w,t} that consists of thgros facteurits partial deriva-
tives, and the four equations

1-u(y+aa)=0, 1-v(ax+B)=0, 1-w(l4+0a’+p? =0, 1—-tr=0. (5)

The gros facteurand its partial derivatives have a common zero (real or complex) sutliythaaa) (ax+
B) (14 a2+ PB?)I # 0if and only if this system has a solution. This follows immediately from the fac¢thea
equations (5) are linear in v, w,t.

The Gibbner basis of that system is reduced to the polynomial 1 (see Table 2)umnthéhsystem has no
solution (over the complexes). This concludes the proof. O

The real difficulty in the proof of the Main Lemma is, of course, to find theatigns (5) that rule out all
the imaginary components of the set of singular points ofjties facteur Computing these components is the
actual key of the proof. We believe that the technique we used can benefisiterest to the community as it is
rather generic and could be applied to other problems. We thus describetiars2.3 how these components
were computed before finishing the study of the algebraic structure ofiskettr, in Section 2.4.

2.3 About the proof of the Main Lemma

We show in this section how we computed, for the proof of the Main Lemma, thatiegs of (5) which
correspond to hypersurfaces containing the zeros of the discriminant.

Basically, we proceed as follows. We start from the system of equatfdahe gros facteurand all its partial
derivatives and use the following techniques to study its set of solutionspie precisely to decompose it into
components defined by prime id€al3 his could theoretically be done by a general algorithm computing such
a decomposition, however, all existing implementations are far from beiraptapf handling our particular
problem or even a simpler sub-problem (see Remark 6).

If the (reduced) Gibner basis of some system contains a polynomial which has a factér, gsysolutions
of the system splits into two components, one of which suchRhatO, the other such th&t £ 0. We study
separately the two components. One is obtained by adding the egbdtidhe system and the other is obtained
by adding the equation 2tF and eliminating the variable indeed, there is a one-to-one correspondence
between the solutions of the initial system such thag O and the solutions of the system augmented by
1—-tF. Sometimes, frequently in our case, the compoffegt0 is empty, which corresponds to the situation
where the elimination df results in the polynomial 1 (inducing the equatioa-D). Note that in some cases
the system contains a polynomial which is a square FSayhus the component such that# 0 is obviously
empty and we can add to the system without changing its set of solutions (this however changaethi®
This operation of adding to the system frequently adds embedded components to the variety of solutions
which explains why, later on in the process, empty components are friygaanountered when splitting into
two components.

Our computations, presented in Table 3, are performed in Maple [22] trer@bbner basis package FGb
developed by J.-C. Faege [15] . We use two functions,

fgb_gbasis(sys,0,vars1,varsahdfgb_gbasiselim(sys,0,varl,var2)
that compute Gibner bases of the systesys the first uses a degree reverse lexicographic order (DRL) by
blocks on the variables aofarslandvars2(wherevars2is always the empty set in our computation) and the

6An ideal I is prime ifPQe I impliesP e I orQ e I.
"The functiongbasis(sys,DRL(var1,var2),elimith or without the optional last argumeatim can also be used alternatively of
these two functions



second one eliminates the variabbrsland uses a reverse lexicographic order on the variablegre® (The
second parameter of the functions refer to the characteristic of the feztel Oh)

We do not show in Table 3 the Gioner bases which are too large to be useful, except in the case where
the basis is reduced to 1 (when the system has no solution). We instea@poty the first operand of each
polynomial of the base; an operagdneans that the polynomial is the product of at least two factors; an
operand "~ means that the polynomial is a power of some polynomial; an @pernareans that the polynomial
is a sum of monomials.

Our computation goes as follows. We first simplify our system by consideria@ because otherwise the
Grobner basis computations are too slow and use too much memory to be pergueccedsfully. We first see
after computingbs;, the Gbbner basis of our system, that 2a appears as a factor of one polynomial. This
splits the solutions into those such tlyat 2a = 0 and the others. We will study separately (in Lemma 7) the
former set of solutions and we only consider here the solutions sucp-tfat # 0. This is done by adding the
polynomial 1— u(y+ 2a) to the system, wheneis a new variable; indeed there is a one-to-one correspondence
between the solutions of the initial system such thaa # 0 and the solutions of the resulting system.

The termy+ 2a corresponds fairly clearly to the polynomial aa with a = 2, and because of the sym-
metry of our problem we also study separately the solutions such ¥ = 0. Since we assumet= 2, we
only consider here the solutions such that2B # 0, by adding to the system the polynomiat ¥ (2,x+ ).
Finally, we also add + w(1+ a2+ ?) to the system, without changing its set of real of real roots; we do this
because the term-La? + B2 appears in the leading coefficient ®A\) which suggests that some component
of solutions (without any real point) might be included ir-1? 4- 2. (It should be noted that adding this
polynomial to the system changes the resultingtser basis, which shows that this addition indeed removes
some imaginary component from the system.) We compute thbr@r basishs, of that system, eliminating
the variablesi, v,w, which gives a system of four polynomials of degree six.

We then compute the @bner basis obs, eliminating the variable. This gives a basibs which is
reduced to one polynomial of the forR?. We thus addP to the systenbs, (we do not add it tdss since
bs; does not depend ax). The Gibbner basisbs;, of the new system contains several polynomials that are
products of factors. We see that if we add to the system the constraitti¢tthird factor of the first polynomial
is not zero, the resulting system has no solution. We thus add this factorggstieen and compute its &oner
basisbs;. We operate similarly to gdiss. The basiss; contains no product or power and we compute its
Grobner basisbs;, eliminatingy (eliminatingx gives no interesting basis). The last polynomiabef is a
power and we proceed as before to gt We proceed similarly until we get to the babig,.

The basisbs;» consists of three polynomials of degree four (which is a simplification bggmwhich
consists of four polynomials of degree six). We observe that the lastpaiial ofbs; is

Mo = (4ya —4Bx—3)%+3(2x+B)?+12(y+2a)2 + 75,

which is always positive over the reals.

We have thus proved that all the complex solutions, suchaka®, of the initial system (thgros facteur
and all its partial derivatives) satisfit + a2+ B2) (y+2a) (2x+ )2 = 0.

Finally, to get the polynomidl of Formula (4), we performed the same computation with3 anda=5
andguessed™ as an interpolation of the polynomidis, I3, andls.

Note that all the computation for a fixedtakes roughly eight minutes of elapsed time on a regular PC.

