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Abstract. We consider systems with unboundedly many processes that
communicate through shared memory. In that context, simple verifica-
tion questions have a high complexity or, in the case of pushdown pro-
cesses, are even undecidable. Good algorithmic properties are recovered
under round-bounded verification, which restricts the system behavior
to a bounded number of round-robin schedules. In this paper, we extend
this approach to a game-based setting. This allows one to solve synthesis
and control problems and constitutes a further step towards a theory of
languages over infinite alphabets.

1 Introduction

Ad-hoc networks, mobile networks, cache-coherence protocols, robot swarms,
and distributed algorithms have (at least) one thing in common: They are re-
ferred to as parameterized systems, as they are usually designed to work for any
number of processes. The last few years have seen a multitude of approaches
to parameterized verification, which aims to ensure that a system is correct no
matter how many processes are involved. We refer to [15] for an overview.

Now, the above-mentioned applications are usually part of an open world, i.e.,
they are embedded into an environment that is not completely under the control
of a system. Think of scheduling problems, in which an unspecified number of
jobs have to be assigned to (a fixed number of) resources with limited capacity.
The arrival of a job and its characteristics are typically not under the control of
the scheduler. However, most available verification techniques are only suitable
for closed systems: A system is correct if some or every possible behavior satisfies
the correctness criterion, depending on whether one considers reachability or,
respectively, linear-time objectives.

This paper is a step towards a theory of synthesis and control, which provides
a more fine-grained way to reason about parameterized systems. Our system
model is essentially that from [24], but defined in a way that reveals similar-
ities with data automata/class-memory automata, a certain automata model
over infinite alphabets [8,9]. Actually, we consider parameterized pushdown sys-
tems, as each process has a dedicated stack to model recursion. A parameterized
pushdown system distinguishes between a finite-state global process (sometimes
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referred to as a global store or leader process) and a local process. The global
process can spawn new local processes. Thus, while a system configuration con-
tains only one global state, the number of instantiations of local processes is
unbounded. Moreover, when a local process takes a transition, it is allowed to
read, and modify, the global store.

So far so good. Now, it is well-known that reachability is undecidable as
soon as two pushdown processes communicate through shared memory. And
even when local processes are finite-state, the problem is at least as hard as
reachability in Petri nets [9]. This led La Torre, Madhusudan, and Parlato to
consider round-bounded verification of parameterized systems, which restricts
system executions to a bounded number of round-robin schedules [24]. Not only
did they show that reachability drops to PSPACE, but the corresponding fixed-
point computation also turned out to be practically feasible. Moreover, they give
a sound method (i.e., a sufficient criterion) for proving that all reachable states
can already be reached within a bounded number of round-robin schedules. This
is done using a game that is different from the one we introduce here. Actually,
we extend their model by adding the possibility to distinguish, in parameterized
pushdown automata, between controllable global states and uncontrollable ones.

The classical reachability problem then turns into a reachability objective in
an infinite-state game. As our main result, it is shown that the winner of such a
game can be computed, though in (inherently) non-elementary time. Our proof
makes a detour via games on multi-pushdown systems, which are undecidable in
general but decidable under a bound on the number of phases, each restricting
the number of pop operations to a dedicated stack [5,29]. Note that round-robin
schedules maintain processes in a queue fashion. However, bounding the number
of rounds allows us to store both the states of a local process as well as its stack
contents in a configuration of a multi-pushdown system. It is worth noting that
multi-pushdown systems have been employed in [23], too, to solve seemingly
different verification problems involving queues.

Related Work. As already mentioned, there is a large body of literature on
parameterized verification, mostly focusing on closed systems (e.g., [2,4,14,15]).

Infinite-state games have been extensively studied over vector addition sys-
tems with states (VASS) (e.g., [3, 7, 10,12,19]). However, reachability is already
undecidable for simple subclasses of VASS games, unless coverability objec-
tives are considered. Unfortunately, the latter do not allow us to require that
all local processes terminate in a final state. Interestingly, tight links between
VASS/energy games and games played on infinite domains have recently been
established [16].

Underapproximate verification goes back to Qadeer and Rehof [27]. In the
realm of multi-threaded recursive programs, they restricted the number of con-
trol switches between different threads. The number of processes, however, was
considered to be fixed. Another kind of bounded verification of parameterized
systems with thread creation was studied in [6]. Contrary to our restriction, the
order in which processes evolve may vary from round to round.
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We believe that our results will fertilize synthesis of parameterized sys-
tems [18] and more classical questions whose theoretical foundations go back
to the 50s and Church’s synthesis problem. Let us cite Brütsch and Thomas,
who observed a lack of approaches to synthesis over infinite alphabets [11]: “It
is remarkable, however, that a different kind of ‘infinite extension’ of the Büchi-
Landweber Theorem has not been addressed in the literature, namely the case
where the input alphabet over which ω-sequences are formed is infinite.” In-
deed, an execution of a parameterized system can be considered as a sequence of
letters, each containing the process identifier of the process involved in perform-
ing the corresponding action. Recall that our model of parameterized systems
is largely inspired by data automata/class-memory automata [8, 9], which were
originally defined as language acceptors over infinite alphabets. The automata
studied in [11] are quite different. Since synthesis problems are often reduced
to game-theoretic questions, our work can be considered as an orthogonal step
towards a theory of synthesis over infinite alphabets.

