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Motivation: Post Quantum Cryptography

Quantum Cryptanalysis
Since [Shor 1994], polynomial-time quantum algorithms for
classical cryptographic problems.
“Quantum-hard” problems for cryptography
® Finding short vectors in Euclidean lattices.
® Decoding error-correcting codes.

e Computing isogenies between elliptic curves.

NIST PQC Standardisation: Additional signatures

® Round 1: 11/40 schemes based on
* Round 2: 4/14 (UOV, : : )

Main interest: short signatures and fast algorithms. 2/33
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Crash course on cryptography

What is a signature scheme?

The signer picks A and creates a pair P, S.
° a message p: sign(S,u) — o.
o a signature: verify(P, o, u) = True/False.
° : signing without S requires > 2* elementary operations.
Security level | | | 1l [ V |
A 128 | 192 | 256 |

Multivariate cryptography
® Public key: a polynomial map from Fg — F¢:
x = P(x) = (p1(x), - - -, ps(x))
® Secret key: a way to find “preimages” x € Fg such that:

P(x) = H(message)
3/33



Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an
I= <p1(x),...,ps(X)> I = <X2*y222+23> ER[Xayaz]

= {3271 aipi(x), (ai) € Fq[x]*}
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Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an
I = (p1(x),...,ps(x)) I = (x*-y*2*+2%) e R[x,y,7]

= {3271 aipi(x), (ai) € Fq[x]*}

This ideal defines a

5
V(I) = {x e F,,Vp € I, p(x) = 0}
V(l) in R3
Image from [Cox, Little,
O’Sheal
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A key geometric property: dimension

Intuition of dimension from physics

p1(x),...,ps(x) : s “independant” constraints, n variables
= n — s degrees of freedom in V/(/).
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A key geometric property: dimension

Intuition of dimension from physics

p1(x),...,ps(x) : s “independant” constraints, n variables
= n — s degrees of freedom in V/(/).

This is correct if p1,...,ps is a
y?2 =x3—3x +2in R? x? —y?z° + 7% in R3
Figure 1: A has dimension 1 Figure 2: A has

. . 5/33
dimension n-1
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UQV Public key
Quadratic map P(x) : Fg — F§ generating | = (p1, ..., ps).
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Unbalanced Qil and Vinegar

UQV Public key
Quadratic map P(x) : Fg — F§ generating | = (p1, ..., ps).

Private key (Algebraic point of view)

Quadratic map F(x) : Fg — Fj linear in xi, ..., xs.
Linear change of variables A such that P = F o A.

X1,...,Xs are “oil variables”, xs11,...,x, “vinegar variables”.

Private key (Geometric point of view)

Linear subspace S of dimension s such that S C V/(/)

e First s columns of the secret matrix A~! span S.

e V(I) is a complete intersection if n > 2s.
6/33
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Tangent space

—
(gradpy)T
Let Jacp := : and assume | = (p1, ..., ps) is radical.

—
(gradps) "
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Tangent space

—
(gradpr) "
Let Jacp := : and assume | = (p1, ..., ps) is radical.
—
(aradps)T
Definition
xe V(l)is if Jacp(x) is full rank.

The tangent space of V at x € V' is
TxV = ker,(Jacp(x))

y2—x3+3x—2=0inR?

8/33



Tangent spaces of the UOV variety

Goal: Distinguish points of V(/)\ S from points of S.

o

Geometric observation

A linear subspace is tangent to itself.
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Tangent spaces of the UOV variety

Goal: Distinguish points of V(/)\ S from points of S.

Geometric observation ‘I

A linear subspace is tangent to itself.
Vx € S,8§C TV

Algorithm
Given x € V, compute T,V and the matrices of P restricted to
TxV. These matrices have if xeS.

