
Decidability of well-connectedness for

distributed synthesis⋆

Paul Gastin and Nathalie Sznajder

LSV, ENS de Cachan & CNRS
61, Av. du Président Wilson, F-94235 Cachan Cedex, France
{Paul.Gastin,Nathalie.Sznajder}@lsv.ens-cachan.fr

Abstract. Although the synthesis problem is often undecidable for dis-
tributed, synchronous systems, it becomes decidable for the subclass of
uniformly well-connected (UWC) architectures, provided that only ro-
bust specifications are considered. It is then an important issue to be
able to decide whether a given architecture falls in this class. This is the
problem addressed in this paper: we establish the decidability and precise
complexity of checking this property. This problem is in 2-NEXPTIME
in the general case, but becomes NP-complete if restricted to a natural
subclass of architectures.

1 Introduction

The synthesis problem consists in, given a high-level description of a system,
automatically deriving a program that behaves according to the specification. We
consider here the synthesis problem for reactive and open systems, i.e., systems
whose role are to maintain an ongoing interaction with an environment. The
specification should describe the expected behavior of the system throughout its
activity. This problem is closely related to Church’s problem [4], that was solved
in [2]. Later, [16] has observed that even though the specification is expressed
on strings, its synthesis is actually a problem on tree automata.

Since then, it has received a lot of attention, and various refinements have
been studied. The precise setting of the problem has several parameters: cen-
tralized or distributed systems (in a distributed setting, one is given, along with
the specification, a set of processes and an architecture of communication be-
tween them - typically a communication through variables whose domains are
fixed), synchronous (at each time step, the environment produces an input, and
the system reacts with a corresponding output) or asynchronous behaviors (in
which the environment and the system do not evolve at the same speed), type of
specifications and type of memory assumed for the processes. In the centralized
framework, Pnueli and Rosner have proven the synthesis problem decidable for
both synchronous and asynchronous semantics and specifications expressed by

⋆ Partially supported by projects ARCUS Île-de-France/Inde, DOTS (ANR-06-
SETIN-003), and P2R MODISTE-COVER/Timed-DISCOVERI.

a formula in linear temporal logic – see [13] and [14], with a complexity dou-
bly exponential in the size of the formula. Another interesting problem arises
when considering distributed systems: the question is now to synthesize a pro-
gram for each process, that only depends on its local knowledge, such that the
overall behavior of the system meets the given formula. This has been studied
by [15], for systems having a synchronous behavior, and with external specifi-
cations in linear temporal logic. By external we mean a specification that only
relates input to output values and is not allowed to constrain internal variables
of communication. Unfortunately, this problem is undecidable in general for LTL
specifications [15] and later, [5] has adapted the undecidability proof to the case
of CTL specifications. However, [15] proved that synthesis for pipeline architec-
tures is non-elementarily decidable - the lower bound following from a former
result on multiplayer games [12]. This decidability result has been strengthened
in [8] where it is shown that synthesis for pipelines is decidable even with CTL∗

full specifications, i.e., specifications that are allowed to constrain internal links
of communication between the processes. In [5] a decision criterion has been
established, again for full specifications. A different approach has been taken
in [9]: when considering local specifications, i.e., specifications that only relate
input and output of a same process, the synthesis problem remains undecidable
in general, but doubly-flanked pipelines are decidable.

For asynchronous systems, [10] have exhibited a specific subclass of con-
trollers for which the problem is decidable, provided trace-closed specifications.
This result has been strenghtened in [11] where a more generic class of con-
trollers have been considered. In an incomparable framework, [6] have identified
another subclass of decidable architectures, using an enhanced memory for the
processes. More recently, [3] have considered a model where processes communi-
cate through signals (a sort of handshaking but initiated by only one process).
If the specifications respect some natural closure properties, the asynchronous
synthesis problem becomes decidable for strongly connected architectures.

This very active line of research has clearly shown that the synthesis problem
for distributed systems is largely influenced by the hypotheses on specifications
and the architectures.

Contributions. In [7], we have considered the synthesis problem for external
specifications, and synchronous semantics, where each process is assigned a non-
negative delay. The delays can be used to model latency in communications,
or slow processes. This model has the same expressive power as the one where
delays sit on communication channels, and it subsumes both the 0-delay and the
1-delay classical semantics [15,8]. We have defined a subclass of architectures,
the uniformly well-connected (UWC) architectures, for which we have found a
decidability criterion. Informally, an architecture is UWC if there exists a rout-
ing allowing each output process to get, as soon as possible, the values of all
inputs it is connected to. However the decidability of the criterion itself had not
been proved. Indeed, for the processes to decode the messages they receive and
obtain the values of said inputs, we may need memory. If it is infinite, or without
a bound on the size of this memory, a naive algorithm enumerating the different

2

possible routings and decoding functions may not terminate. In this paper we
show that if an architecture is UWC, then there exist decoding functions with
finite memories. We derive an algorithm to decide whether an architecture is
UWC and evaluate its complexity: 2-NEXPTIME in the general case. We also
make explicit the link between this notion and communication flow problems
with network coding introduced in [1]. This relation allows us to establish a
complexity lower bound. We also show that under natural restrictions checking
UWC becomes NP-complete.