Remark 6 All the computations from bgo bs > amounts to finding polynomials that have a power which is
a combination of the elements of,{&e. which are in the radical of the ideal generated by)bsThus these
computations would be advantageously replaced by a program comgh#ngdical of an idedl. Unfortu-
nately, all available such programs fail on the ideal generated bydither by exhausting the memory or by

8The radical of an ideal is the ideal{x | x" € I for somen € N}.



running unsuccessfully during several days and ending on an dtisrtherefore a challenge to improve these
programs so that they are able to automatically do this computation.

2.4 Algebraic structure of the trisector, Part Il

Lemma 7 The discriminant) is equal to zero if and only if

B(2a®+1)£2/a?(1+8?) (02 +p?+1)

y=-aa and Xx= a , or (6)
X:_g and y_0((2+a2)iz\/(la:kaz)(a2+l32+1)' @)

Proof. We referto Table 5, Appendix F, for the computations. By the Main LenfxgaQ impliesy+aa =0

or ax+B = 0. Substitutingy by —aa in A gives an expression of the forfig f2. Similarly, substitutingx

by —/a in A gives an expression of the forg@g% (recall thata # 0 since the lines are not coplanar, by
assumption). It follows thah = 0 if and only ify+aa = fi = Oorax+pB = g = 0,fori=0o0r 1. The

fi andg; are polynomials of degree two inandy, respectively. Solving; = 0 in terms ofx directly yields
that the systemy+aa = f; = 0 is equivalent to (6). Similarly, solvingy = 0 in terms ofy yields (7). On the
other hand, we prove that the solutionsyefaa = fo = 0 andax+ [ = go = 0 are included in the set of
solutions of (7) and (6), respectively, which concludes the prootaBse of lack of space, we omit here this
proof (see Appendix A for a complete proof). O

Lemma 8 If A =0, the trisector off1,/,, and /3 consists of a cubic and a line that do not intersect in real
space.

Proof. By Lemma 7,A =0 if and only if System (6) or (7) is satisfied. By symmetry of the problem (we

omit here the specification of the symmetry) we only need to consider one obthponents of (6) and (7).
a

Hence, it is sufficient to show that the systgm —aa, x = L;Jrl) +2/(1+a?) (a2 + B2+ 1) implies that
the trisector consists of a cubic and a line that do not intersect. We assunesfaidkving that this system is
satisfied and thak = 0. We refer to Table 6 for the computations.

We first show that the characteristic polynomial of the pencil generatedeoisectors is always strictly
positive. Recall that the characteristic polynomial is never negativel{&eena 3). It is thus sufficient to
prove that it is never zero, or equivalently, that its product with its algelmonjugate (obtained by changing
the sign of\/(1+a2) (02 + B2+ 1)) is never zero. This product is a polynomiain a,a,,A. We compute,
similarly as in the proof of Lemma 3, at least one point per connected comipafitbie real semi-algebraic set
{x=(a,a,B,A) e R*| T(X) — 2 < 0}. The resulting set of points is empty, herltg) is always greater or
equal to ¥2. It thus follows that the characteristic polynomial is always strictly positive

Since the characteristic polynomi@l(A) is always strictly positive and its discriminaftis zero,D(\)
admits two (conjugate) double imaginary roots. RetandA, denote these two roots. Recall tHAtA) =
detP(A) with P(A) = AQq 2+ Q13 whereQ; j is the matrix associated with the hyperbolic parabol#&g. It
follows from the classification of the intersection of quadrics [12, Tablthdf either (i)P(A1) andP(A;) are
of rank 3 and the trisectot » N #H; 3 consists of a cubic and a line that do not intersect oR([{}1) andP(A»)
are of rank 2 and the trisector consists of two secant lines.

We now prove thaP(A1) andP(A;) are of rank 3. We compute the @mer basis of all the 8 3 minors of
P(A) and of the polynomial +tW with

W= (1+a%) (1+a2+p?) (ax—y—PB+aa)(y+ax—aa—B).

The basis is equal to 1, thus thex3 minors of P(A) are not all simultaneously equal to zero whén# 0.
FurthermoreW¥ £ 0 for anyx,y,a,a, 3 in R such that the lineg;, /,, and/3 are pairwise skew (see (2) and the
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proof of Lemma 5). Thus the rank &f(A) is at least 3. The rank d?(A;), i = 1,2, is thus equal to 3 since
detP(Aj) = 0. We can thus conclude that whan= 0 the trisector consists of a cubic and a line that do not
intersect in real space. O

We now state a proposition that shows that the trisector admits four asymptatesdipairwise skew and
gives a geometric characterization of their directions.

Proposition 9 The trisector of'1, >, and/s intersects the plane at infinity in four real simple points. Further-
more, the four corresponding asymptotes are parallel to the four triséictes of three concurrent lines that
are parallel to¢1,¢», and/3, respectively.

Proof.  The trisector is the intersection of two hyperbolic paraboloids. Any hygierparaboloid contains
two lines at infinity. Hence the intersection, at infinity, of any two distinct lmgpkc paraboloids is the inter-
section of two pairs of lines. The intersection of these two pairs of linesstsns exactly four simple real
points unless the point of intersection of the two lines in one pair lies on oneflihe other pair. Because of
lack of space, we omit here the proof that this cannot happen undeseumptions and the characterization
of the four asymptotes (see Appendix B for a complete proof). O

Theorem 10 The trisector of three lines in general position consists of four infinite smb@hches of a
non-singular quartic or of a cubic and a line that do not intersect in rgslce.

Proof. As mentioned in the beginning of Section 2.2, the trisector of tree lines conkesisnoooth quartic
unless the discrimina is zero. Lemma 8 and Proposition 9 thus yield the result. 0

2.5 Topology of the Voronoi diagram

We omit the proof of the following first lemma because of lack of space (gpperdix C for a proof).

Lemma 11 There is a one-to-one correspondence between the set of ordgriedstof lines (in general posi-
tion) and the set of affine frames of positive orientation.

Corollary 12 The set of triplets of lines in general position is connected.
Theorem 13 The topology of the Voronoi diagram of three lines in general position eriast.