Computational approach

e With B ¢ IFE,"_S)X" a basis of TV, restrict P to T,V:
Pirov(y)=(y" Yooy’ y)

® Compute kernels of BP;BT, of large dimension if x € S.
9/33



Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector x € S and P, compute a basis of S in

polynomial-time O(sn*), 2 <w < 3.
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Main result: more than we bargained for

Given one vector x € S and P, compute a basis of S in

polynomial-time O(sn*), 2 <w < 3.

Security level I I "l V
n,s 112, 44 | 160, 64 | 184, 72 | 244, 96
Time 1.7s 4.4s 5.7s 13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

see also: [Aulbach, Campos, Kramer, Samardjiska, Stéttinger 2023]
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Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector x € S and P, compute a basis of S in

polynomial-time O(sn*), 2 <w < 3.

Security level I I "l V
n,s 112, 44 | 160, 64 | 184, 72 | 244, 96
Time 1.7s 4.4s 5.7s 13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

Limit: locality of the UOV secret
With this, the points of V/(/)\ S give no information on S.

see also: [Aulbach, Campos, Kramer, Samardjiska, Stéttinger 2023]
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Singular points of V(/) to find S?

y2=x3-3x+2inR? x? —y?z° + 23 in R3
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Singular points of V(/) to find §7

O}

y2=x3-3x+2inR? x? —y?z° + 23 in R3
Singular point: (1,0) Singular points: line (x=z=0)

Definition

Let / = (P) be a radical ideal of K[xi, ..., x,] of codimension s.
x € V(I)\ {0} is singular if Jacp(x) has rank less than s.
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]
Private key F: s quadratic polynomials linear in xi, ..., Xs.
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]

Private key F: s quadratic polynomials in xq,...,Xs.

Secret Jacobian

The Jacobian of F(x) has a special shape when x € S:

Jacy(x) =

Where and J € Fy[xq, ..., xp)"*"%.

Dimension of the singular locus of V(I)
dim Sing(V/(/)) > 2dim(S) +s—n—1
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Locality of the UQV secret, bis

Secret Jacobian

The Jacobian of F(x) has a special shape:

Where and b € Fglxq, ..., x]5*"%.
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Locality of the UQV secret, bis

Secret Jacobian

The Jacobian of F(x) has a special shape:

Where and b € Fglxq, ..., x]5*"%.

Singular points <= Rank defects in the Jacobian.

If Jis , rank defects should be caused only by J;

In other words, if F(x) is generic among UOV secret keys,
singularities should be caused only by S. 14/33



A genericity result on a non-generic object
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A genericity result on a non-generic object

Idea: compute S C V/(/) by computing singularities of V/(/).
Problem: what if there are singularities that do not belong to §7
The right tool for the job

Generic varieties are smooth — generic points of V/(/) should be
smooth for the same reason.

Thom’s weak transversality theorem (in characteristic 0)!

_ F" x B — FS o
Consider ¢ : and O # () a Zariski open set.
x, P — P(x)
If ®is on O x 9, then JU # () a Zariski open set
such that for all P € U, x — P(x) is on O.

'This formulation is due to [Safey el Din, Schost 2016].

15/33
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Thom’s theorem Our setting

® Field of characteristic 0. e F=Q.
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Application to UOV

Thom’s theorem Our setting

® Field of characteristic 0. e F=0Q.

® ® smooth on an open O. e 0 =S§°.

= U C Q9 an open s.t. — U C Q9 an open s.t.
V8 € U, ®y smooth on O. VO € U, V(lg) smooth on O.

Difficulty: lifting to positive characteristic.

Generic smoothness of a singular variety

For a UOV variety, Sing(V/(/)) € S (in Q and Fp, p > 1).

16/33



A good surprise in Sing(V/(/))

Grobner basis of SingV/(/)
The Grobner bases we obtain are . they contain linear
polynomials defining S.
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A good surprise in Sing(V/(/))

Grobner basis of SingV/(/

The Grobner bases we obtain are . they contain linear

polynomials defining S.