2 Preliminaries

We use the formalism and notations defined in [7].

Architectures. An architecture A = (V ⊎ P, E, (Sv)v∈V , s1, (dp)p∈P) is a finite
directed acyclic bipartite graph, where V ⊎ P is the set of vertices, and E ⊆
(V × P) ∪ (P × V) is the set of edges, such that |E−1(v)| ≤ 1 for all v ∈ V .
Elements of P will be called processes and elements of V variables. Intuitively,
an edge (v, p) ∈ V × P means that process p can read variable v, and an edge
(p, v) ∈ P × V means that p can write on v. Thus, |E−1(v)| ≤ 1 means that
a variable v is written by at most one process. Input and output variables are
defined, respectively, by

VI = {v ∈ V | E−1(v) = ∅},

VO = {v ∈ V | E(v) = ∅}.

Variables in V \ (VI ∪ VO) will be called internal. We assume that no process is
minimal or maximal in the graph.

Each variable v ranges over a finite domain Sv, given with the architecture.
When U ⊆ V , SU will denote

∏

v∈U Sv. A configuration of the architecture is
given by a tuple s = (sv)v∈V ∈ SV describing the value of all variables. For
U ⊆ V , we denote by sU = (sv)v∈U the projection of the configuration s to the
variables in U . The initial configuration is s1 = (sv

1)v∈V ∈ SV .
We will consider that |Sv| ≥ 2 for all v ∈ V . In fact, if not, such a variable

would always have the same value, and could be ignored. It will be convenient
in some proofs to assume that {0, 1} ⊆ Sv and that sv

1 = 0 for all v ∈ V .
Each process p ∈ P is associated with a delay dp ∈ N that corresponds to the

time interval between the moment the process reads the variables v ∈ E−1(p)
and the moment it will be able to write on its output variables in E(p). Note
that delay 0 is allowed. In the following, for v ∈ V \ VI, we will often write dv

for dp where E−1(v) = {p}.
An example of an architecture is given in Figure 1, where processes are

represented by boxes and variables by circles.

Runs. A run of an architecture is an infinite sequence of configurations, i.e.,
an infinite word over the alphabet SV , starting with the initial configuration
s1 ∈ SV given with the architecture. If σ = s1s2s3 · · · ∈ (SV)ω is a run, then its

3

u w

z1 z2 z3 z4

z12 z13 z14 z23 z24 z34

Fig. 1. An architecture

projection on U ⊆ V is σU = sU
1 sU

2 sU
3 · · · . Also, we denote by σ[i] the prefix of

length i of σ (by convention, σ[i] = ε if i ≤ 0).

Programs, strategies. We consider a discrete time, synchronous semantics. In-
formally, at each step the environment provides new values for input variables.
Then, each process p reading values written by its predecessors or by the envi-
ronment at step i − dp, computes values for the variables in E(p), and writes
them. Let v ∈ V \ VI and let R(v) = E−2(v) be the set of variables read by the
process writing to v. Intuitively, from a word σR(v) in (SR(v))+ representing the
projection on R(v) of some run prefix, a program (or a strategy) advices a value
to write on variable v. But, since the process may have a certain delay dv, the
output of the strategy must not depend on the last dv values of σR(v).

Formally, a program (or local strategy) for variable v is a mapping fv :
(

SR(v)
)+

→ Sv compatible with the delay dv, i.e., such that for all σ, σ′ ∈

(SR(v))i, if σ[i − dv] = σ′[i − dv], then fv(σ) = fv(σ′). This condition – called
delay-compatibility or simply d-compatibility – ensures that the delay dv is re-
spected when computing the next value of variable v. A distributed program
(or distributed strategy) is a tuple F = (fv)v∈V \VI

of local strategies. A run

σ ∈ (SV)ω is an F -run (or F -compatible) if for all v ∈ V \ VI, sv
i = fv(σR(v)[i]).

Given an input sequence ρ ∈ (SVI)ω, there is a unique run σ ∈ (SV)ω which is
F -compatible and such that σVI = ρ.

Memoryless strategies. The strategy fv is memoryless if it does not depend on the
past, that is, if there exists g : SR(v) → Sv such that fv(s1 · · · si · · · si+dv

) = g(si)
for s1 · · · si+dv

∈ (SR(v))+. In case dv = 0, this corresponds to the usual definition
of a memoryless strategy.

Routing. A routing for an architecture A = (V ⊎ P, E, (Sv)v∈V , s1, (dp)p∈P) is
a family Φ = (fv)v∈V \(VI∪VO) of memoryless local strategies. Observe that a
routing does not include local strategies for output variables.

View. For a variable v ∈ V , we let View(v) = (E−2)∗(v) ∩ VI be the set of input
variables v might depend on.