Proof. Consider three lines in general position and a bisector of two of them. Thetbiss a hyperbolic
paraboloid which is homeomorphic to a plane. The trisector lies on the bisectaria homeomorphic to four
lines that do not pairwise intersect, by Theorem 10. Hence the topoldipe oégions that lie on the bisector
and are bounded by the trisector is invariant by continuous deformatianyoconnected set of triplets of lines
(in general position). The topology of these regions is thus invarianbbiircuous deformation on the set of all
triplets of lines in general position (by Corollary 12). It follows that the togy of the two-dimensional cells
of the Voronoi diagram is invariant by such a continuous deformatioe. Vidionoi diagram is defined by the
embedding irR? of its two-dimensional cells, hence its topology is also invariant by contindefermation.
O

Proof of Theorem 1. Theorem 1 follows from Theorems 10 and 13 and from the computation example
of a two-dimensional cell of the Voronoi diagram (for instance the owevshin Figure 1). O

3 Properties of the Voronoi diagram and algorithms

We present here some fundamental properties of the Voronoi diagrdralgorithms for separating the two
components of each two-dimensional Voronoi cell and the four comperadrthe cell of dimension one.
Because of the lack of space, we omit all proofs (see Appendix D fuofgy. We start by presenting two



properties, one on the asymptotes of the trisector and one on the inciddatens between cells, which
directly yield an unambiguous labeling of the components of the trisector.

LetV;; denote the Voronoi cell of line§ and/; and letU;; andT;; denote the connected component¥pf
that are bounded by one and three arcs of the trisector, respectieelyigure 1).

Proposition 14 Exactly one of the four branches of the trisector of three lines in genesitipn admits only
one asymptote. Letg@ienote this branch. Each cellUs bounded by a branch distinct fromy @nd every
such branch bounds a cellU

Let G, k= 1,2,3, denote the branches of the trisector that bound the compongrit | k. The labeling
of the four branches of the trisector by,C..,C4 is unambiguous.

Note that differentiating betwedy andC, cannot be done by only looking at the céjb (Figure 1) but has to
be done by looking at the other cellgz andV,3. Differentiating betwee; andC, on Figure 1 can be done
by computing (using the algorithm described below) a vertical orderinggetioe Z-axis) of the components
Uij andT;; and determining the bran@y for whichU;; appears only on side of the branch (see Figure 2(b)).

We now present two important properties of trisector of the Voronoi diagyf three lineg,, ¢, and/s in
general position and a simple algorithm for separating the two components/ofdimensional Voronoi cell.
We consider théX.,Y,Z) frame described in Step (i) of the algorithm below.

Proposition 15 The orthogonal projection of the trisector 6f, /2, and/3 onto the XY -plane has two asymp-
totes parallel to the X-axis and two asymptotes parallel to the Y -axis.

Proposition 16 Every branch of the trisector @f, ¢,, and/3 is monotonic with respect to the Y -direction (or
every branch is monotonic with respect to the X-direction).

Algorithm to compute a linear halfspace,H;j, that containsU;; and whose complement containg;;.

(i) Consider a Cartesian coordinate systed1Y,Z) such that theZ-axis is parallel to the common per-
pendicular off; and¢; and such that th& andY-axis are parallel to the two bisector lines, in a plane
perpendicular to th&-axis, of the projection of; and/; onto that plane.

(ii) In this frame, compute all the critical values of the trisector with respectad(taxis and with respect
to theY-axis. Exchange th¥- andY-axis if there is no critical value with respect to theaxis.

(iii) Compute the twax-values of the two trisector asymptotes parallel toXtplane. If the minimum of
these values is smaller than the smaller critical value, then change the orieofatierthree axes.

(iv) Compute a value farger than the smaller critical value and smaller that all the other critical vaheks
the two asymptot&-values. The halfspace;j, of equationX < X containdJj; and the halfspack > X
containsTjj.

This linear semi-algebraic test for separating the componénendT;; and Proposition 14 gives directly
a linear semi-algebraic test for separating the components of the trisector.

Proposition 17 For any point p on the trisector, if p belongs to a halfspagg Hhen it lies on G, otherwise,
if p belongs to none of thejH it lies on G.

Finally, the above algorithm and Propositions 16 and 17 give Theorem 2.
4 Configurations of three lines whose trisector contains a line

We present here a geometric characterization of the position of three ligeméral position such that their
trisector contains a line (i.e., consists of a cubic and line). We show that, iiskeetor of three lines in general
position contains a line, then the cen@rof a parallelepiped associated to the lines is on the trisector line
which is the line througlD and parallel to the interior trisector of an associated frame. Becausekobflac
space, we omit here the description of the parallelepiped and frame (wi@dheaones of Lemma 11), the
precise meaning of interior trisector, and all proofs (see Appendix Bdtails). Conversely, we also show that

if the direction of the lines are not in some special configuration, then thetwisgontains a line if and only if

it contains the center of the associated parallelepiped.
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A Proof of Lemma 7

We give here a complete proof of Lemma 7 which states:

The discriminant) is equal to zero if and only if

B(2a°+1)+2,/a?(1+a2) (0?4 B2 +1)

y=-aa and Xx= a , or (6)
X:_g and y:a(2+a2)iz\/(1a+a2)(a2+B2+1)‘ @)

We refer to Table 5, Appendix F, for the computations. Recall that, by the Mamma,A = 0 implies
y+aa =0 orax+ [ = 0. Substitutingy by —aa in A gives an expression of the forrfg f12. Similarly,
substitutingx by —B/a in A gives an expression of the forgag? (recall thata # 0 since the lines are not
coplanar, by assumption). It follows that= 0 if and only ify+aa = f; = Oorax+p3 = g = 0,fori=0
or 1.

Recall also that thé andg; are polynomials of degree two kandy, respectively, and that solvinig = 0
in terms ofx directly yields that the system

ytao = f; = 0 (8)
is equivalent to (6). Similarly, solving; = O in terms ofy yields that the system
ax+B = g = O 9)

is equivalent to (7).
We now show that the solutions gf+ aa = fp = 0 are included in the set of solutions of (7). The
polynomial fg is the sum of two squares. It follows that-aa = fp = 0if and only if

y+ao = a’a’-1+afx = ax+B = O. (10)

We show below that the polynomials of (9) are included in the ideal gendpgitiak polynomials of (10). This
implies that (9) is, roughly speaking, less constrained than (10) and #haéttof solutions of (9) contains the
solutions of (10). Hence the solutionsyof aa = f; = 0 are contained in the set of solutions of (9) and thus
in the set of solutions of (7).

We prove that the polynomials of (9) are included in the ideal generatedebgdlynomials of (10) by
showing that the normal form of every polynomial of (9) with respect toGhi&bner basis of the polynomials
of (10) is zero. This is done using the functiaormalf (of Maple) which computes the normal form of a
polynomial with respect to a @bner basis.

We prove similarly that the solutions afx+ 3 = go = 0 are included in the set of solutions of (8) and
thus of (6), which concludes the proof.