X0 + 39%x12 - 26%x13 - 12%x14 - 103*x15 + 24

X1 + 69%x12 + 62*x13 + 36*x14 + 99*x15 - 41

X2 - 72*x12 + 110%x13 + 10*x14 + 90*x15 + 102

X3 + 43*x12 - 76*x13 - 75*x14 - 67*x15 - 117

x4 + 37%x12 + 49*x13 + 8*x14 - 47*x15 + 115

X5 4 92%x12 + 30%x13 - 117*x14 + 107*x15 + 51

X6 - 20*x12 + 41*x13 - 14*x14 - 81*x15 + 104

X7 4 112%x12 - 94%x13 - 33*x14 - 40%x15 + 16

X8 - 13*x12 - 51*x13 - 89*x14 + 39*x15 - 48

X9 + 63*x12 - 117%x13 - 18*x14 + 94*x15 - 50

x10 + 91*x12 - 19%x13 - 124*x14 + 28*x15 + 22
#x12 + 9%x13 + 117*x14 + 4*x15 + 36
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A good surprise in Sing(V/(/))

Grobner basis of SingV/(/)
The Grobner bases we obtain are . they contain linear
polynomials defining S.

X0 + 39%x12 - 26%x13 - 12%x14 - 103*x15 + 24
X1 + 69%x12 + 62*x13 + 36*x14 + 99*x15 - 41
X2 - 72*x12 + 110%x13 + 10*x14 + 90*x15 + 102
X3 + 43*x12 - 76*x13 - 75*x14 - 67*x15 - 117

x4 + 37%x12 + 49*x13 + 8*x14 - 47*x15 + 115
X5 4 92%x12 + 30%x13 - 117*x14 + 107*x15 + 51
X6 - 20*x12 + 41*x13 - 14*x14 - 81*x15 + 104
X7 4 112%x12 - 94%x13 - 33*x14 - 40%x15 + 16
X8 - 13*x12 - 51*x13 - 89*x14 + 39*x15 - 48

X9 + 63*x12 - 117%x13 - 18*x14 + 94*x15 - 50
x10 + 91*x12 - 19%x13 - 124*x14 + 28*x15 + 22
x11 - 74*x12 + 9*x13 + 117%x14 + 4*x15 + 36

Geometric interpretation

Even in small characteristic, Sing(V/(/)) NS is the component of
highest dimension of Sing(V/(/)).

17/33



Sing(V/(/)) leaks the secret key

Key recovery attack targeting singular points

Previous Grobner basis attack does not threaten current UOV

parameters, due to the small field sizes.

18/33



Sing(V/(/)) leaks the secret key

Key recovery attack targeting singular points

Previous Grobner basis attack does not threaten current UOV
parameters, due to the small field sizes.

A history of targeting special points in S

® Qil and Vinegar: invariant subspaces of the public key are
in S [Kipnis, Shamir 1998|

18/33



Sing(V/(/)) leaks the secret key

Key recovery attack targeting singular points

Previous Grobner basis attack does not threaten current UOV
parameters, due to the small field sizes.

A history of targeting special points in S

® Qil and Vinegar: invariant subspaces of the public key are
in S [Kipnis, Shamir 1998|

® Unbalanced Oil and Vinegar: invariant subspaces of the
public key are in S [Kipnis, Patarin, Goubin 1999]

18/33



Sing(V/(/)) leaks the secret key

Key recovery attack targeting singular points
Previous Grobner basis attack does not threaten current UOV
parameters, due to the small field sizes.

A history of targeting special points in S
® Qil and Vinegar: invariant subspaces of the public key are
in S [Kipnis, Shamir 1998|
® Unbalanced Oil and Vinegar: invariant subspaces of the
public key are in S [Kipnis, Patarin, Goubin 1999]

Geometric interpretation of an old attack

[Kipnis-Shamir 1998] is a (hybrid) singular point computation.
Support heuristic analysis by relying on Thom's theorem and by
estimating [Sing(V/(/))|r, with the Lang-Weil bound.