Outline. We define parameterized pushdown systems in Section 2, where we also
recall known results on reachability questions. The control problem is addressed
in Section 3, and we conclude in Section 4. Missing proof details can be found
at the following link: https://hal.archives-ouvertes.fr/hal-01849206

2 Reachability in Parameterized Systems

We start with some preliminary definitions.

Words. Let Σ be a (possibly infinite) set. A word w over Σ is a finite or (count-
ably) infinite sequence a0a1a2 . . . of elements ai ∈ Σ. Let Σ∗ denote the set of
finite words over Σ, Σω the set of infinite words, and Σ∞ = Σ∗ ∪ Σω. Given
w ∈ Σ∞, we denote by |w| the length of w, i.e., |w| = n if w = a0 . . . an−1 ∈ Σ∗,
and |w| = ω if w ∈ Σω. In particular, the length |ε| of the empty word ε is 0.

Transition Systems. A transition system is a triple T = (V,E, vin) such that
V is a (possibly infinite) set of nodes, E ⊆ V × V is the transition relation, and
vin ∈ V is the initial node. For (u, v) ∈ E, we call v a successor of u.

A partial run of T is a non-empty, finite or infinite sequence ρ = v0v1v2 . . . ∈
V∞ such that, for all 0 < i < |ρ|, vi is a successor of vi−1. If, in addition, we have
v0 = vin, then we call ρ a run. A (partial) run from u to v is a finite (partial)
run of the form u . . . v. In particular, u is a partial run (of length 1) from u to u.

2.1 Parameterized Pushdown Systems

We consider parameterized systems in which processes may be created dynami-
cally. Every process can manipulate a stack as well as its local state. Information
shared by all the processes is modeled in terms of a global state.

Definition 1. A parameterized pushdown system (PPS) is given by a tuple
P = (S,L, Γ, sin, `in, ∆, Fglob, Floc) where
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– S is the finite set of global states, including the initial global state sin,

– L is the finite set of local states, including the initial local state `in,

– Γ is the finite stack alphabet,

– ∆ ⊆ (S × L) × (Act × Γ ) × (S × L) is the transition relation with Act =
{push, pop, int} (where int stands for internal), and

– Fglob ⊆ S and Floc ⊆ L are the sets of accepting global states and accepting
local states, respectively. We assume that sin 6∈ Fglob.

A configuration of P is a tuple c = (s, (`1, γ1), . . . , (`k, γk)) where k ∈ N
(possibly k = 0), s ∈ S is the current global state, and, for each p ∈ {1, . . . , k},
`p ∈ L and γp ∈ Γ ∗ are respectively the local state and stack content of process
p. We let CP denote the set of configurations of P. The initial configuration is
(sin) and a configuration c = (s, (`1, γ1), . . . , (`k, γk)) is final if s ∈ Fglob and
{`1, . . . , `k} ⊆ Floc. The size |c| of a configuration c is the number k of processes
in c.

The semantics of a PPS P is defined as a transition system JPK = (V,E, vin)
where V = CP , vin = (sin), and the transition relation is E =

⋃
p≥1Ep with

Ep defining the transitions of process p. Actually, Ep contains two types of
transitions. The first type corresponds to the activity of a process that has
already been created. Formally, for two configurations (s, (`1, γ1), . . . , (`k, γk))
and (s′, (`′1, γ

′
1), . . . , (`′k, γ

′
k)) of size k ≥ 1,

((s, (`1, γ1), . . . , (`k, γk)), (s′, (`′1, γ
′
1), . . . , (`′k, γ

′
k))) ∈ Ep

if and only if p ≤ k and there are op ∈ Act and A ∈ Γ such that

– ((s, `p), (op, A), (s′, `′p)) ∈ ∆,

– `q = `′q and γq = γ′q for all q ∈ {1, . . . , k} \ {p}, and

– one of the following holds: (i) op = push and γ′p = A · γp, (ii) op = pop and
γp = A · γ′p, or (iii) op = int and γp = γ′p (in which case A is meaningless).

Note that the topmost stack symbol can be found at the leftmost position of γp.
The second type of transition is when a new process joins the system. For a

configuration (s, (`1, γ1), . . . , (`k, γk)) of size k ≥ 0,

((s, (`1, γ1), . . . , (`k, γk)), (s′, (`1, γ1), . . . , (`k, γk), (`k+1, γk+1))) ∈ Ep

if and only if p = k + 1 and there are op ∈ Act and A ∈ Γ such that
((s, `in), (op, A), (s′, `k+1)) ∈ ∆ and one of the following holds: (i) op = push
and γk+1 = A, or (ii) op = int and γk+1 = ε.

