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Context: Post Quantum Cryptography

“Quantum-hard” problems for cryptography
® Finding short vectors in Euclidean lattices.
® Decoding error-correcting codes.

e Computing isogenies between elliptic curves.

® Solving systems of polynomial equations.
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Context: Post Quantum Cryptography

“Quantum-hard” problems for cryptography
® Finding short vectors in Euclidean lattices.
® Decoding error-correcting codes.

e Computing isogenies between elliptic curves.

NIST PQC Standardisation: Additional signatures

® Round 1: 11/40 schemes based on
* Round 2: 4/14 (UOV, : : )

Main features: short signatures and fast algorithms.
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Crash course on cryptography

What is a signature scheme?

The signer picks A and creates a pair P, S.
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What is a signature scheme?

The signer picks A and creates a pair P, S.
o a message p: sign(S, ) — o.
o a signature: verify(P, o, u) = True/False.
° . signing without S requires > 2* “elementary operations”.
Security level * | | | v
A 143 | 207 | 272
Applications

SSH, TLS, Software signing, . ..

Lalso referred to/defined with ¢ € {128,192,256}: “at least as hard to break as AES-¢".
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Polynomial systems in cryptology

Multivariate cryptography

Using multivariate polynomial systems to cryptography.
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Polynomial systems in cryptology

Multivariate cryptography

Using multivariate polynomial systems to cryptography.
Public key: a from Fy = T x = P(x) = (p1(x), - - -, pm(x))
Secret key: a way to find x € Fg such that: P(x) = H(message)

Algebraic cryptanalysis
Solving polynomial systems to cryptography.

Using algorithms such as F4, F5, XL, SAT solvers, ...

Targeting many families: symmetric, lattices, codes, multivariate, ...
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Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an
I=(pi(x),..., pm(x)) | = (x*—y?22 + ) € R[x, y, 7]

= {3271 aipi(x), (ai) € Fq[x]°}
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Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an
I=(pi(x),..., pm(x)) | = (x*—y?22 + ) € R[x, y, 7]

= {3271 aipi(x), (ai) € Fq[x]°}

This ideal defines a

V(I)={x e Fg,Vp € 1, p(x) =0}

V(l) in R3
Image from [Cox, Little, O'Shea]
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A key geometric property: dimension

Intuition® of dimension from physics

p1(x), ..., pm(x) : m “independent” constraints, n variables
= n — m degrees of freedom in V/(/).

2This is correct if p1,. .., pm is a 6/31
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A key geometric property: dimension

Intuition® of dimension from physics

p1(x), ..., pm(x) : m “independent” constraints, n variables
= n — m degrees of freedom in V/(/).

y2=x3—3x+2in R? x> —y?22 4+ 23 inR3

Figure 1: A has dimension 1 Figure 2: A has dimension n-1

2This is correct if p1,. .., pm is a 6/31



Unbalanced Qil and Vinegar

UQV Public key
Quadratic map P(x) : Fg — Fg' generating 7 = (p1, ..., pm), with n > 2m.
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Unbalanced Qil and Vinegar

UQV Public key
Quadratic map P(x) : Fg — Fg' generating 7 = (p1, ..., pm), with n > 2m.

Private key (Algebraic point of view)

Quadratic map F(x) : Fg — Fg' linear in xq,. .., x, (oil variables).
Linear change of variables A € GL,(F) such that P = F o A.

Private key (Geometric point of view)

Linear subspace O of dimension o such that O C V(7).

® First o columns of the secret matrix A~! span O.

® |n UOV, o = m, but not always the case in
7/31



Representing UOV keys

UOV keys are quadratic forms
‘F(X)ZXTF1X7"'7XTFmX P(X)ZXTIDlX,...,XTPmX

V1i<i<mP;=ATFA

Fi € (Fas7)™*"

Figure 3: UOV polynomial pair in Fos;
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Representing UOV keys

UOV keys are quadratic forms
‘F(X)ZXTF1X7"'7XTFmX P(X)ZXTIDlX,...,XTPmX

V1i<i<mP;=ATFA

Fi € (Fas7)™*" P1 € (Fas7)™"

Figure 3: UOV polynomial pair in Fos;
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x € Fp is a signature for the message t € F{' if P(x) = t.