Delays. The smallest cumulative delay of transmission from u to v is defined by
d(u, u) = 0, d(u, v) = +∞ if v /∈ (E2)+(u), i.e., if there is no path from u to v

4

in the architecture, and for u 6= v ∈ (E2)+(u)

d(u, v) = dv + min{d(u, w) | w ∈ R(v) and w ∈ (E2)+(u)} .

We then say that an architecture is uniformly well connected if there exists
a routing Φ that allows to transmit with a minimal delay to every process p
writing to an output variable v, the values of the variables in View(v).

Definition 1. An architecture A is uniformly well-connected (UWC) if there
exist a routing Φ and, for every v ∈ VO and u ∈ View(v), a decoding function

gu,v :
(

SR(v)
)+

→ Su that can reconstruct the value of u, i.e., such that for any

Φ-compatible sequence σ = s1s2 · · · ∈
(

SV \VO

)+
, we have for i > 0

su
i = gu,v(σR(v)[i + d(u, v) − dv]) (1)

In case there is no delay, the uniform well-connectedness refines the notion of
adequate connectivity introduced by Pnueli and Rosner in [15], as we no longer
require each output variable to be communicated the value of all input variables,
but only those in its view.

3 Decidability and complexity of checking UWC

As already pointed out in [7], the definition of uniform well connectedness is
not symetric: whereas the routing functions are memoryless, some memory is
required for the decoding functions. We take the example given in [7] to prove
this fact. Consider the architecture given in Figure 2. The delays are written
next to the processes, and all variables range over the domain {0, 1}. It is clear
that this architecture is UWC: process p writes to t the xor of u1 and u2 with
delay 1. This could be written t = Y u1 ⊕ Y u2 where Y x denotes the previous
value of variable x. In order to recover (decode) Y u2, process q1 memorizes the
previous value of u1 and make the xor with t: Y u2 = t⊕Y u1. But if we restrict
to memoryless decoding functions, then we only know u1 and t and we cannot
recover Y u2.

Let us show formally that if we restrict to memoryless decoding functions, we
cannot recover the values of the input variables. Fix a routing Φ = f t, where f t is
memoryless, and fix decoding functions (gu,v)v∈VO,u∈View(v) satisfying (1). Note

that, if s1s2s3 ∈ (SV)3 is a Φ-sequence, then st
3 only depends on s

{u1,u2}
2 since f t

is memoryless and compatible with the delays. Now, f t cannot be injective, hence

we find another Φ-sequence s1s
′
2s

′
3 ∈ (SV)3 with st

3 = s′t3 and s
{u1,u2}
2 6= s

′{u1,u2}
2

and s
{u1,u2}
3 = s

′{u1,u2}
3 . For instance su2

2 6= s′u2

2 and we get

gu2,v1

(

(s1s2s3)
{u1,t}

)

= su2

2 6= s′u2

2 = gu2,v1

(

(s1s
′
2s

′
3)

{u1,t}
)

.

It follows that gu2,v1 is not memoryless.
However, and interestingly, if an architecture is uniformly well-connected, the

decoding functions have finite memory, which allows to prove the decidability of
this criterion.

5

u1 u2

p 1

t

q1 0 q20

v1 v2

Fig. 2. A uniformly well-connected architecture

3.1 Decidability

To show decidability, we start by proving that if the architecture is UWC with
a routing Φ = (fv)v∈V \(VI∪VO) and decoding functions (gu,v)u∈View(v) for all
v ∈ VO, then the decoding functions are finite-state. In the following, we will
denote by gv the tuple (gu,v)u∈View(v) of decoding functions associated with
an output variable v. Observe that since the routing functions are memoryless
and delay-compatible, the value of any variable in a Φ-compatible sequence is
influenced only by a limited number of input values in the past. This is expressed
by the following lemma.

First, we introduce some additional notations. Here we use not only the
minimal transmission delay d(u, v) from u to v but also the maximal transmission
delay D(u, v) defined by D(u, u) = 0, D(u, v) = +∞ if v /∈ (E2)+(u), and if
u 6= v ∈ (E2)+(u) then

D(u, v) = dv + max{D(u, w) | w ∈ R(v) and w ∈ (E2)+(u)} .

If σ = s1s2 · · · is a sequence and i, j are integers then σ[i · · j] denotes the
subsequence si · · · sj, which is empty if i > j. We also use this notation when
i ≤ 0 or j ≤ 0: if j ≤ 0 then σ[i · · j] = ε is the empty sequence, and if i ≤ 0 < j
then σ[i · · j] = σ[1 · · j].

Lemma 2. For all v ∈ V \VO, for any routing Φ and any Φ-compatible sequence
σ = s1 . . . si, the value sv

i only depends on (σu[i−D(u, v) · · i−d(u, v)])u∈View(v).