B Proof of Proposition 9

We prove here Proposition 9 which state:

The trisector of’1, ¢», and/3 intersects the plane at infinity in four real simple points. Furthermore,
the four corresponding asymptotes are parallel to the four trisector linéisreé concurrent lines
that are parallel tofy, /2, and /s, respectively.
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The intersection with the plane at infinity of the bisector of lideand/, consists of the lines at infinity in
the pair of planes of equatioNY = 0 (the homogeneous part of highest degree in the equation of the bisector
of lines /1 and/, which is equal taZ = —ﬁaazXY). This pair of planes is the bisector of the two concurrent
lines that are parallel téy and/,, respectively. Note that the lines at infinity in this pair of planes are invarian
by translation of the planes. We thus get that the lines at infinity of the bisetsoty two lines/; and/; are
the lines at infinity in the pair of planes that is the bisector to any two conduimnes that are parallel t§ and
¢, respectively.

It follows that the points at infinity on the trisector &f, />, and/s are the points at infinity on the trisector
lines (the intersection of bisector planes) of three concurrent linesriagaallel tof1, 2, andls, respectively.

It remains to show that this trisector consists of four distinct lines.

Let ¢}, ¢5, and/j be the three concurrent lines through the origin that are parallgl ©, and/s, respec-
tively, and suppose, for a contradiction, that their trisector does maistoof four distinct lines. This implies
that the line of intersection of the two bisector planes of two lines,/¢a@nd¢,, is contained in one of the
bisector planes of two other lines, séyand/¢;. The intersection of the bisector planespfand?;, is the
Z-axis. It follows that one of the bisector planestpfand /5 is vertical, hence; and¢; are symmetric with
respect to a vertical plane and thijss contained in th&Y-plane. Therefore/}, ¢,, and/; lie in theXY-plane,
contradicting the general position assumption, which concludes the proof.

C Proof of Lemma 11

We prove here Lemma 11 which states:

There is a one-to-one correspondence between the set of ordgaiedstof lines (in general posi-
tion) and the set of affine frames of positive orientation.

Consider three lineg,, ¢, and/s in general position and refer to Figure 3. For the three choices of fairs o
lines?;, Zj, consider the plane containiigand parallel t/j, the plane containing; and parallel td;, and the
region bounded by these two parallel planes. The general positiompssn implies that these regions have
non-empty interiors and that no three planes are parallel. The intersettimese three regions thus defines a
parallelepiped. By construction, each of the lides>», and/; contains an edge of that parallelepiped. These
lines are pairwise skew thus exactly two vertices of the parallelepiped amnribe lines. Each of these two
points induces an affine frame centered at the point and with basis thetges of the parallelepiped oriented
from the point to the lineg,, />, and/s, in this order. One of the point€(on the figure) defines a frame of
positive orientation, the other defines a frame of negative orientafioor( the figure). This construction
exhibits a one-to-one correspondence between the set of ordetetstaplines (in general position) and the
set of affine frames of positive orientation, which concludes the proof.

D Proofs of Section 3: Properties of the Voronoi diagram and algorithms

We present here the missing proofs of Section 3. We first prove three Iletinaia together, prove Proposi-
tion 14.

Lemma 18 Exactly one of the four branches of the trisector of three lines in genesitipn admits only one
asymptote.

Proof. By Proposition 9, the trisector admits fosimple asymptotes, for all triplets of lines in general
position. It follows that the property that exactly one of the branchesaofribector has only one asymptote is
invariant by continuous deformation on the set of triplets of lines in gepasition. The result thus follows
from Corollary 12 and from the observation that the property is verifiedree particular example (see Fig 1).
O
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Figure 3: The parallelepiped formed By, ¢», and/3 and the associated fran(€, v1,V»,Vv3) of positive orien-
tation.

We denote byCy the branch of the trisector that admits only one asymptote (see Figure 1; 8B and
Cs the three others (the ordering of these three branches is, for the momtémnarg).

LetVj; denote the Voronoi cell of line§ and/;. LetU;; andT;; denote the connected componenty/pf
that are bounded by one and three arcs of the trisector, respectieelyigure 1).

Lemma 19 Each cell U; is bounded by a branch,Ck = 1,2, 3, and every such branch bounds a cell.U

Proof.  This property is invariant by continuous deformation on the set of tripldiaed in general position.
It is thus sufficient to prove it for any three given lines in general pasitig ¢, /3, as defined in Section 2.1.
We consider in th&XY-plane the arrangement of the (orthogonal) projection of the trisectarfahd silhouette
curves (viewed from infinity in th&-direction) of the bisectors (see Figure 2(b)); these silhouette curmsssto
of only two parabolas since the bisector of lifgsand ¢, has no such silhouette (its equation has the form
Z = cstXYand thus any vertical line intersects it). By construction, for all verticaklingersecting one given
(open) cell of this arrangement, the number and ordering of the intensgxtiots between the vertical line and
all the pieces of the three bisectors that are bounded by the trisectoriigimyv#&or any point of intersection,
we can easily determine (by computing distances) whether the point lies ailmadvaellVi;. We can further
determine whether the point belongs to the compolgnor Tj; by using the linear separation test described
below. We thus report the ordering of the componéhfsandT;; above each cell of the arrangement in the
XY-plane for a given example; see Figure 2(b).

We can now observe that there is a one-to-one correspondenceehdtvecthree branch&j, C,, andCs
and the componentd;», U13, andU»3 such that the component appears only on one side of the corresponding
brancH. It follows that each of the branch€s, C,, andC; bounds a cellj;. O

SinceUj; is, by definition, bounded by only one arc of the trisector, Lemmas 18 amfiré&ly yield the
following property.

Lemma 20 Let Gy denote the only branch of the trisector that admits only one asymptote @akd=Cl, 2, 3,
denote the branches of the trisector that bound the componegnt P k (see Figure 1). This labeling of the
four branches of the trisector by(C..,Cy4 is unambiguous.

We now consider any three linés, ¢», and/3 in general position (pairwise skew and not all parallel to a
common plane) and an associated Cartesian coordinate sg&t&f7) such that theZ-axis is parallel to the
common perpendicular @ and/, and such that th& andY-axis are parallel to the two bisector lines, in a
plane perpendicular to tlig-axis, of the projection of; and/, onto that plané® Note that the orientations of

9Namely,U13 (resp.U,3 andUs5) appears on only one side of the lower-right (resp. upper-righteftichost) branch.