P(A~1x) is linear in the oil variables and quadratic in the vinegar variables.
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Signing with the secret key Forging without the secret key

® Draw Xo41,...,Xn <—¢ Fq. Draw ym+1,...,¥n <5 Fq.
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xelgisa for the message t € 7’ if P(x) = t.
P(A 1x) is in the oil variables and in the vinegar variables.
® Draw Xo41,...,Xn <—¢ Fq. Draw ymy1,...,¥n ¢ Fg.
® Solve a system P(A~1x) = t. Solve a system P(y) = t.
® Return y = A~ 1x. Return y.
Oo(n”), 2<w<3 O(q™)
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Table of Contents

@ What is special about O, compared to the rest of V/(/) ?
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Tangent space

—
(gradpr) ™

Let Jacp = : and assume | = (p1,..., pm) is radical.

(é%gpm)T
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Tangent space

s
(gradpr) ™
Let Jacp = : and assume | = (p1,..., pm) is radical.
(ﬁpm)T
Definition
xe V(l)is if Jacp(x) is full rank.

The tangent space of V at x € V' is

TxV = ker,(Jacp(x))

y2—x3+3x—2=0inR?
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Tangent spaces of the UOV variety

Goal: Distinguish points of V(/)\ O from points of O.

™

Geometric observation

A linear subspace is tangent to itself.
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Tangent spaces of the UOV variety

Goal: Distinguish points of V(/)\ O from points of O.

Geometric observation ‘I

A linear subspace is tangent to itself.
Vx € 0,0 C T,V

Algorithm

Given x € V, compute T,V and the matrices of P restricted to TxV. These
matrices have if x e O.

Computational approach
e With B € ]FE,"_S)X” a basis of TV, restrict P to T,V:
Provly) =" Yoo y! y)

e Compute kernels of BP;BT, of large dimension only if x € O. 12/31



Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector x € O and P, compute a basis of O in polynomial-time O(mn“),

where 2 < w < 3 is the exponent of matrix multiplication.
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where 2 < w < 3 is the exponent of matrix multiplication.

Security level I I "l V
n,m 112, 44 | 160, 64 | 184, 72 | 244, 96
Time 1.7s 4.4s 5.7s 13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

see also: [Aulbach, Campos, Kramer, Samardjiska, Stéttinger 2023]
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Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector x € O and P, compute a basis of O in polynomial-time O(mn“),

where 2 < w < 3 is the exponent of matrix multiplication.

Security level I I "l V
n,m 112, 44 | 160, 64 | 184, 72 | 244, 96
Time 1.7s 4.4s 5.7s 13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

Limit: locality of the UOV secret

With this, the points of V(/)\ O give no information on O.

see also: [Aulbach, Campos, Kramer, Samardjiska, Stéttinger 2023]
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Singular points

Let Z = {(p1,..., pm) be a radical ideal of codimension m.

Definition (Tangent space at a regular point)
The tangent space of V at x € V is T,V := ker,(Jacp(x))

y

y2=x3-3x+2inR? x> —y?224+ 22 =0inR3
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Singular points

Let Z = {(p1,..., pm) be a radical ideal of codimension m.