18/33
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Hide S with the | perturbation

UoVv+ [Faugére, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t < 8 polynomials by
random polynomials, and mix. P=RoFo A

Idea: Tradeoff between signing time and key size.
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Hide S with the | perturbation

uov+ [Faugére, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace t < 8 polynomials by
,and mix. P=RoFoA
Idea: Tradeoff between signing time and key size.

When t increases, signing time increases. t = 0 is UOV.

Security assumption

Let P be a UOVF public key defining an ideal / = (p1,..., ps).
S ¢ V(I), therefore key attacks on UOV+ must invert R.

20/33



Geometric interpretation of the | perturbation

P=RoFoA F

(fly"'ﬂft7ff.'+17"'7f5)
Random uov
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Geometric interpretation of the | perturbation

P=RoFoA F

(fly"'ﬂfi‘7f;.'+17"'7f5)
Random uov

Geometric interpretation

V() is the intersection of a UOV variety with t generic quadrics.

J={(f,....f)
W= v 0 v

Generic quadrics ~ UQV variety

21/33
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Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of F when x € S:

Jacr(x) =

Observation
The singular locus of V() contains (SingV/(1)) N V(J).

Dimension computation
T reduces the dimension of the singular locus by at most

22/33
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From singular points to a key recovery attack

Singular points (still) leak the trapdoor

Sing(V/(/)) c Sing(V(7)) C S

Singular points of V/(/)

~ q>*~2t="~1 singular points of V(/), and P(x) = 0.

Expected cost: O(q"~25+2tp%) — [KPG'99]
Singular points of V(1)

~ q?)s—t—”_1 singular points of V(T)

Expected number of trials: O(q"~2*%)
— Can we decide x € S faster than O(g'n®) ?
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Adapting “x € S?” to UOV efficiently

Tangent spaces again ‘
xeS — SNTV

Restricting to an easier UOV T instance

Pi1.v(x)is a UOV instance with s equations but n — s + 1
variables and an

Distinguisher
x €S8 = V(P1,v(x)) has
Solved in polynomial time.
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x € §7 in polynomial time

Decide x € S? in O((n—251-2t—3)2(n—2542r2t+1))_

Singular points attack and asymptotic result

A
1

Singular points of V/(7) leak the trapdoor

2
n—2s n—2s+2t—3 n—2s+2t+1

4 2
# trials

Cost of each trial from x&8?

Previous result

This attack improves the attack which required:

O(qn725+2tnw)

[Cogliati, Faugeére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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Practical results and bit complexity

Parameters | 1 Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s | 15.4s

Figure 3: x € S? with msolve on UOVF.

26/33



Practical results and bit complexity

Parameters | 1 Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s | 15.4s

Figure 3: x € S? with msolve on UOVF.

We add log,(q) x (n — 2s + t) to obtain the full cost:

Parameters I 1 Vv
Security level (log, gates) || 143 | 207 | 272
Kipnis-Shamir (log, gates) || 166 | 233 | 313

This work (log, gates) 140 | 188 | 243

Figure 4: Full attack on UOVT.
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How many equations characterize the secret?

Let 6(n,s,r)=(r+1)(n—1r) — s('?)

The Debarre and Manivel Bound?

Let X be a complete intersection of s quadrics of rank n.

3The original statement is for arbitrary degrees.
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How many equations characterize the secret?

Let 6(n,s,r)=(r+1)(n—r) — s(r;2)

The Debarre and Manivel Bound?

Let X be a complete intersection of s quadrics of rank n.

e If §(n,s,r) <0, then X contains no (proj.) r-dimensional
subspaces
e Otherwise, d(n, s, r) is the dimension of the variety of linear

spaces included in X.