A run of P is a run of the transition system JPK. A finite run of P is accepting
if it ends in a final configuration.

Similarly, we define a parameterized finite-state system (PFS), which is a PPS
without stacks. That is, a PFS is a tuple P = (S,L, sin, `in, ∆, Fglob, Floc) where
∆ ⊆ (S×L)×(S×L) and the rest is defined as in PPS. Configurations in CP are
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tuples c = (s, `1, . . . , `k) with k ≥ 0. The semantics of P is JPK = (CP , E, (sin))
with E =

⋃
p≥1Ep defined as follows:

((s, `1, . . . , `k), (s′, `′1, . . . , `
′
k)) ∈ Ep

if and only if p ≤ k, ((s, `p), (s
′, `′p)) ∈ ∆, and `q = `′q for all q 6= p, and

((s, `1, . . . , `k), (s′, `1, . . . , `k, `k+1)) ∈ Ep

if and only if p = k + 1 and ((s, `in), (s
′, `k+1)) ∈ ∆. The notions of runs and

accepting runs are defined accordingly.

Reachability Problems. Consider Table 1. The problem PPS-Reachability
(respectively, PFS-Reachability) consists in deciding if, in a given PPS (re-
spectively, PFS), there is an accepting run, starting in the initial configuration.

In the general case, these problems are already known and we recall here the
results. The first is folklore (cf. also [28]), as two stacks are already sufficient
to simulate a Turing machine. For the second, we observe that parameterized
systems without stacks are essentially Petri nets (cf. [9]).

Theorem 1. PPS-Reachability is undecidable, while PFS-Reachability is
decidable (and as hard as Petri-net reachability).

2.2 Round-Bounded Behaviors

To regain decidability in the case of PPS, we restrict ourselves to runs that
are round-bounded, a notion introduced in [24]. Intuitively, during a round, the
first process will do any number of transitions (possibly 0), then the second
process will do any number of transitions, and so on. Once process p + 1 has
started performing transitions, process p cannot act again in this round. A run
is then said to be B-round bounded if it uses at most B rounds. Formally, given
a natural number B ≥ 1 and a PPS P = (S,L, Γ, sin, `in, ∆, Fglob, Floc), we define
the bounded semantics of P as the transition system JPKB = (V B , EB , vBin ) where

– nodes are enhanced configurations of the form v = (c, p, r) with c ∈ CP a
configuration, say, of size k, p ∈ {0, . . . , k} represents the last process that
made a transition (or 0 if it is not yet defined), and r ∈ {1, . . . , B} is the
number of the current round,

– the initial node is vBin = ((sin), 0, 1), and
– there is an edge between (c, p, r) and (c′, p′, r′) if, in JPK = (V,E, vin), there

is an edge (c, c′) in Ep′ and either
• p′ ≥ p and r′ = r, or
• p′ < p, r < B, and r′ = r + 1.

The bounded semantics of a PFS is defined accordingly.
A B-run (or simply run if B is understood) of P is a run of JPKB . A B-run is

accepting if it is finite and ends in a node (c, p, r) where c is a final configuration.
Consider the problems on the right-hand side of Table 1 (note that B is

encoded in unary). Deciding the existence of an accepting B-run is PSPACE-
complete for both PPS and PFS.
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Table 1. Reachability Problems

PPS-Reachability

I: PPS P
Q: Is there an accepting run of P ?

PPS-Reachabilityrb

I: PPS P; B ≥ 1 (given in unary)

Q: Is there an accepting B-run of P ?

PFS-Reachability

I: PFS P
Q: Is there an accepting run of P ?

PFS-Reachabilityrb

I: PFS P; B ≥ 1 (given in unary)

Q: Is there an accepting B-run of P ?

Theorem 2. PPS-Reachabilityrb and PFS-Reachabilityrb are PSPACE-
complete.

The rest of this section is devoted to the proof of this theorem. Actually,
we prove that PPS-Reachabilityrb is in PSPACE and PFS-Reachabilityrb

is PSPACE-hard. The upper bound has already been stated in [24], the lower
bound in [25], for a similar model. For the sake of completeness, we give proofs
for both bounds.

PPS-Reachabilityrb is in PSPACE. We give an (N)PSPACE algorithm solving
the problem PPS-Reachabilityrb using a slight variant of the notion of inter-
faces as described in [24]. Let P = (S,L, Γ, sin, `in, ∆, Fglob, Floc) be a PPS and
B ≥ 1 be the maximal number of rounds.