Definition (Tangent space at a regular point)
The tangent space of V at x € V is T,V := ker,(Jacp(x))

X

y2=x3-3x+2inR? x> —y?224+ 22 =0inR3
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Singular points

Let Z = (p1,...,pm) be a ideal of

Definition (Tangent space at a regular point)

The of Vat x € Vis T,V := ker,(Jacp(x))
y2=x3-3x+2inR? x> —y?224+ 22 =0inR3

Singular point: (1,0) Singular points: line (x=z=0)

Definition (Singular points)

x € V(Z)\ {0} is if Jacp(x) has rank less than m.
15/31



Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]
Private key F: m quadratic polynomials linear in xi, ..., Xo.
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]

Private key F: m quadratic polynomials in xq,...,Xo-

Secret Jacobian

The Jacobian of F(x) has a special shape when x € O:

Jacr(x) =

Where and Jp € Fg[xq, ..., xp)"*"°.

Dimension of the singular locus of V(I)
dim Sing(V(/)) > 2dim(O)+ m—n—1
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An algebraic attack targeting singular points

Generic smoothness of a singular variety

For a generic UOV variety, Sing(V(/)) C O (in Q and Fp, p > 1).

In other words, the singular points we have counted are expected to be the only ones.
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An algebraic attack targeting singular points

Generic smoothness of a singular variety

For a UQV variety, Sing(V/(/)) C O (in Q and Fp, p > 1).

In other words, the singular points we have counted are expected to be the only ones.

Polynomial system solving

Compute singular points by solving a polynomial system using a :an
equivalent polynomial system that is easy to solve, but hard to find.
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A good surprise in Sing(V/(/))

Grobner basis of SingV/(/)

The Grobner bases we obtain are : they contain linear polynomials defining O.
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A good surprise in Sing(V/(/))

Grobner basis of SingV/(/

The Grobner bases we obtain are : they contain linear polynomials defining O.

X0 + 39%x12 - 26*x13 - 12*x14 - 103*x15 + 24
X1 + 69%x12 + 62*x13 + 36*x14 + 99*x15 - 41
X2 - 72%x12 + 110%x13 + 10*x14 + 90*x15 + 102
X3 + 43*x12 - 76*x13 - 75*x14 - 67*x15 - 117

X4 + 37%x12 + 49*x13 + 8*x14 - 47*x15 + 115
X5 4 92%x12 + 30%x13 - 117*x14 + 107*x15 + 51
X6 - 20*x12 + 41*x13 - 14*x14 - 81*x15 + 104
X7 + 112%x12 - 94¥x13 - 33*x14 - 40*x15 + 16
X8 - 13*x12 - 51*x13 - 89*x14 + 39*x15 - 48

X9 + 63*x12 - 117%x13 - 18*x14 + 94*x15 - 50
x10 + 91*x12 - 19%x13 - 124*x14 + 28*x15 + 22
x11 - 74*x12 + 9*x13 + 117%x14 + 4*x15 + 36
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A good surprise in Sing(V/(/))

Grobner basis of SingV/(/)

The Grobner bases we obtain are : they contain linear polynomials defining O.

X0 + 39%x12 - 26%x13 - 12%x14 - 103*x15 + 24
X1 + 69%x12 + 62*x13 + 36*x14 + 99*x15 - 41
X2 - 72%x12 + 110%x13 + 10*x14 + 90*x15 + 102
X3 + 43*x12 - 76*x13 - 75*x14 - 67*x15 - 117
X4 + 37%x12 + 49*x13 + 8*x14 - 47*x15 + 115
X5 4 92%x12 + 30%x13 - 117*x14 + 107*x15 + 51
X6 - 20*x12 + 41*x13 - 14*x14 - 81*x15 + 104
X7 + 112%x12 - 94¥x13 - 33*x14 - 40*x15 + 16
X8 - 13*x12 - 51*x13 - 89*x14 + 39*x15 - 48
X9 + 63*x12 - 117%x13 - 18*x14 + 94*x15 - 50
x10 + 91*x12 - 19%x13 - 124*x14 + 28*x15 + 22
74*x12 + 9%x13 + 117*x1: 4*x15 + 36

Geometric interpretation when p is too small for genericity

Sing(V/(/)) N O is the component of highest dimension of Sing(V/(/)).