Proof. The proof is by induction on the variables of the acyclic architecture. Let
v be an input variable. Then View(v) = {v}, D(v, v) = d(v, v) = 0 and obviously
sv

i depends only on sv
i . Now suppose v ∈ V \ (VO ∪ VI). The sequence σ being a

Φ-compatible sequence, we have sv
i = fv(σR(v)). The routing functions are mem-

oryless, so fv(σR(v)) depends only on s
R(v)
i−dv

. Let w ∈ R(v). By induction hypoth-
esis, sw

i−dv

depends only on (σu[i−dv −D(u, w) · · i−dv −d(u, w)])u∈View(w). We
have View(v) =

⋃

w∈R(v) View(w). Hence, using the definitions of the minimal
and maximal transmission delays d and D we deduce that sv

i depends only on
(σu[i − D(u, v) · · i − d(u, v)])u∈View(v). ⊓⊔

6

For all v ∈ VO and for all finite Φ-compatible sequence σ = s1 . . . s|σ| ∈

(SV \VO)∗, we define

Ψv(σ) =
(

σu[|σ| + 1 − D(u, v) + dv · · |σ| − d(u, v) + dv]
)

u∈View(v)
,

Ψv(σ) =
(

σu[1 · · |σ| − d(u, v) + dv]
)

u∈View(v)
.

The next proposition shows that Ψv(σ) is the only memory needed to decode
the input values.

Proposition 3. Let σ · s and σ′ · s′ be two Φ-compatible sequences with σ, σ′ ∈
(SV \VO)∗ and s, s′ ∈ SV \VO such that Ψv(σ) = Ψv(σ

′) and sR(v) = s′R(v). Then
gv((σ · s)R(v)) = gv((σ′ · s′)R(v)) and Ψv(σ · s) = Ψv(σ′ · s′).

View(v)

R(v)

σ s

sR(v)

gv((σ · s)R(v))
Ψv(σ)

Proof. We write σ · s = s1 . . . s|σ|s|σ|+1 and similarly for σ′ · s′. Of course, in

general, (σ ·s)R(v) 6= (σ′ ·s′)R(v) We build another Φ-compatible sequence σ′′ ·s′′

such that (σ · s)R(v) = (σ′′ · s′′)R(v) and gv((σ′ · s′)R(v) = gv(σ′′ · s′′)R(v)). Let
σ′′ · s′′ be such that for all u ∈ View(v) we have

σ′′u = σu[1 · · |σ| − d(u, v) + dv] · σ
′u[|σ′| + 1 − d(u, v) + dv · · |σ

′|]

and s′′u = s′u. The remaining input variables can be set arbitrarily. We claim
that (σ′′ · s′′)R(v) = (σ · s)R(v). This claim is proved below but we first show how
it allows to derive the lemma.

Since σ′ ·s′ and σ′′ ·s′′ are both Φ-compatible sequences, for each u ∈ View(v)
we have

gu,v((σ′ · s′)R(v)) = s′u|σ′|+1−d(u,v)+dv

gu,v((σ′′ · s′′)R(v)) = s′′u|σ′′|+1−d(u,v)+dv

and s′′u|σ′′|+1−d(u,v)+dv

= s′u|σ′|+1−d(u,v)+dv

by definition of σ′′. Using the claim

we deduce gu,v((σ′ · s′)R(v)) = gu,v((σ · s)R(v)). Therefore, gv((σ · s)R(v)) =
gv((σ′ · s′)R(v)). Together with Ψv(σ) = Ψv(σ

′) this implies Ψv(σ · s) = Ψv(σ′ · s′)
which yields the lemma.

7

Now we prove the claim. Note that |σ′′| = |σ|. By definition of σ′′, we have
Ψv(σ

′′) = Ψv(σ). Let w ∈ R(v) and i ≤ |σ| = |σ′′|. For each u ∈ View(w) ⊆
View(v) we have i− d(u, w) ≤ |σ| − d(u, v) + dv. Using Lemma 2 and Ψv(σ′′) =
Ψv(σ), we deduce that s′′wi = sw

i . Therefore, σ′′R(v) = σR(v).
It remains to show that s′′R(v) = sR(v). Using Ψv(σ) = Ψv(σ

′) and the defi-
nition of σ′′ and s′′, we get for each u ∈ View(v)

(σ′′ · s′′)u[|σ′′ · s′′| − D(u, v) + dv · · |σ
′′ · s′′| − d(u, v) + dv]

= (σ′ · s′)u[|σ′ · s′| − D(u, v) + dv · · |σ
′ · s′| − d(u, v) + dv].

Let w ∈ R(v). Note that for u ∈ View(w) we have D(u, w) ≤ D(u, v) − dv and
d(u, w) ≥ d(u, v) − dv. We deduce using Lemma 2 that s′′w = sw. Therefore,
s′′R(v) = s′R(v). Using the hypothesis s′R(v) = sR(v) we obtain s′′R(v) = sR(v)

which concludes the proof of the claim. ⊓⊔

Now we can define a deterministic automaton Bv = (Qv, q
v
0 , SR(v), δv, α

v)
with output that computes gv with a finite memory:

– Qv = {Ψv(σ) | σ is a finite Φ-compatible sequence} is the finite set of states
and qv

0 = Ψv(ε) is the initial state.
– SR(v) is the input alphabet.
– δv : Qv × SR(v) → Qv is the transition function defined by

δv(Ψv(σ), sR(v)) =

{

Ψv(σ · s) if σ · s is a Φ-compatible sequence

undefined otherwise.

