
POSIX Threads Polynomials (PTPol): a scalable
implementation of univariate arithmetic operations

Mohab Safey El Din
UPMC/CNRS LIP6, Equipe SPIRAL

Projet SALSA, INRIA
61 avenue Kennedy
75016 Paris (France)

Mohab.Safey@lip6.fr

Philippe Trébuchet
UPMC/CNRS LIP6, Equipe SPIRAL

Projet SALSA, INRIA
61 avenue Kennedy
75016 Paris (France)

Philippe.Trebuchet@lip6.fr

ABSTRACT
In this paper, we describe the design of a C library named
PTPol implementing arithmetic operations for univariate poly-
nomials and report on practical experiments showing the
relevance of using threads on recent multi-core computers.

We show how to use efficiently an API named OpenMP and
POSIX Threads to achieve scalability. On multi-core archi-
tectures, we obtain a speed-up equivalent to the number of
cores on addition and multiplication on univariate polyno-
mials for degrees a completer.

Categories and Subject Descriptors
G.0 [Mathematics of Computing]: General

General Terms
Algorithms, application

Keywords
Univariate polynomial, symbolic-numeric computation, scal-
ability

1. INTRODUCTION.
PTpol stands for POSIX Thread Polynomials. It is a
C99 library implementing arithmetic operations on univari-
ate polynomials. Our goal is to reach peak performances on
modern multi-processors machines. This question is of first
importance since now, most popular architectures are based
on multi-core processors and/or multi-processors. First of
all let us say that we have focused on shared memory models
because :
1) it avoids costly Inter Process Communication (IPC),
2) most of our testing machines have enough memory for
performing the needed computations,
3) multi-core and multiprocessors are quickly spreading and

PASCO’07,July 24–27, 2007, Waterloo, Canada.

it seemed to us fundamental to be able to exploit them effi-
ciently, and
4) it is necessary to efficiently deal with this model for do-
ing multi scale parallel computation (e.g. computations over
a grid where tasks are themselves done in parallel using
threads).

In [5], a theoretical approach of parallel programming using
the PRAM model can be found. Following these results,
one can expect a speed-up on arithmetic operations on uni-
variate polynomials which is equivalent to the number of
cores of a multi-core architecture if we develop programming
techniques to reduce the cost of data fetching and processor
communication.

Efficient use of multi-core processors can be done by dif-
ferent ways. The classical one is to use OpenMP which is
a multi-platform API providing a shared-memory parallel
programming model. It works with widespread languages
as C/C++ and Fortran, and it is available on many archi-
tectures. This API aims at achieving scalability without
making a strong effort on the implementation. The main
drawback of OpenMP is that, when using it naively, it does
not allow fine control of the total (i.e. global) number of
threads. This is very inconvenient on recursive algorithms
and it is important to notice that the over-head introduced
by a naive use of OpenMP is not negligible.

To reach our aim, we developed PTpol in two ways. First,
we succeeded in using efficiently OpenMP by numbering all
the thread created and forbidding the creation of too many
threads at the same time. Since this induces non-negligible
modifications of the sequential code, we also studied the use
of POSIX Threads to check if one can obtain a speed-up
appearing for polynomials of smaller degree.

Finally, using cleverly OpenMP or POSIX Threads, we suc-
ceeded to obtain a speed-up on arithmetic operations on
univariate polynomials which is equivalent to the number
of cores of the machine used to perform the computations.
The degree at which this speedup is reached depend mostly
on the cost of the arithmetic of the ground field: more the
cost of the arithmetic is expensive, bigger the speedup is.

In the following, we first describe the library, then we de-
velop the different ways we achieved scalability. At last, we



report on practical experiments.

2. DESCRIPTION OF THE LIBRARY
PTpol is written in plain C99 to allow maximum portability
which is a key feature for a library that aims at running on
the most recent architectures. More particularly, we try to
take advantage of multi-core architectures to obtain a speed-
up related to the number of cores.