An interface for a single process is a triple I = [t, (s1, . . . , sB), (s′1, . . . , s
′
B)] ∈

{1, . . . , B} × SB × SB satisfying the following conditions:

1. For all 1 ≤ i < t, we have si = s′i.
2. There are local states `t−1, . . . , `B and stack contents γt−1, . . . , γB such

that (i) for all t ≤ i ≤ B there is a finite partial run in JPK from ci =
(si, (`i−1, γi−1)) to c′i = (s′i, (`i, γi)), (ii) this run has length at least two
(i.e., it performs at least one transition) if i = t, and (iii) `t−1 is the initial
local state, γt−1 = ε, and `B is an accepting local state.

We refer to the first B-tuple of I as I` and to the second B-tuple as Ir. The
natural number t is the starting round and is referred to as tI . We say that an
interface I1 is compatible with an interface I2 if tI1 ≤ tI2 and Ir1 = I`2.

Intuitively, an interface represents the possibility of a computation of a single
process during a run of the PPS. Global states are the only piece of information
needed to be able to coordinate between different processes, since a process can-
not access the local content of another one. Moreover, when a process is created,
it takes the last position in a round. The starting round t of each interface is
needed to check that the order of the processes respects the order of their cre-
ation. In other words, interfaces can be viewed as the skeleton of a run of P.
This is formalised in the following lemma, which is illustrated in Figure 1.
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Fig. 1. A run as the composition of compatible interfaces; all starting rounds are 1

Lemma 1. There is an accepting B-run of P if and only if there are k interfaces
I1, . . . , Ik for k ≥ 1 verifying the following conditions:

– For all 1 < i ≤ k, Ii−1 is compatible with Ii.
– Let I`1 = (s1, . . . , sB) and Irk = (s′1, . . . , s

′
B). Then, s1 is the initial global

state sin, s′B is an accepting global state, and sj = s′j−1 for all 1 < j ≤ B.

Given I = [t, (s1, . . . , sB), (s′1, . . . , s
′
B)], one can check in polynomial time

whether I is an interface. To do this, we check the emptiness of a pushdown
automaton that simulates the actions of P on a single process and has special
transitions to change the global state from s′j to sj+1. As non-emptiness of a
pushdown automaton can be checked in polynomial time [17], so can the validity
of a given interface.

The algorithm to solve PPS-Reachabilityrb first guesses an interface I1
for the first process, and stores tI1 , I`1, and Ir1 . Then, it guesses an interface
I2 for the second process, checks that it is compatible by comparing tI2 and
I`2 with the previously stored tI1 and Ir1 , and then replaces Ir1 by Ir2 and tI1
by tI2 (so only I`1, tI2 , and Ir2 are stored). We continue guessing compatible
interfaces, storing at each step i the values of I`1, tIi , and Iri . Eventually, the
algorithm guesses that the last process has been reached. At that point, there
are two halves of interfaces stored in memory: the left interface I`1 = (s1, . . . , sB)
of the first process, and the right interface Irk = (s′1, . . . , s

′
B) of the last process.

We accept if, for all i ∈ {1, . . . , B − 1}, we have that s′i = si+1, s1 = sin, and
s′B ∈ Fglob. By Lemma 1, there is an accepting B-run of P.

PFS-Reachabilityrb is PSPACE-hard. This can be shown by a reduction from
the non-emptiness of the intersection of a collection of finite automataA1, . . . ,An,
which is PSPACE-complete [21]. The bound B on the number of rounds will be
n. We construct a PFS that non-deterministically guesses a word w in the first
round. Moreover, in round i, it will check that w is accepted by Ai. To do this,
each process simulates one transition of Ai on one letter of w. That is, the num-
ber of processes is |w|. Each process performs exactly one action each round,
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and, to ensure that the word w is the same for each Ai, stores the correspond-
ing letter in its local state. The global state stores the state of the currently
simulated automaton.

3 Round-Bounded Control of Parameterized Systems

We will extend parameterized pushdown systems to a game-based setting with
the aim of modeling systems with a centralized control that are embedded into
an uncontrollable environment.

3.1 Parameterized Pushdown Games

Games. A game is given by an arena, i.e., a transition system G = (V,E, vin)
where V = V0 ] V1 is partitioned into the set of states controlled by Player 0
and Player 1, respectively, along with a winning condition W ⊆ V∞.

A play of G is a run of the underlying transition system. A play is maximal if
it is infinite, or ends in a node that has no successor. A maximal play is winning
for Player 0 if it is in W, otherwise it is winning for Player 1.

We will be concerned with two winning conditions: A reachability condition
is given by a set of nodes F ⊆ V . It induces the set WF = {ρ = v0v1v2 . . . ∈
V∞ | vi ∈ F for some 0 ≤ i < |ρ|}. A parity condition is given by a ranking
function α : V → Col where Col ⊆ N is a finite set of colors. It induces the
set Wα = {ρ ∈ V ω | min(Infα(ρ)) is even} with Infα(v0v1v2 . . .) = {m ∈ Col |
m appears infinitely often in α(v0)α(v1)α(v2) . . .}. I.e., Wα contains an infinite
run if and only if the minimal color seen infinitely often is even.