Note that δv is well-defined by Proposition 3. We immediately deduce by
induction that δv(q0, σ

R(v)) = Ψv(σ) for all finite Φ-compatible sequence σ.
– αv : Qv × SR(v) → SView(v) is the output function defined by

αv(Ψv(σ), sR(v)) =

{

gv((σ · s)R(v)) if σ · s is a Φ-compatible sequence

undefined otherwise.

Note that αv is also well-defined by Proposition 3. For any Φ-compatible
sequence σ · s, we have

gv((σ · s)R(v)) = αv(Ψv(σ), sR(v)) = αv(δv(q
v
0 , σR(v)), sR(v)).

Hence the finite state deterministic automaton Bv computes gv.

Note that, if the architecture is 0-delay, i.e., dp = 0 for all p ∈ P , then Qv is a
singleton and gv is memoryless.

In the following, we let D = max{D(u, v) − dv | v ∈ VO, u ∈ View(v)}, and
we fix a routing Φ = (fv)v∈V \{VI∪VO}.

Definition 4. For any finite Φ-sequence σ ∈ (SV \VO)∗, we denote by SuffΦ(σ)
the Φ-sequence of length D induced by ρ = σVI [|σ| + 1 − D · · |σ|] ∈ (SVI)D.

8

Remark 5. The automaton Bv satisfies δv(qv
0 , σR(v)) = δv(qv

0 , (SuffΦ(σ))R(v)) for
all finite Φ-sequence σ. Indeed, since Ψv(σ) = Ψv(SuffΦ(σ)) by definition, we
have δv(qv

0 , σR(v)) = Ψv(σ) = Ψv(SuffΦ(σ)) = δv(q
v
0 , (SuffΦ(σ))R(v)).

We now show that verifying whether an automaton with output indeed com-
putes the decoding functions is decidable. We will need for this the following
intermediate results.

Lemma 6. Let C = (Q, q0, S
R(v), δ, α) be a finite automaton and consider the

property P (σ) of finite Φ-sequences σ ∈ (SV \VO)∗ defined by:

δ(q0, σ
R(v)) = δ(q0, (SuffΦ(σ))R(v)) P (σ)

Then, P (σ) holds for any finite Φ-sequence if and only if P (σ) holds for any
Φ-sequence of length D + 1.

Proof. Suppose that P (σ) holds for any Φ-sequence of length D +1. Let σ be an
arbitrary Φ-sequence. We prove that P (σ) holds by induction on the length of
σ. If |σ| ≤ D then SuffΦ(σ) = σ and P (σ) holds. Assume now |σ| = k + 1 with
k ≥ D. We write σ = s1 . . . sk+1 with si ∈ SV \VO . We have

δ(q0, σ
R(v)) = δ(δ(q0, σ[k]R(v)), s

R(v)
k+1)

= δ(δ(q0, SuffΦ(σ[k])R(v)), s
R(v)
k+1) by induction hypothesis

= δ(q0, (SuffΦ(σ[k]) · sk+1)
R(v)).

Now, let σ′ = s′1 . . . s′D+1 ∈ (SV \VO)D+1 be the Φ-sequence induced by the input
sequence σVI [|σ| − D · · |σ|]. From Definition 4 we deduce SuffΦ(σ[k]) = σ′[D].
Also, for w ∈ R(v) and u ∈ View(w), we have D(u, w) ≤ D(u, v) − dv ≤ D, and

Lemma 2 implies that s
′R(v)
D+1 = s

R(v)
k+1 . Therefore, (SuffΦ(σ[k])·sk+1)

R(v) = σ′R(v).
Since |σ′| = D + 1, our hypothesis implies

δ(q0, SuffΦ(σ[k]) · sk+1)
R(v)) = δ(q0, σ

′R(v)) = δ(q0, SuffΦ(σ′)R(v)).

To conclude, observe now that SuffΦ(σ′) = SuffΦ(σ). Hence, we get P (σ). ⊓⊔

Lemma 7. Let C = (Q, q0, S
R(v), δ, α) be a finite automaton with output such

that P (σ) holds for any finite Φ-sequence. Consider the property P ′(σ) of finite
Φ-sequences σ = s1 . . . sk+1 ∈ (SV \VO)∗ defined by:

α(δ(q0, σ
R(v)[k]), s

R(v)
k+1) = (su

k+1−d(u,v)+dv

)u∈View(v) P ′(σ)

with the convention su
i = 0 for i ≤ 0.

Then, P ′(σ) holds for any finite Φ-sequence if and only if P ′(σ) holds for
any Φ-sequence of length at most D + 1.