It is independent of the ground field arithmetic. This fea-
ture is achieved using the C pre-processor to generate on the
fly the correct functions. Choosing C as an implementation
language for PTpol has been done regarding three aspects.
First, multi-threading a polynomial arithmetic means multi-
threading operations that may become quite fine grain on
small degrees. Hence, for obtaining an improvement of the
performances on these small degrees one has to decrease
as far as possible the cost of calling arithmetic functions.
Though there are quite lightweight, C++ interfaces to GMP
induce an overhead that must be avoided. Second, PTpol
was designed to construct dynamic libraries that could be
loaded at running time. C++ ABI (Application Binary Inter-
face) is not constant across compilers. Thus, each time one
changes the used compiler, a reconstruction of the interface
is required. Last, we wanted PTpol to be able to run using
GMP of course, but also MPFR (that, up to very recently, had
no working C++ interface), MPFI, MPAI, MPC and some other
libraries that do not have any C++ interface.

PTpol assumes that the ground field arithmetic follows the
GMP interface. In other words, the ground field functions are
assumed to be named as field name operation name, and
the macro PTPOL PREFIX will be substituted to field name.

PTpol implements dense univariate polynomials. This is
dictated by experience. Indeed it appears that almost all
situations in which intensive univariate polynomial compu-
tations are requested, are such that it is dense univariate
polynomials that are requested. The same constatation led
Shoup in [6] to implement its univariate polynomials also
with dense storage.

The implemented operations are addition/soustraction, naive
multiplication, Karatsuba’s multiplication and euclidean di-
vision. An ongoing work is to implement asymptotically
optimal operations such as FFT.

For user-friendliness the authors took a great care in mimic-
ing GMP behavior when implementing PTpol . That is to
say that anybody minimally familiar with GMP will be able
to use PTpol without any problem.

A polynomial is a complex structure that might be real-
located during the computations you are performing with.
Hence you must take care to perform a correct initialization
and to free resources allocated to a polynomial when it is no
more used. This scheme is exactly the one that is customary
using GMP. All the functions are such that their first argu-
ment is the argument in which the result of the function is
stored.

3. DIFFERENT WAYS TO ACHIEVE SCAL-
ABILITY.

We study here the use of OpenMP on the one hand, and the
direct use of the POSIX Threads API on the other hand.
OpenMP is an API allowing the introduction of parallel exe-
cution with minimal code modification. Our goal is to allow
efficiency and scalability without inducing a strong develop-
ment time.

Using OpenMP. We restrict ourselves here to give a hint
on the mechanism of OpenMP only for the C programming
language, the interested reader is urged to have a look at
[3] for a comprehensive presentation of this API. OpenMP

in C is introduced by inclusion of the file openmp.h and by
annotations in the C code, by means of pragma, to tell the
compiler that a section of code shall be run in parallel.

OpenMP automates the parallelization of some sections of
code. Hence, it introduces some overhead in the compu-
tation that makes it significantly heavier. To expect some
practical improvements, the granularity of the threads cre-
ated by OpenMP has to be the coarsest possible. Other-
wise, the total computational time is dominated by the time
needed for creating the threads. We have used the GOMP im-
plementation of OpenMP.

OpenMP allows only to control the number of threads which
are created in a loop or for dealing with a section. There is
no global way to control the total number of threads that are
run on the machine by OpenMP. Controlling the total num-
ber of created threads is more difficult and without special
care about that, it may become important which would in-
duce a great loss of efficiency. Recursive algorithms are a
case where this phenomenon occurs. Thus, to avoid getting
plethora of threads, we have modified our program: instead
of defining a parallel section which contain recursive calls, we
have programmed two functions, one that effectively has a
parallel section and the other that is purely sequential. The
recursive calls that need not create new threads are all done
calling the purely sequential function. A shared counter on
the number of threads allows to control it .

Finally, let us mention that although this technique allows
significant speedup in most cases, it induces significant changes
in the source code and its deployment is tedious. Thus, it
is natural to try achieving scalability with POSIX Threads
(inducing also some changes in the sequential code) at least
to check if one can obtain a significant speedup for polyno-
mials of smaller degree.