Let j ∈ {0, 1}. A strategy for Player j is a partial mapping fj : V ∗Vj → V
such that, for all w ∈ V ∗ and v ∈ Vj , the following hold: if fj(wv) is defined,
then (v, fj(wv)) ∈ E; otherwise, v has no successor.

Fix strategies f0 and f1 for Players 0 and 1, respectively. An (f0, f1)-play of
G is a maximal play ρ = v0v1v2 . . . such that, for all 0 < i < |ρ| and j ∈ {0, 1},
if vi−1 ∈ Vj , then fj(v0 . . . vi−1) = vi.

We say that fj is winning if, for all strategies f1−j , the unique maximal
(f0, f1)-play is winning for Player j. A game is determined if either Player 0 has
a winning strategy, or Player 1 has a winning strategy. Furthermore, we say that
fj is memoryless if, for all w,w′ ∈ V ∗ and v ∈ Vj , we have fj(wv) = fj(w

′v),
i.e., the strategy only depends on the last node.

Theorem 3 (cf. [13, 33]). Games with a parity winning condition are deter-
mined, and if Player j has a winning strategy, then Player j has a winning
memoryless strategy.

Parameterized Pushdown Games. We now introduce the special case of games
played on the infinite transition system induced by a round-bounded PPS.

A round-bounded parameterized pushdown game is described by a PPS P =
(S,L, Γ, sin, `in, ∆, Fglob, Floc) together with a partition S = S0]S1. For a bound
B ≥ 1, the B-round-bounded parameterized pushdown game induced by P is the
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game GBP given by the transition system JPKB = (V B , EB , vBin ) where a node
v = (c, p, r) ∈ V B with c = (s, (`1, γ1), . . . , (`k, γk)) belongs to Player j if s ∈ Sj .
We consider the reachability winning condition WF given by F = {(c, p, r) ∈
V B | c is a final configuration of P}. Since a reachability game can be easily
transformed into a parity game, Theorem 3 implies that GBP is determined.

Parameterized games on PFS are defined similarly as for PPS. Note that,
without a bound on the number of rounds, games on PFS are already undecid-
able, which is shown by an easy adaptation of the undecidability proof for VASS
games [1]. Therefore, we only define control for round-bounded games:

Controlrb

I: PPS P = (S0 ] S1, L, Γ, sin, `in, ∆, Fglob, Floc); B ≥ 1

Q: Does Player 0 have a winning strategy in GBP ?

We are now ready to present our main result, which is shown in the remainder
of this section:

Theorem 4. Controlrb is decidable, and inherently non-elementary.

3.2 Upper bound

Decidability of Controlrb comes from decidability of games on phase-bounded
multi-pushdown systems (short: multi-pushdown games), which were first stud-
ied in [29] and rely on the phase-bounded multi-pushdown automata from [22].

Multi-Pushdown Games. Intuitively, a phase is a sequence of actions in a run
during which only one fixed ”active” stack can be read (i.e., either make a
pop transition or a zero-test transition), but push and internal transitions are
unrestricted. There are no other constraints on the number of transitions or the
order of the transitions done during a phase.

Definition 2. A multi-pushdown system (MPS) is a tuple M = (κ,N, S0 ]
S1, Γ,∆, sin, α) where the natural number κ ≥ 1 is the phase bound, N ∈ N is
the number of stacks, S = S0 ]S1 is the partitioned finite set of states, Γ is the
finite stack alphabet, ∆ ⊆ S × Actzero × {1, . . . , N} × Γ × S is the transition
relation where Actzero = {push, pop, int, zero}, sin ∈ S is the initial state, and
α : S → Col with Col ⊆ N a finite set is the ranking function.

The associated game GM is then played on the transition system JMK =
(V = V0 ] V1, E, vin) defined as follows.

A node v ∈ V is of the form v = (s, γ1, . . . , γN , st , ph) where s ∈ S, γσ ∈ Γ ∗ is
the content of stack σ, and st ∈ {0, . . . , N} and ph ∈ {1, . . . , κ} are used to keep
track of the current active stack (0 when it is undefined) and the current phase,
respectively. For j ∈ {0, 1}, we let Vj = {(s, γ1, . . . , γN , st , ph) ∈ V | s ∈ Sj}.