10Note that this setting is slightly different than the one described in Sectioririzé, shere, any triplet of three lines in general
position can be moved continuously into another while the associated framesnsontinuously; however, if the initial and final
triplets of lines are in the setting of Section 2.1, it is not necessarily possildasiare that, during the motion, all triplets of lines
remain in this setting.
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the axis are not specified (except for the fact that the frame has avpasiientation) and that thé andY-axis
can be exchanged. We now prove Proposition 15 which states:

The orthogonal projection of the trisector 6f, /2, and/3 onto the XY -plane has two asymptotes
parallel to the X-axis and two asymptotes parallel to the Y -axis.

Proof of Proposition 15. By proposition 9, the four asymptotes of the trisector are parallel to the fsactor
lines of three concurrent lines paralleldq ¢,, and/3. The bisector to two lines through the origin and parallel
to /1 and/; is the pair of planes of equatioflY = 0. Hence the asymptotes of the trisector are parallel to lines
that lie in the pair of planeXY = 0. The orthogonal projection of the asymptotes onXieplane are thus
parallel to theX- or Y-axis. It follows that the number of asymptotes (in projection) that arellphta the
X-axis (respY-axis) is invariant by continuous deformation on any connected set ttgipf lines in general
position. The result follows from the fact that, on a particular exampleRgpeae 1), there are two asymptotes
parallel to thexX-axis and two others parallel to tNeaxis and that the set of triplets of lines in general position
is connected (Corollary 12). O

We assume in the following thaihe asymptote of Cis parallel to the Y Z-plangas in Figure 1) by ex-
changing, if necessary, the roleXfandY. We now prove Proposition 16 which states:

Every branch of the trisector df;, ¢, and k is monotonic with respect to the Y -direction.

Proof of Proposition 16. Let °? denote any plane parallel to t¥eZ-plane. The ar€ intersects plan& an
odd number of times (counted with multiplicity) sin€g has only one asymptote (Proposition 14) which is
parallel to theYy Z-plane. Furthermore, by Proposition 15, the trisector has two other asigaparallel to the
XZ-plane. Hence plan@ intersects the trisector in two points at infinity aglan odd number of times (in
affine space). The trisector thus interse2tis at least three points in real projective space. There are thus four
intersection points (in real projective space) since there are four éatéra points in complex space (since
the trisector is of degree four) and if there was an imaginary point of Exttia, its conjugate would also be
an intersection point (since the equations of the plane and quadricsdawefficients) giving five points of
intersection.

Therefore the trisector intersects plafién two points inR3, one of which lies orCy. Since there are an
odd number of intersection points @g, plane? intersect£y exactly once and any other branch exactly once.
O

We now prove the correctness of the algorithm, presented in Section 3) whicecall here for clarity.

Algorithm for computing a linear halfspace, Hj, that containsU;j; and whose complement containg;;.

(i) Consider a Cartesian coordinate systef1Y,Z) such that theZ-axis is parallel to the common per-
pendicular oft; and/; and such that th& andY-axis are parallel to the two bisector lines, in a plane
perpendicular to th&-axis, of the projection of; and/;2 onto that plane.

(i) In this frame, compute all the critical values of the trisector with respectactiaxis and with respect
to theY-axis. Exchange th¥- andY-axis if there is no critical value with respect to tKeaxis.

(i) Compute the twax-values of the two trisector asymptotes parallel toXeplane. If the minimum of
these values is smaller than the smallest critical value, then change the orieafdtie three axes.

(iv) Compute a valua larger than the smaller critical value and smaller that all the other critical vahes
the two asymptotX-values. The halfspacey;j, of equationX < X containdJ;; and the halfspack > X
containstj;.

Proof of correctness. For simplicity, we assume without loss of generality thahd j are equal to 1 and 2,
respectively. By Proposition 16, the trisector has no critical point inktloe Y-direction. Since we exchange,
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in Step (i), theX- andY-axis if there is no critical value with respect to tKedirection, we have that there is
no critical point with respect to thé-direction.

First note that the asymptotes of the trisector are never vertiealgarallel to theZ-axis) because other-
wise, by Proposition 9 and sinégand/, are horizontal, the liné; would be horizontal (its direction would be
the symmetric of the one df with respect to a vertical plane), contradicting the general position aggump

It thus follows, since the directions of the asymptotes, projected oXtiplane, are parallel to th¥
or Y-axis (by Proposition 15) that the oriented directions of the asymptotes diréimehes of the projected
trisector are invariant (in the directiohX or £Y) by continuous deformation on the set of triplets of lines in
general position (which is connected by Corollary 12).

Hence, it follows from the analysis of one configuration (see Figuredt)ttie two projected asymptotes
of the branchCs have the same oriented direction. Thshas (at least) a critical point with respect to this
direction, whith is thust-X or —X since there is no critical point with respect to taxis. Assume that this
direction is the—X direction (as in Figure 1), by changing, if necessary, the orientatiorecixrs.

We also get from the configuration depicted in Figure 1 that two other gegjdranches of asymptote that
are parallel to th&-axis are in the+ X direction.

Furthermore, the plane®, parallel to theY Z-plane through the critical point &3 does not intersect the
trisector in any other intersect pointiR? because this intersection has multiplicity two, the plane intersects the
trisector in two points at infinity (by Proposition 15), and the trisector hasedefpur (it is the intersection of
two quadrics). The same argument (applied to another critical point) implie€4las no other critical point
and that the trisector has no critical value smaller that the one associatedtaita point ofCs.

Hence, plane? separates (except for the critical point) the braGgfrom the other branches and the plane
of equationX = X strictly separate€s from the other branches and lea¥&sto its left (in the direction-Y).
Hence the halfspacé < X containdJ1, and the halfspack¥ > X containsTy,.

It remains to show that the orientation of theaxis obtained in Step (iii) of the algorithm is the same as
the one we have considered so far. Consider theXwalues of the two trisector asymptotes parallel to the
XZ-plane. We prove that the maximum of these values is larger than the langieat ealue. This implies the
result since, if the orientation of thé-axis was its opposite, then it would be changed in Step (iii).

As before, by continuity and by analyzing one particular example, we tieatdwo of the asymptotes of
the branches of; andC, have direction+X (in projection) and the two others have directiglY and —Y.