Proof. Suppose that P ′(σ) holds for any Φ-sequence of length at most D + 1.
Let σ = s1 . . . sk+1 ∈ (SV \VO)∗ be a Φ-sequence with k ≥ D. Using P (σ[k]), we
get

α(δ(q0, σ
R(v)[k]), s

R(v)
k+1) = α(δ(q0, SuffΦ(σ[k])R(v)), s

R(v)
k+1).

9

As in the proof of Lemma 6, let σ′ = s′1 . . . s′D+1 ∈ (SV \VO)D+1 be the Φ-

sequence induced by σVI [|σ| − D · · |σ|]. We have seen that s
R(v)
k+1 = s

′R(v)
D+1 and

SuffΦ(σ[k]) = σ′[D]. Hence,

α(δ(q0, SuffΦ(σ[k])R(v)), s
R(v)
k+1) = α(δ(q0, σ

′[D]), s
′R(v)
D+1).

Since |σ′| = D + 1 we may use P ′(σ′) and we get

α(δ(q0, σ
′[D]), s

′R(v)
D+1) = (s′uD+1−d(u,v)+dv

)u∈View(v).

Now, by definition of σ′, we have s′u
D+1−d(u,v)+dv

= su
k+1−d(u,v)+dv

for all u ∈

View(v). Therefore, P ′(σ) holds. ⊓⊔

From the above results, we will deduce that the problem of checking UWC for
an architecture is decidable and we establish an upper bound on the complexity
of this problem.

3.2 Complexity of checking UWC

In this subsection we state the main result of this paper: we formally show
that checking uniform well-connectedness is decidable, and establish the precise
complexity of checking it.

Proposition 8. The problem of checking whether a given architecture is UWC
is decidable. Moreover, this problem is

1. in NP if we restrict to architectures
– which are 0-delay, i.e., such that dv = 0 for all variables v,
– the size of the variable domains is fixed, i.e., |Sv| ≤ cs for all variables

v, where cs is a constant which does not depend on the input,
– the read-degree is fixed, i.e., |R(v)| ≤ cr for all variables v, where cr is

a constant which does not depend on the input.
2. in NEXPTIME if the delays are bounded by a constant, i.e., dv ≤ cd for all

variables v, where cd is a constant which does not depend on the input.
3. in 2-NEXPTIME if the architectures are arbitrary.

Proof. Consider an architecture A = (V ⊎ P, E, (Sv)v∈V , s1, (dp)p∈P). The non-
deterministic procedure to check whether A is UWC is the following:

– Guess a routing Φ = (fv)v∈V \(VI∪VO).
– For each output variable v ∈ VO, guess a deterministic automaton with

output C = (Q, q0, S
R(v), δ, α) with

|Q| ≤
∏

u∈View(v)

|Su|D(u,v)−d(u,v)

and for any sequence ρ ∈ (SVI)+ of length D + 1, compute the induced Φ-
sequence σ ∈ (SV \VO)+ such that σVI = ρ and check that P (σ) holds and
that P ′(σ[k + 1]) holds for all k ≤ D.

10

Indeed, assume first that the architecture is UWC with routing Φ and decod-
ing functions gu,v. For each output variable v, the automaton Bv defined after
Proposition 3 satisfies the above requirements by Remark 5 and since it computes
the decoding functions gv = (gu,v)u∈View(v).

Conversely, if we can find a routing Φ and for each output variable v an
automaton C satisfying the requirements above, then using Lemma 7 we deduce
that the output function computed by C satisfies Equation (1) of Definition 1.
Therefore, the architecture is UWC.

We investigate now the complexity of this decision procedure. We first com-
pute the size needed to store a routing Φ and an automaton C. For each variable
v ∈ V \(VI∪VO), the size needed to write the memoryless routing fv : SR(v) → Sv

is |SR(v)| · log2 |S
v|. Hence,

|Φ| ≤
∑

v∈V \(VI∪VO)

|SR(v)| · log2 |S
v|.

Note that, given Φ and ρ ∈ (SVI)+, we can compute the induced Φ-sequence σ
such that σVI = ρ and also SuffΦ(σ) in polynomial time w.r.t. |Φ| + |ρ|.

Now, for each output variable v ∈ VO, and each u ∈ View(v) we have
D(u, v) − d(u, v) ≤ D(u, v) − dv ≤ D. Hence, the size of the deterministic au-
tomaton C is |C| = |δ| + |α| where

|Q| ≤
∏

u∈View(v)

|Su|D = |SView(v)|D

|δ| ≤ |Q| · |SR(v)| · log2 |Q|

|α| ≤ |Q| · |SR(v)| · log2 |S
View(v)|

Given C, a Φ-sequence σ and SuffΦ(σ), we can check whether P (σ) and P ′(σ)
hold in polynomial time w.r.t. |C| + |σ|.

Considering that we write in binary the number of variables and of processes,
the size of each domain Sv and the value of each delay dp, the size of the
architecture is

|A| = log2 |V | + log2 |P | + |E| +
∑

v∈V

log2 |S
v| +

∑

p∈P

log2(1 + dp).