Given nodes v = (s, γ1, . . . , γN , st , ph) ∈ V and v′ = (s′, γ′1, . . . , γ
′
N , st ′, ph ′) ∈

V , we have an edge (v, v′) ∈ E if and only if there exist op ∈ Actzero, σ ∈
{1, . . . , N}, and A ∈ Γ such that (s, op, σ, A, s′) ∈ ∆ and the following hold:
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– γτ = γ′τ for all τ 6= σ,

– γσ = γ′σ if op = int, γ′σ = A · γσ if op = push, γσ = A · γ′σ if op = pop, and
γσ = γ′σ = ε if op = zero,

– if op ∈ {int, push}, then st = st ′ and ph = ph ′ (the active stack and, hence,
the phase do not change),

– if op ∈ {pop, zero}, then either st = 0, st ′ = σ, and ph = ph ′ = 1 (this is the
first time a current stack is defined), or st = σ, st ′ = σ, and ph = ph ′ (the
stack σ corresponds to the current active stack), or st 6= σ, ph < κ, st ′ = σ,
and ph ′ = ph +1 (stack σ is not the active stack so that a new phase starts).

The initial node is vin = (sin, ε, . . . , ε, 0, 1). The winning condition of GM is a
parity condition given by α : V → Col where, for v = (s, γ1, . . . , γN , st , ph), we
let α(v) = α(s).

The control problem for MPS, denoted by ControlMPS, is defined as follows:
Given an MPS M, does Player 0 have a winning strategy in GM?

Theorem 5 ([5,29]). ControlMPS is decidable, and is non-elementary in the
number of phases.

The upper bound was first shown in [29] by adopting the technique from [32],
which reduces pushdown games to games played on finite-state arenas. On the
other hand, [5] proceeds by induction on the number of phases, reducing a (κ+1)-
phase game to a κ-phase game. Similarly, we could try a direct proof of our
Theorem 4 by induction on the number of rounds. However, this proof would be
very technical and essentially reduce round-bounded parameterized systems to
multi-pushdown systems. Therefore, we proceed by reduction to multi-pushdown
games, providing a modular proof with clearly separated parts.

From Parameterized Pushdown Games to Multi-Pushdown Games.
We reduce Controlrb to ControlMPS. Let P = (S,L, Γ, sin, `in, ∆, Fglob, Floc),
with S = S0 ] S1, be a PPS and B ≥ 1. We will build an MPS M such that
Player 0 has a winning strategy in GBP if and only if Player 0 has a winning
strategy in GM. In the following, given s ∈ S, we let pl(s) ∈ {0, 1} denote the
player associated with s, i.e., pl(s) = 0 if and only if s ∈ S0.

The main idea of the reduction is to represent a configuration

(s, (`1,
xγ1 ), . . . , (`p−1,

xγp−1 ), (`p,
xγp ), (`p+1,

xγp+1 ), . . . , (`k,
xγk ), p, r)

of GBP as a configuration in GM of the form depicted in Figure 2.
Component j ∈ {0, 1} of the global state denotes the current player (which,

by default, is pl(s)). We explain f1 and f2 further below.
The process p that has moved last is considered as the active process whose

local state `p is kept in the global state of GM along with s, and whose stack
contents γp is accessible on stack 1 (in the correct order). This allows the multi-
pushdown game to simulate transitions of process p, modifying its local state and
stack contents accordingly (see Basic Transitions in the formalization below).
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((s, `p, f1, f2, j, r),

xγp
(`p+1, gp+1)xγp+1

...
(`k, gk)xγk

,

yγp−1

(`p−1, gp−1)
...yγ1

(`1, g1)

, st , ph)

Fig. 2. Encoding of a configuration in GBP by a configuration in GM

If a player decides to take a transition for some process p′ > p, she will store
`p on stack 2 and shift the contents of stack 1 onto stack 2 until she retrieves the
local state `p′ of p′ along with its stack contents γp′ (see Figure 3 and Transitions
for Process Change in the formalization of M).

If, on the other hand, the player decides to take a transition for some process
p′ < p, then she stores `p on stack 1 and shifts the contents of stack 2 onto
stack 1 to recover the local state `p′ and stack contents γp′ (see Figure 4 and
Transitions for Round Change). This may imply two phase switches, one to shift
stack symbols from 2 to 1, and another one to continue simulating the current
process on stack 1. However, 2B − 1 phases are sufficient to simulate B rounds.

There are a few subtleties: First, at any time, we need to know whether
the current configuration of GM corresponds to a final configuration in GBP . To
this aim, the state component (s, `p, f1, f2, j, r) of M contains the flags f1, f2 ∈
{3,7} where, as an invariant, we maintain f1 = 3 if and only if {`p+1, . . . , `k} ⊆
Floc and f2 = 3 if and only if {`1, . . . , `p−1} ⊆ Floc. Thus, Player 0 wins in GM as
soon as she reaches a configuration with global state (s, `, f1, f2, j, r) such that
s ∈ Fglob, ` ∈ Floc, and f1 = f2 = 3. To faithfully maintain the invariant, every
local state `q that is pushed on one of the two stacks, comes with an additional
flag gq ∈ {3,7}, which is 3 if and only if all local states strictly below on the
stack are contained in Floc. It is then possible to keep track of a property of
all local states on a given stack simply by inspecting and locally updating the
topmost stack symbols.