We consider here the trisector and its asymptotes in projection odhgane and we refer to vertical, right
and left in a standard way in th&,Y) frame. Suppose for a contradiction that there exists a critical point
on C; UG, that is left of their vertical asymptote. Then a vertical ling, through this critical point would
intersect the trisector at this point, with multiplicity two, and at two other points atiinfiby Proposition 15).
However, since the critical point is right of the vertical asymptot€p&ndC,, line L intersects the trisector
somewhere else (or with higher multiplicity), which is not possible since the toisbas degree four. O

Note finally that the trisector has generically four critical points with resfmettte X-direction, one ortCs,
one onC; UC; and two onCyp since it has an asymptote parallel to Waxis (in projection). Furthermore, the
trisector has no other critical points for the following reason. The proje¢ta theXY-plane) of the trisector
is a curve of degree four. Furthermore, it has degree twoamd degree two ilY because the curve intersects
any line parallel to theX- or Y-axis in at most two points since there are two other points of intersection at
infinity (by Proposition 15). The critical points are points on the curve $hahthe curve’s partial derivative
with respect tor is zero. This partial derivative is of degree onefiand two inX, hence eliminating in the
curve’s equation give an equationXnhof degree four.
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E Configurations of three lines whose trisector contains a line

We present here a geometric characterization of the position of three ligeséral position such that their
trisector consists of a cubic and line. We need some properties of the triséttie concurrent lines supported
by the three vectors of an affine frame (the frame described in Lemma Eteuile vectors are the edges of
the parallelepiped of Figure 3 issued fr@j

Let us consider a bas{s1, V2, v3) of the vector spac®? equipped with its Euclidean structure (the usual
dot product relative to the canonical basis) and ndmd,, ds the lines supported by, v, va.

Lemma 21 The trisector of the lines;dd,, ds supported by the vector bagig;, v»,Vv3) consists in four lines
or eight half lines passing through the origin.

Given a point p different from the origin on this trisector, its dual coordinatgg vy >, < p,v2 >, < p,V3 >
are non null. Thus their signs are constant on each of the eight half linggdrisector. These signs induce a
one to one correspondence between the half lines and the eight possifoliteesiplet of signs.

Proof. The trisector being the intersection of two of the bisectors, which are pairthamgonal planes, the
first assertion is immediate.

If < p,vi>=<p,v2>=<p,v3>=0, thenpis orthogonal to the three vectorg v» andvs and therefore
null. If < p,v; >=0 and< p,v, ># 0, then the projection op on the plangvy,v,) is not null, lies on the
bisector line ofv; andv, in this plane and is orthogonal ta@. This is a contradiction since the bisector of two
distinct concurrent lines is never orthogonal to one of them and thisstiatall the< p,v; > are not null.

The last assertion is immediate for an orthogonal basis and follows for thelmdkes from the connexity
of the set of all the bases of positive orientation. O

Lemma 22 With the same notation, if one branch of the trisector of the linedxds is in the plane(vy, v2),
then each of the plands;,v3) and (v, v3) contains another branch of the trisector.

Proof.  As above, we may suppose, without loss of generality ¥hat (1,a,0),v» = (1,—a,0) andvs =
(a,B,1). The trisector is defined by the equatXY = 0 and a homogeneous equation of degree two, i Z.
The hypothesis implies thus that the trisector contains either the f@iht0) or (1,0,0). Substituting in
the second equations of the trisector, we find respecta&lf + o) — B2 = 0 or aa? — B2 — 1 = 0, which
characterize algebraically our hypothesis. Using the symmetry with retsptbet planeX =Y, we may restrict
ourselves to the first case.

SubstitutingX = 1,Y = 0 andB = av/1+ a2 in the second equation of the trisector and solving the resulting
equation inZ shows that the pointél,0,—a+ v/1+a?) and (1,0,—a— v/1+a?) belong to the trisector. A
simple determinant computation shows that they lie respectively on the ghanes and(v1,Vs). O

Definition 23 We namenterior trisectorthe line of the trisector of dd,, d; on which the three signs of the
< p,v; > are equal.
We say that the configuration of the directions of the linespiscialif the case of Lemma 22 occurs.

Remark that the interior trisector is the axis of the cone of revolution circubasgrthe three vectors
vi,Vo2,v3 and that the three other lines of the trisector are the axes of the circumgoritnires obtained by
changing the sign of one of the

Theorem 24 If the trisector of three lines in general position contains a line, then the céhf the paral-
lelepiped associated to the lines is on the trisector line which is the line throughd@anallel to the interior
trisector of the associated frame.

Conversely, if the direction of the lines are not in the special configuratloen the trisector contains a
line if and only if it contains the center of the parallelepiped.

Proof.  With the parameters defined above, the coordinates of the center of dileleaiped, easy to com-
pute, areX = (ax+f)/(2a),Y = (aa +Y)/2,Z = 0. The equations of the trisector simplify easily to zero,
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when substituting these coordinates and Equations (6) or (7) (in tha) andkeem. This proves that, if the
trisector contains a line, the center of the parallelepiped lies on the bisesttireAet of triplets of lines whose
trisector contains a line has at most four connected components (seiBg(&) and (7)), it suffices, by con-
tinuity, to choose a sample set of values for the paramater$ to prove that the center of the parallelepiped
is on the line. Witha = 3/2,a = 3 = 2 the computation is easy, since no square root appears.

We have already seen that the asymptotic directions of the trisector areatiehbs of the trisector of the
edges of the parallelepiped supporting the basis vector of the assocatexl \We have thus to prove that the
direction of the line in the trisector is the interior trisector of the frame. If weutdnty permute the lines, the
origin of the frame is invariant and the basis vectors are permuted. Tleusténior trisector is invariant while
the other branches are permuted. As the line in the trisector of the skew lialss imvariant, its direction is
necessarily that of the interior trisector.

To prove the converse, we substitXeY, Z in the equations of the trisector by the coordinates of the
center. The first equation becom@s+ ax) (y+aa) = 0. Substitutingy by —aa (resp. x by —B/a) in the
second equation of the trisector, we get a polynomial which factorsafraé — 32 — 1 (resp.a® (1+a?) — ?)
and a polynomial which, solved i(resp.y), gives Equation (6) (resp. Equation (7)). As the first factors are
the equations of the special configurations, this finishes the proof. O
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F Maple-sheet computations

Computation of at least a point per connected componeft(afx,y,a,3,a) <0
> vars:=[lambda,x,y,alpha,beta,a]:
> new_sa_component_hyp _neg(D,vars);

Pre-process...............