We consider now the three cases of Proposition 8.

1. Here, we have |Φ| ≤ |V | · ccr

s · log2(cs) = O(|A|) since |V | ≤ |E| ≤ |A|. Also,
D = 0 and |Q| = 1 hence we only have to guess the memoryless decoding
function α with |α| = ccr

s · cr · log2(cs) which is a constant. Moreover, we
only have to consider input sequences ρ ∈ SVI of length 1. We deduce that
our non-deterministic algorithm works in polynomial time.

2. Here, we have D = O(|V |) = O(|A|). Now, for any subset U ⊆ V we have
|SU | ≤ 2|U|·|A| since log2 |S

v| ≤ |A| for all v ∈ V . Using |V | ≤ |E| ≤ |A| we

deduce |SU | ≤ 2|A|2 . We deduce that |Φ| = 2O(|A|2) and |Q| = 2O(|A|3)and

11

finally |C| = |δ| + |α| = 2O(|A|3). Now, the number of input sequences ρ ∈

(SVI)D+1 that we have to consider in our algorithm is also in 2O(|A|3). We
deduce that our non-deterministic algorithm works in exponential time.

3. In the last case, we can only bound D by 2|A| and we get double exponential
time for our non-deterministic algorithm. ⊓⊔

To establish a lower bound for the complexity we first relate uniform well-
connectedness to the network information flow problem introduced by Ahlswede,
Cai, Li and Yeung in [1]. Instances of such problems are directed acyclic graphs
in which two subsets of nodes have been distinguished: the sources and the
sinks. Along with such a graph come a certain amount of messages, and each
sink demands a subset of the messages. Formally, an instance of the network
information flow problem is a tuple (P, E, M, S, demand) where M is the set of
messages (input variables), P is the set of processes, E ⊆ (P × P) ∪ (M × P)
is the edge relation defining an acyclic graph and the set V = E ∩ (P × P)
corresponds to the (implicit) internal variables of the network. All variables in
M ∪ V of the network have the same domain S. A process is a source if it
is connected to some input message, i.e., the set of sources is E(M). Finally,
the map demand : P → 2M defines what messages should be routed to which
processes. A sink is a process p ∈ P with demand(p) 6= ∅. We impose that
demand(p) ⊆ (E−1)∗(p) ∩ M = View(p). For (p, q) = v ∈ V , we set R(v) =
R(p) = (M ∩ E−1(p)) ∪ (E ∩ (P × {p})). The solution of such a problem is
a 0-delay routing F = (fv)v∈V with fv : SR(v) → S and decoding functions
gm,p : SR(p) → Sm for p ∈ P and m ∈ demand(p) such that, for any F -
compatible configuration s, we have gm,p(sR(p)) = sm. We say then that F
satisfies the demands.

One specific problem that has been more extensively studied in that area
is the multicast : an instance of the aforementioned problem in which there is a
unique source, and every sink demands all messages.

The networks considered in information flow problems mainly differ from
our architectures on the following aspects. First, a variable is attached to an
edge, hence there is exactly one process that can read each variable whereas in
our case several processes might read the same variable. Second, there is a single
(uniform) domain for all variables of the network instance of an information flow
problem whereas we may have domains with different sizes for the variables of
our architectures. And last, there is no delay in the transmission of information
when we may add various delays to our processes. Hence, our architectures are
more flexible and we get:

Lemma 9. There is a polynomial reduction from the multicast problem to the
uniform well-connectedness problem.

Proof. Let A = (P, E, M, S, demand) be an instance of the multicast problem.
We have E(M) = {p0} where p0 is the unique source. We define an architecture
A′ = (V ′ ∪ P ′, E′, (Sv)v∈V ′ , s1, (dp)p∈P ′) by P ′ = P , V ′ = VI

′ ⊎ VO
′ ⊎ V with

12

VI
′ = M and VO

′ = {vp | p ∈ P and demand(p) = M},

E′ = M × {p0} ∪ {(p, vp) | demand(p) = M} ∪
⋃

v=(p,q)∈V

{(p, v), (v, q)},

Sv = S for all v ∈ V ′ , s1 = (0)v∈V ′ and dp = 0 for all p ∈ P ′. Observe that
for all v ∈ VO

′, we have View(v) = VI
′ = M and for all internal variables v ∈ V

we have R′(v) = R(v). Hence, the notion of 0-delay routing on A coincides with
the notion of routing on A′.

Next, we have seen in Section 3.1 that if decoding functions exist for A′ then
these decoding functions have finite memory. We have also proved that memory
Qv = {Ψv(σ) | σ is a Φ-compatible sequence} is sufficient for the decoding func-
tions gv = (gu,v)u∈View(v). But when all delays are 0 then |Qv| = 1, which means
that the decoding functions gu,v are memoryless. Hence, Condition (1) of Defi-

nition 1 can be written s
View(v)
i = gv(s

R(v)
i). Therefore, the notion of decoding

functions for A which are memoryless by definition coincides with the notion of
decoding functions for A′.