Second, one single transition in P is potentially simulated by several transi-
tions in M in terms of the gadgets given in Figures 3 and 4. The problem here
is that once Player j commits to taking a transition by entering a gadget, she is
not allowed to get stuck. To ensure progress, there are transitions from inside a
gadget to a state win1−j that is winning for Player 1− j.

Third, suppose that, in a non-final configuration of GBP , it is Player 1’s turn,
but no transition is available. Then, Player 1 wins the play. But how can Player 1
prove in GM that no transition is available in the original game GBP ? Actually,
he will give the control to Player 0, who will eventually get stuck and, therefore,
lose (cf. transitions for Change of Player below).
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Let us define the MPS M = (κ,N, S′ = S′0 ] S′1, Γ ′, ∆′, s′in, α) formally. We
let κ = 2B − 1, N = 2 (the number of stacks), and Γ ′ = Γ ] (L× {3,7}).

States. The set of states is S′ = {s′in} ] Ssim ] {win0,win1} ] I where s′in is
the initial state. Moreover, Ssim = S × L × {3,7}2 × {0, 1} × {1, . . . , B}. A
state (s, `, f1, f2, j, r) ∈ Ssim stores the global state s and the local state ` of
the last process p that executed a transition. The third and forth component
f1 and f2 tell us whether all processes p′ > p and, respectively, p′ < p of the
current configuration are in a local final state (indicated by 3). Then, j denotes
the player that is about to play (usually, we have j = pl(s), but there will
be deviations). Finally, r is the current round that is simulated. Recall that
(s, `, f1, f2, j, r) represents a final configuration if and only if s ∈ Fglob, ` ∈ Floc,
and f1 = f2 = 3. Let F ⊆ Ssim be the set of such states. The states win0 and
win1 are self-explanatory. Finally, we use several intermediate states, contained
in I, which will be determined below along with the transitions.

The partition S′ = S′0 ] S′1 is defined as follows: First, we have s′in ∈ S′pl(sin).
Concerning states from Ssim, we let (s, `, f1, f2, j, r) ∈ S′j . The states win0 and
win1 both belong to Player 0 (but this does not really matter). Membership of
intermediate states is defined below. The ranking function α maps win0 to 0,
and everything else to 1. In fact, we only need a reachability objective and use
the parity condition to a very limited extent.

Initial Transitions. For all transitions (sin, `in)
(op,A)−−−−→ (s′, `′) in P, we intro-

duce, in M, a transition s′in
(op,1,A)−−−−−−→ (s′, `′,3,3, pl(s′), 1).

Final Transitions. For all states (s, `, f1, f2, j, r) ∈ F, we will have a transition

(s, `, f1, f2, j, r)
int−−→ win0 (we omit the stack symbol, as it is meaningless), which

will be the only transition outgoing from (s, `, f1, f2, j, r). Moreover, win0
int−−→

win0 and win1
int−−→ win1.

Basic Transitions. We now define the transitions of M simulating transitions
of P that do not change the process. For all (s, `, f1, f2, j, r) ∈ Ssim \ F and

transitions (s, `)
(op,A)−−−−→ (s′, `′) from ∆ (in P), the MPS M has a transition

(s, `, f1, f2, j, r)
(op,1,A)−−−−−−→ (s′, `′, f1, f2, pl(s′), r).

Transitions for Process Change. For all (s, `, f1, f2, j, r) ∈ Ssim \ F, we intro-
duce, in M, the gadget given in Figure 3. As we move to another process, the
current local state ` is pushed on stack 2, along with flag f2, which tells us
whether, henceforth, all states on stack 2 below the new stack symbol are local
accepting states. Afterwards, the value of f2 kept in the global state has to be
updated, depending on whether ` ∈ Floc or not. Actually, maintaining the value
of f2 is done in terms of additional (but finitely many) states. For the sake of
readability, however, we rather consider that f2 is a variable and use upd(f2, `)
to update its value. We continue shifting the contents of stack 1 onto stack 2
(updating f2 when retrieving a local state). Now, there are two possibilities. We
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s `
f1 f2
j r

B B ∈ Γ

`′′ `′′ ∈ L

s ˆ̀

f ′1 f2

s′ `′

f ′1 f2
pl(s′) r

for all transitions

(s, ˆ̀)
(op,A)−−−−→ (s′, `′)

in ∆

push 2 (`, f2) ;
upd(f2, `)

pop 1 B push 2 B

pop 1 (ˆ̀, f ′1)(
ˆ̀∈ L

f ′1 ∈ {3, 7}

)

zero 1
ˆ̀ := `in
f ′1 := 3

op 1 A

pop 1 (`′′, )
push 2 (`′′, f2) ;

upd(f2, `
′′)

win1−j

Fig. 3. Change from process p to some process p′ > p (staying in the same round).
All intermediate states belong to Player j; from every intermediate state, there is an
outgoing internal transition to win1−j . Moreover, upd(f2, ¯̀) stands for the update rule
If (f2 = 3 ∧ ¯̀∈ Floc) Then f2 := 3 Else f2 := 7.

may eventually pop a new current local state ˆ̀ and then simulate the transition
of the corresponding existing process. Or, when there are no more symbols on
stack 1, we create a new process.