Computing critical values of a polynomial mapping from C6 t oC
Computing asymptotic critical values of a polynomial mappi ng from C6 to C
ke Enter in internal”, [x, y,alpha, beta, a I, I, [, [lambda]}

End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on lambda)

Computing Asymptotic Critical Values of u restricted to a hy persurface
Computing Critical Points using FGb (projection on X)

Computing Asymptotic Critical Values of x restricted to a hy persurface
Computing Critical Points using FGb (projection on )

Computing Asymptotic Critical Values of y restricted to a hy persurface
Computing Critical Points using FGb (projection on alpha)

Computing Asymptotic Critical Values of alpha restricted t 0 a hypersurface
Computing Critical Points using FGb (projection on beta)

Computing Asymptotic Critical Values of beta restricted to a hypersurface

Computing Critical Points using FGb (projection on a)

Computing Critical Points using FGb (projection on beta)

Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on a)

Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS

I

Computation of at least a point per connected componefit(afx,y,a,3,a) >0
> new_sa_component_hyp_neg(-D,vars);

[{x=0A=0a= 8525889154 — 1 y=0,8=0},
{x=0,A=0,a= §323895¢ = 1 y=0,p =0},
(=0 =0.a= 08 =001,
{x=0,A=0,a=§323815y — 0 p=0,a =1},
{x=0a=—§3R3WIA=20=-1y=0,B =0},

{X: 0,a: 6752988915)\ — 27(] _ 717y: 07B: 0}7

8589934592
— __ _ 6752988915y __ _ — —
{x=0.a= — 55350348052 = 2y =0.p=0,a =1},
_ __ 6752988915y __ _ — —
{x=0,a= giageaasar) =2y =08 =0,0 = 1}]

Table 1: For the proof of Lemma 3.
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> Gamma:=(2*a*(y*alpha-x*beta)-(a"2-1))"2+3*(a*x+beta )2+3*a"2*(y+a*alpha) 2+3*(a"2+1)°2;

= (2a(ay—Bx) —a?+1)?+3(xa+ B)2+3a% (y+aa)?+ 3(1+a?)?
> [gros_fact, op(convert(grad(gros_fact,[a,x,y,alpha,b eta]),list)),
1-u*(y+a*alpha), 1-v*(a*x+beta),1-w*(1+alpha™2+beta” 2),1-t*Gamma)]:
> fgb_gbasis_elim(%,0,[u,v,w,{],[a,x,y,alpha,beta]);

Vv

pack fgb call_generic:  "FGh: 965.76 sec Maple: 975.98 sec
[

Table 2: For the proof of the Main Lemma.
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vV

sys:=subs(a=2,[gros_fact,op(convert(grad(gros_fact, [a,x,y,alpha,beta]),list))]):

bs1:=factor(fgh_gbasis(sys,0,[x,y,alpha,beta],])): map(uu->op(0,uu),%), op(1,bs1[3]);
[+, 4+, %+, +, + 4+, y+2a
[op(bs1),1-u*(y+2*alpha), 1-v*(2*x+beta),1-w*(1+alph a"2+beta2)]:
bs2:=factor(fgh_gbasis_elim(%,0,[u,v,w],[x,y,alpha, beta])): map(uu->op(0,uu),%),map(degree,%);
[+, +, +, +],[6,6,6,6]

bs3:=factor(fgh_gbasis_elim(bs2,0,[x],[y,alpha,beta 1)):map(uu->o0p(0,uu),%);

[l
bs4.=factor(fgb_gbasis(jop(bs2),0p(1,bs3[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[k, %, %, %, %, %, %, o5,k 6, %, ok, o+, o, o, ]

fgb_gbasis_elim(Jop(bs4),1-u*op(3,bs4[1])],0,[u],[x ,¥,alpha,betal);

[
bs5:=factor(fgh_gbasis(Jop(bs4),0p(3,bs4[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

R T e S S T i T e O L A e T

fgb_gbasis_elim([op(bs5),1-u*op(3,bs5[6])],0,[u],[x ,Y,alpha,betal);

[
bs6:=factor(fgh_gbasis([op(bs5),0p(3,bs5[6])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

+++++++++H++++++ +
bs7:=factor(fgh_gbasis_elim(bs6,0,[y],[x,alpha,beta 1)):map(uu->op(0,uu),%);
[*7 *7 *7 *7 *7 *7 >.<7 *7 *7 *7*7 *7 *7 *7 *7 *? *7 *‘, *7 *7 *7*7 *7 *7 *7 *7 A]
bs8:=factor(fgh_gbasis([op(bs6),0p(1,bs7[nops(bs7)] )1,0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);
R i S S e e R S P i i S S
bs9:=factor(fgh_gbasis_elim(bs8,0,[alpha],[x,y,beta 1)):map(uu->op(0,uu),%);
[, o, o, o, o, ook, o ok e kK R K R K R, kK, ]

fgb_gbasis_elim(Jop(bs9),1-u*op(nops(bs9[1]),bs9[1] )1,0,[ul,[x,y,alpha,beta]);

(4
bs10:=factor(fgh_gbasis(jop(bs8),0p(nops(bs9[1]),bs 9[1])1,0,[x,y,alpha,beta],[])):

map(uu->op(0,uu),%),0p(2,bs10[3]);

[+, %, o b ok b b e ] Y20

[op(bs10),1-u*(1+alpha2+beta"2),1-v*(y+2*alpha), 1- w¥(2*x+beta)]:
bs11:=factor(fgh_gbasis_elim(%,0,[u,v,w],[x,y,alpha ,beta])):map(uu->op(0,uu),%);
[+, 4+, %, 4+ ]
fgb_gbasis_elim(Jop(bs11),1-u*op(2,bs11[4])],0,[u], [x,y,alpha,beta]);
[
hs12:=factor(fgb_gbasis(Jop(bs11),0p(2,bs11[4])],0, [x,y,alpha,beta],[])):map(uu->op(0,uu),%),map(degre
[+, +, 4], (4,44
bs12[3];
Gamma2:=(4*y*alpha-4*x*beta-3)"2+3*(2*x+beta)"2+12* (y+2*alpha)"2+75;

simplify(Gamma2-bs12[3]);
1602y? + 84— 32Bxay+ 1602 x% 4+ 12x% 4+ 12y? + 24y o + 4802 + 36Bx + 32
M2 := (4ya —4Bx—3)2+3(2x+B)2 +12(y+20)2 + 75

0
[op(sys),1-u*(1+alpha™2+beta"2),1-v*(y+2*alpha),1-w *(2*x+beta),1-t*Gamma2]
fgb_gbasis(%,0,[u,v,w,1],[x,y,alpha,beta]);

(4

Table 3: About the proof of the Main Lemma.
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> st = time():
> bs3:=factor(fgb_gbasis(bs2,0,[x],[y,alpha,beta])):
> map(degree,%,x);
> map(uu->op(0,uu),%%);
> nops(bs3);
4,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,
1,1,1111111,1111111111111111110]
[+ + 4+
64
> fgh_gbasis_elim(Jop(1,bs3[64]),bs3[63],1-t*coeff(bs 3[63],x)],0,t],
> [x,y,alpha,beta]):
> print(map(degree,%));
> bs12-%;
[4, 4, 4]
[0, 0, O]