Therefore, the multicast problem for A coincides with the uniform well-
connectedness problem for A′. ⊓⊔

Rasala Lehman and Lehman [17] have shown that the multicast problem with
alphabet size q = pk, where p is prime, is NP-hard. Since this can be reduced to
our problem by Lemma 9, we also obtain the NP-hardness.

Corollary 10. The problem of checking whether a given architecture is UWC
is NP-hard.

Actually, it follows from [17] that the multicast problem restricted to the
case where alphabet size is fixed and equal to 2, and indegree is fixed and such
that E−1(v) ≤ 2 for any node v of the graph, is also NP-hard. Hence, using the
same arguments than in the proof of Lemma 9, we get

Corollary 11. The problem of checking whether a given architecture such that:

– the delay dv = 0 for all variables v,
– the size of the variable domains is fixed, i.e., |Sv| ≤ cs for all variables v,

where cs is a constant which does not depend on the input,
– the read-degree is fixed, i.e., |R(v)| ≤ cr for all variables v ∈ V \ (VI ∪ VO),

where cr ≥ 2 is a constant which does not depend on the input.

is NP-complete.

4 Conclusion

We have proved that the problem of deciding wether an architecture is uniformly
well-connected is decidable and established its complexity. In [7], we have studied
another subclass of architectures: the well-connected architectures. An architec-
ture is well-connected, if for each output variable v ∈ VO, the sub-architecture

13

consisting of (E−1)∗(v) is uniformly well-connected. Informally this means that
each output variable can be transmitted the values of input variables in its
view, within a minimal delay, but we do not require anymore the routing to
be uniform for all the output variables. Technically, to check if an architecture
is well-connected, it suffices to verify that every sub-architecture consisting in
(E−1)∗(v) is uniformly well-connected. However, the architectures obtained in
that way are less intricated than the general case, so the complexity of checking
uniform well-connectedness of such architectures must be simpler. In case there
is no delay, checking uniform well-connectedness when there is a single output
variable is basically a flow problem, and can thus be solved in polynomial time.
However the reduction does not work when we introduce delays in the architec-
tures. It would be interesting to study the complexity of checking whether an
architecture is well-connected in the general case.

References

1. R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow.
IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

2. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

3. T. Chatain, P. Gastin, and N. Sznajder. Natural specifications yield decidabil-
ity for distributed synthesis of asynchronous systems. In Proceedings of the 35th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM’09), Lecture Notes in Computer Science. Springer, 2009.

4. A. Church. Logic, arithmetics, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

5. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proceedings of the
20th IEEE Annual Symposium on Logic in Computer Science (LICS’05), pages
321–330. IEEE Computer Society Press, 2005.

6. P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory
are decidable for series-parallel systems. In K. Lodaya and M. Mahajan, edi-
tors, Proceedings of the 24th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’04), volume 3328 of Lecture Notes in
Computer Science, pages 275–286. Springer, 2004.

7. P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-connected
architectures. In N. Garg and S. Arun-Kumar, editors, Proceedings of the 26th Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages 321–332.
Springer, 2006.

8. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In J. Y. Halpern,
editor, Proceedings of the 16th IEEE Annual Symposium on Logic in Computer
Science (LICS’01). IEEE Computer Society Press, 2001.

9. P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local
specifications. In F. Orejas, P. G. Spirakis, and J. van Leeuwen, editors, Pro-
ceedings of the 28th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’01), volume 2076 of Lecture Notes in Computer Science, pages
396–407. Springer, 2001.

14

10. P. Madhusudan and P. S. Thiagarajan. A decidable class of asynchronous dis-
tributed controllers. In L. Brim, P. Jancar, M. Kret́ınský, and A. Kucera, ed-
itors, Proceedings of the 13th International Conference on Concurrency Theory
(CONCUR’02), volume 2421 of Lecture Notes in Computer Science, pages 145–
160. Springer, 2002.

11. P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly
communicating processes. In R. Ramanujam and S. Sen, editors, Proceedings of the
25th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’05), volume 3821 of Lecture Notes in Computer Science, pages
201–212. Springer, 2005.

12. G. L. Peterson and J. H. Reif. Multiple-person alternation. In Proceedings of the
20th Annual IEEE Symposium on Foundations of Computer Science (FOCS’79),
pages 348–363. IEEE Computer Society Press, 1979.

13. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of Programming Languages
(POPL’89), pages 179–190. ACM, 1989.

14. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive mod-
ule. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, Pro-
ceedings of the 16th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’89), volume 372 of Lecture Notes in Computer Science, pages
652–671. Springer, 1989.

15. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize.
In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’90), volume II, pages 746–757. IEEE Computer Society Press, 1990.

16. M. O. Rabin. Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston, MA, USA, 1972.

17. A. Rasala Lehman and E. Lehman. Complexity classification of network informa-
tion flow problems. In J. I. Munro, editor, Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA’04), pages 142–150. Society for Indus-
trial and Applied Mathematics, 2004.

15