Transitions for Round Change. For all (s, `, f1, f2, j, r) ∈ Ssim \ F such that
r < B, we introduce, in M, the gadget given in Figure 4. It is similar to the
previous gadget. However, we now shift symbols from stack 2 onto stack 1 and
have to update f1 accordingly.

Change of Player. When Player 1 thinks he does not have an outgoing transi-
tions (in P), he can give the token to Player 0. That is, for all (s, `, f1, f2, 1, r) ∈
Ssim \ F, we introduce the transition (s, `, f1, f2, 1, r)

int−−→ (s, `, f1, f2, 0, r).

Lemma 2. Player 0 has a winning strategy in GM if and only if Player 0 has
a winning strategy in GBP .

3.3 Lower bound

Our lower-bound proof is inspired by [5], but we reduce from the satisfiability
problem for first-order formulas on finite words, which is known to be non-
elementary [30]. Note that the lower bound already holds for PFS.
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s `
f1 f2
j r

B B ∈ Γ

`′′ `′′ ∈ L

s ˆ̀

f1 f
′
2

s′ `′

f1 f ′2
pl(s′) r + 1

for all transitions

(s, ˆ̀)
(op,A)−−−−→ (s′, `′)

in ∆

push 1 (`, f1) ;
upd(f1, `)

pop 2 B push 1 B

pop 2 (ˆ̀, f ′2)(
ˆ̀∈ L

f ′2 ∈ {3, 7}

)
op 1 A

pop 2 (`′′, )
push 1 (`′′, f1) ;

upd(f1, `
′′)

win1−j

Fig. 4. Go from a process p to some process p′ < p (involving a round change). All
intermediate states belong to Player j; from every intermediate state, there is an out-
going internal transition to win1−j . Moreover, upd(f1, ¯̀) stands for the update rule
If (f1 = 3 ∧ ¯̀∈ Floc) Then f1 := 3 Else f1 := 7.

Let Var be a countably infinite set of variables and Σ a finite alphabet.
Formulas ϕ are built by the grammar ϕ ::= a(x) | x < y | ¬(x < y) | ϕ∨ϕ | ϕ∧
ϕ | ∃x.ϕ | ∀x.ϕ where x, y ∈ Var and a ∈ Σ.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. Variables are interpreted as positions of
w, so a valuation is a (partial) function ν : Var→ {0, . . . , n−1}. The satisfaction
relation is defined as follows. We let w, ν |= a(x) if and only if aν(x) = a.
Moreover, w, ν |= x < y if and only if ν(x) < ν(y). Quantification, negation,
disjunction, and conjunction are defined as usual. We refer to [31] for details.
A formula ϕ without free variables is satisfiable if there is a word w such that
w, ∅ |= ϕ. We suppose that ϕ is given in prenex normal form.

We build a PFS-based round-bounded game that is winning for Player 0 if
and only if ϕ is satisfiable. In the first round of the game, Player 0 chooses a
word w by creating a different process for each letter of w, each of them holding
the corresponding letter in its local state. To prove that w is indeed a model of
ϕ, the following rounds are devoted to the valuation of the variables appearing
in ϕ, ν(x) = i being represented by memorizing the variable x in the local state
of the ith process. If x appears in the scope of a universal quantifier, the choice
of the process is made by Player 1, otherwise it is made by Player 0. The last
round is used to check the valuation of the variables. To this end, the players will
inductively choose a subformula to check, until they reach an atomic proposition:
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If the subformula is a disjunction ϕ1∨ϕ2, Player 0 chooses either ϕ1 or ϕ2; if it is
a conjunction, Player 1 chooses the next subformula. Finally, to verify whether
a(x) is satisfied, we check that there is a process with letter a and variable x in
its local state. For x < y, we check that the process with x in its local state is
eventually followed by a distinct process with y in its local state. This check is
done during the same round, which guarantees that the positions corresponding
to x and y are in the correct order. The number of states needed and the number
of rounds are linearly bounded in the length of the formula.

4 Conclusion

We extended the verification of round-bounded parameterized systems to a
game-based setting, which allows us to model an uncontrollable environment.
It would be interesting to consider game-based extensions for the setting from
[6], too. Moreover, as games constitute an important approach to verifying
branching-time properties (e.g., [26]), our results may be used for branching-time
model checking of parameterized systems (using a variant of data logics [20] and
a reduction of the model-checking problem to a parameterized pushdown game).
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