Application to UOV
Ifa=7isa , then a UOV secret is characterized by a

number of polynomials from the public key.
For practical parameters, 3 or 4 polynomials are enough.

3The original statement is for arbitrary degrees.

28/33



Applications to cryptanalysis

Two possible directions:

Solving underdetermined polynomial systems

Computing the largest subspace in generic complete intersections.
— improves forgery attacks against UOV.

Original key recovery attacks against UOV

Computing the smallest non-generic subspace in a UOV variety.
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® Compute a subspace S of dimension s — k such that

P1)s;-- > Pkis = 0.
@ Solve Pjs(x) = 0, a system of s — k equations and variables.

Algorithms using this approach for systems

® [Thomae, Wolf 2012] step a in polynomial time for k = 1.
® (WIP) [Reid 72]: step a in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically.
_ 5 _
=5 k=3.
e Efficient algorithm for k = 37

30/33
® Does step a become more expensive than step b?



Analyzing our previous work through

® Tangent spaces reveal information only if x € S.
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Analyzing our previous work through

® Tangent spaces reveal information only if x € S.
e Singular points are expensive to compute.

® Singular points require 5 + 1 polynomials: does not achieve
the bound.
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UQV application: Can we find a large linear subspace in a large

variety?

I = {p1,p2,p3) and S C V(I), dimS =5, 6(n—1,5s—1,3) <0

Polar varieties

Critical locus of the projection of V/(/) on well-chosen space I1.

Motivation: the degree of these varieties is controlled, which yields

efficient algorithms.
Challenge
How to choose 1 so that it is easy to compute the polar variety

when S is unknown?

— Easy to distinguish UOV from generic systems with polar

varieties... when S is known.
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Thank you for your attention!

One vector to full key recovery in polynomial time

From one vector in S, return a basis of S in polynomial time.

Singular points of UOV and UOV+

e V(/) has a singular locus.

e Singular points of UOV yield faster attacks.
e Key recovery from one vector for UOVF in polynomial time.

Future/On-going work

Find efficient algorithms to achieve the Debarre and Manivel
bound.

® In the generic case, as a precomputation for solving systems.

® In the UOV case, as key recovery attacks.
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Proposed UOV} parameters

Level q,o,Vv,t epk gain vs UOV
I 251, 48, 55, 6 36%
1l 1021, 70, 79, 7 44%
V | 4093, 96, 107, 8 27%
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Quotient Ring UOV

The Quotient Ring transform
e Generate a UOV(q’, m, n) key with /s equations.
® Represent it in g via a F e = Fglx]/(f).
® This is a (non-generic) UOV instance for parameters g, ¢{m, ¢n.

e Secure UOV(q®, m, n,£m) and UOV(q, £m, £n) are.

VOX: QR-UOV+

UOVi(qt,m/e,n/t, m, t) - UoVi(g, m, n, t).

MinRank attacks on the big field instance of VOX

Initial parameters are not secure [Furue, lkematsu 2023]

Practical attack on all new parameters [Guo, Ding 2024]
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Practical attack on VOX

Dimension computation

UOVE(q*, m/€,n/¢, m, t) defines a variety that contains S;
but it should be the for a generic system.

Subfield attack
Practical key recovery attack on the and use of

Fqg/ C Fy to attack a subset of new parameters.

Parameters I Ic Il I3 V Vb
4 6 9 7 15 8 14
A 6 3 7 5 8 7
time 0.29s | 2%7gates* | 1.35s | 56.7s | 0.56s | 6.11s

Figure 5: Timing for the subfield attack on QR-UOV4 on my laptop.

4400 CPU-hours on a server in practice.



	Objective: Find S, the secret key.
	What is special about S, compared to the rest of V(I) ?
	What is special about V(I), compared to other varieties ?
	Can S be hidden with a perturbation or random equations?
	Open questions and future/on-going work
	Appendix
	Can you compress by embedding your key in a field extension?