The elements of bs2 are in the ideal generated by bs12:
> basel2:=gbasis(bs12,DRL([x,y,alpha,beta])):
> map(uu->Gb[normalf](uu,basel2),bs2);

[0,0,0,0]

The square of the elements of bs12 are in the ideal generated by bs2:
> base2:=gbasis(bs2,DRL([x,y,alpha,beta])):
> map(uu->Gh[normalf](uu"2,base2),bs12);

[0, 0, 0]
> print("Total CPU time:"time() - st);
“Total CPU time:”, 17.350

Table 4: About the proof of the Main Lemma.
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> factor(subs(y=-a*alpha,big_fact));

(a%a*+2Bxa?ad +x%a® + B2x%a® — 2a2a’ + 1+ p?)
(B2 —4a? —4a%0” — 4a* — 4a*a? — 2aBx— 4B xa’ + x?a?)?
> f0:=collect(op(1,%),x); fl:=collect(op(1,0p(2,%%)),x );
f0:= (a?B?+a%) x>+ 2Bxaad +a*a* + 1+ % — 2a2a?
fl:=x?a?+ (—2aB—4pa’)x+ B2 —4a% — 4a%0® —4a* — 4a*a?
> factor(subs(x=-beta/a,big_fact));

(B*—2a?p*+a*+ata?+2R2aay+o?y?a’ +y’a?)
(4+4P%+4a% +4a2B%—a*a? +4aya + 2yada —y?a?)?
> g0:=collect(op(1,%),y);g1:=collect(op(1,0p(2,%%)),y );
g0:= (a?a?+a?)y?+2B%aay+ B*—2a’p% +a* +a*a?
gl:=—y?a?+ (4aa +2ada)y+4+4p% +4a2 +4a2p% — a*a?
Solutions of f1=0in x and of g1=0invy:
> map(uu->factor(uu),[solve(f1,x)]);

[2a2[3+[3+2\/a2(a2+1) (B2+1+02) 2a2B+PB—2/a2(a2+1)(B2+1+a?)

> map(uu->factor(uu),[soIve(gl,y)]); 2
[aa2+20(+2\/(a2+1) (B2+1+02) aa’+20—24/(a2+1) (B2 +1+02)

a a
fO is a sum of square:

> (a"2*alpha™2-1+a*beta*x)"2+(a*x+beta)"2;

> simplify(f0-%);

]

]

(a®0? —1+apx)?+ (xa+B)?
0

a*x+beta and g1 are in the ideal generated by y+a*alpha, x*a+bealeg"@Malpha2-1+a*beta*x:
> gbasis([y+a*alpha,x*a+beta,a"2*alpha™2-1+a*beta*x], DRL([a,x,y,alpha,beta])):
> normalf(a*x+beta,%), normalf(gl,%);

0,0

g0 is a sum of square:

> (a*y*alphatbeta™2-a"2)"2+a"2*(y+a*alpha)2;

> simplify(g0-%);

(aya + B2 —a?)?2+ a2 (y+aa)?
0

y+a*alpha and f1 are in the ideal generated by x*a+beta, y+a*alpttha@®*alpha™2-1+a*beta*x:

> gbasis([x*at+beta,y+a*alpha,a*y*alpha+beta2-a"2],DR L([a,x,y,alpha,beta])):

> normalf(y+a*alpha,%), normalf(f1,%);

0,0

Table 5: For the proof of Lemma 7.
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> compl := [y = -a*alpha, x =
> (2*beta*a’2+beta)/a+2*sqrt((beta™2+1+alpha’2)*(1+a" 2

compl=[y=—0a,x= mzjﬂg+2\/(l+a2+[32)(l+a2)]

We prove that the characteristic equation has no real root on this compone
> factor(subs(compl,Char_eq));
> irrat:=op(2,%):

a2(4—4p2A%+8a2 —4AN3+A* — 8\ —16a2Aa? —8p2Aa® + 802 + 4B% + 12a%a? + 12a% B? + 4a* + 8a* P2 + 4a*a? — 8Aa? — 1602\
—8B2A+8A2+4A2a2 + 82202 N2 4 4B2A2a2 + 8B2 A2 — 8Baadh —8BaAa+8Baa® +8aBa +8a v%1—8\a2a %1+ A4 B2

+ M a?+4N2B/%1la—8ABV%la+ 120202 — 4023 +-8Bv/%1a+ 8aa /%14 8Bad V%1 —4A3a %1+ 1272 a /%1 — 16A o /%1)
%1 = (B2 +1+0a?)(1+a?)

Consider the product of the characteristic polynomial with its algebraic gatgu

> T:=expand(irrat*subs(sqrt((1+a"2)*(alpha"2+beta"2+1 ))=-sqrt((1+a"2)*(alpha™2
> +heta"2+1)),irrat)):

The real semi-algebraic set defined by T<1Ris empty:

> new_sa_component_hyp_neg(T-1/2,[a,alpha,beta,lambda D
Pre-process...............

Computing critical values of a polynomial mapping from C4 t oC

Computing asymptotic critical values of a polynomial mappi ng from C4 to C
"""""""""""" Enter in internal", [alpha,be ta, lambda], [, [, [a]

End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on a)

Computing Asymptotic Critical Values of a restricted to a hy persurface
Computing Critical Points using FGb (projection on alpha)

Computing Asymptotic Critical Values of alpha restricted t 0 a hypersurface
Computing Asymptotic Critical Values of alpha restricted t 0 a hypersurface
Computing Critical Points using FGb (projection on beta)

Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on lambda)

Isolating real solutions of a zero-dimensional system usin g RS

Isolating real solutions of a zero-dimensional system usin g RS

Isolating real solutions of a zero-dimensional system usin g RS

Isolating real solutions of a zero-dimensional system usin g RS

[

Consider all the 3x3 minors of the matfXA) of the pencil:
ldet:=NULL:

for i to 4 do for j from i to 4 do
Idet:=Idet,det(minor(P,i,j)):

od od:

vV V. V V

The rank ofP(A) is always 3 or 4 since there is no common zeros of the minors:

> [ldet,1-t*(1+alpha™2+beta™2)*(1+a"2)*(-betat+y+a*x-a *alpha)*(-beta-y+a*x+a*alpha)]:
> fgb_gbasis_elim(%,0,[],[t,a,x,y,alpha,beta,lambda]) ;
1]

Table 6: For the proof of Lemma 8.
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