Posix Threads by hand. The POSIX threads API does
not aim at automatic parallelization. It just allows the pro-
grammer to create new threads. We refer the reader to [1,
2] for a description of the POSIX thread API. As the pro-
grammer has to choose what will be performed in parallel, it
allows a full control on what occurs in each thread. Most im-
portantly the programmer can make use of assumptions the
OpenMP API cannot be told of: no aliasing on some pointers,
read only expressions on some part of the code, no need for
synchronization for accessing particular variable etc.

The main drawback of using directly POSIX thread API in-
side the arithmetic is that it leads to perform many system



call that may inder the performances on small examples.
The authors’ experience with the POSIX thread API shows
that, once you have defined the correct structure for ar-
gument passing the deployment of POSIX thread is rather
simple. For launching the different threads we constructed
an argument passing structure, i.e. a structure containing
references to all the parameters.

In practice, it took us almost the same time to make use of
the POSIX thread API as the one we spent to introduce the
correct thread counting methods using OpenMP.

4. EXPERIMENTAL BEHAVIOR
Experiments reported here have been performed on an In-
tel Core Duo 2GHz, with 2GB of DDR2 667MHz RAM. The
programs where compiled with gcc (GCC) 4.3.0 2007/02/16

which provides an implementation of OpenMP called GOMP.

We consider here addition and multiplication of univariate
polynomials with different ground fields. The timings of our
sequential implementation compares favorably with the ones
of NTL.

We compared the obtained timings our sequential imple-
mentation with the parallel implementations we did using
OpenMP, as described above, and POSIX Threads.

It appears that when the coefficients have an expensive arith-
metic (e.g. rational mpq t, big integers mpz t ) OpenMP and
Posix Threads behave more or less the same, i.e. quickly
reach the desired speedup in addition and Karatsuba’s mul-
tiplication.

More precisely, for polynomials with coefficients in mpz t

with 16 digits integer (resp. mpq t with 16 digits integer as
numerator and denominator) we obtain a speedup on the ad-
dition of 2 for polynomials having degree at least 4000 (resp,
2500). For the Karatsuba’s multiplication, this speedup ap-
pears for polynomials having degree at least 2000 (resp. 700)
for coefficients in mpz t (resp. mpq t). If the coefficients are
bigger the obtained speedup appears earlier.

Note that up to degree 100 (resp. 70) one obtains a speedup
of 1.5 for Karatsuba’s multiplication of polynomials with co-
efficients in mpz t (resp. mpq t). Up to degree 900 (resp.
900) one obtains a speedup of 1.5 for the addition of poly-
nomials with coefficients in mpz t (resp. mpq t).

Using OpenMP, With float coefficients, the speedup of 2 ap-
pears earlier using OpenMP, up to degree 10000 for Karat-
suba’s multiplication and up to degree 9000 for the addi-
tion. For double coefficients, the speedup of 2 appears up
to degree 10000 for the addition.

Note that up to degree 2000 (resp. 3000) one obtains a
speedup of 1.5 for Karatsuba’s multiplication of polynomials
with float (resp. double) coefficients. Up to degree 4000
(resp. 5000) one obtains a speedup of 1.5 for the addition
of polynomials with (resp. double) coefficients.

5. REFERENCES
[1] Single Unix Specification ISBN 1931624437

[2] POSIX standard ISO/IEC 9945-3: 2003 (IEEE Std.
1003.3: 2001)

[3] OpenMP Open MP Specification 2.5 May 2005
(http://www.openmp.org/drupal/node/view/75)

[4] C programming language Norm ISO-Standard
ISO/IEC 9899:1999

[5] D. Bini, V. Pan Polynomial and matrix computation.
Progress in Theoretical Computer Science, Birkhaüser,
1994

[6] Shoup, V., NTL: A Library for doing Number Theory,
(http://shoup.net/ntl/)