Spoiler: this algorithm is too expensive to threaten UOV. 18/31



The Kipnis-Shamir attack against (U)OV

From quadratic forms to linear algebra

If n=2m, then O is an invariant subspace of Pi_le. Poly-time cryptanalysis.

19/31



The Kipnis-Shamir attack against (U)OV

From quadratic forms to linear algebra

If n=2m, then O is an invariant subspace of Pi_le. Poly-time cryptanalysis.

Generalisation to UOV

m—1
x € O is an of P2 3" y;P; with probability ~ g®™~". Exp-time.
i=1

19/31



The Kipnis-Shamir attack against (U)OV

From quadratic forms to linear algebra

If n=2m, then O is an invariant subspace of Pi_le. Poly-time cryptanalysis.

Generalisation to UOV

m—1
x € O is an of P2 3" y;P; with probability ~ g®™~". Exp-time.
i=1

Previous work

[KS'98] computes singular points of the intersection of two quadrics. [Luyten '23]
[KPG'99] computes singular points of V/(Z). Beullens, Castryck '23

19/31



The Kipnis-Shamir attack against (U)OV

From quadratic forms to linear algebra

If n=2m, then O is an invariant subspace of Pi_le. Poly-time cryptanalysis.

Generalisation to UOV

m—1
x € O is an of P2 3" y;P; with probability ~ g®™~". Exp-time.
i=1

Previous work

[KS'98] computes singular points of the intersection of two quadrics. [Luyten '23]
[KPG'99] computes singular points of V/(Z). Beullens, Castryck '23

Geometric interpretation of an old attack

[KS'98/KPG'99] are (hybrid) singular point computations. Weaken hypotheses and
support heuristic analysis by estimating [Sing(V/(/))|r, with the Lang-Weil bound.
19/31
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Hide O with the 1 perturbation

uov+ [Faugere, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t < 8 polynomials by , and
mix. P=SoFoA

Idea: Tradeoff between signing time and key size.
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Hide O with the 1 perturbation

uov+ [Faugére, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t < 8 polynomials by , and
mix. P=SoFoA

Idea: Tradeoff between signing time and key size.

Analysis: O ¢ V(Z) = key attacks on UOV+ must invert S.

Geometric interpretation
Let Z = (P(x)). V(Z) is the intersection of a with t generic quadrics.

V@)= V(G) n V()
= S
Generic quadrics  UOV variety
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Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of F when x € O:

Jacr(x) =

Observation
The singular locus of V/(Z) contains (SingV/(J)) N V(G).

Dimension computation

T reduces the dimension of the singular locus by at most 2. 22/31



From singular points to a key recovery attack

V(Z) is the public key variety, V() is the underlying UOV variety.

Singular points (still) leak the trapdoor

Sing(V/(Z)) c Sing(V(J)) Cc O
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From singular points to a key recovery attack

V(Z) is the public key variety, V() is the underlying UOV variety.

Singular points (still) leak the trapdoor

Sing(V/(Z)) c Sing(V(J)) Cc O

Singular points of V/(Z)

~ q3°72t="=1 singular points of V/(Z), and P(x) = 0, with g°~! candidates.
Expected cost: O(g"~°+2tpv). Kipnis-Shamir [KPG'99].

Singular points of V(7)

~ q3°~t="=1 singular points of V/(7), with g°~! candidates.

Expected number of trials: O(g"~2°%t)

Can we decide "x € O?" faster than O(g'n®) ? 23/31
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Adapting “x € O?” to UOV efficiently

Previous result for UOV [P. 2024]
Decide x € O7 in polynomial time: x € O = O C T, V.

Tangent spaces again !
xeO — ONT,V

Restricting to an easier UOV{ instance

Pi1,v(x) is a UOV+ instance with o equations but n — o + 1 variables and an

Distinguisher
x €0 = V(P1,v(x)) has . Solved in polynomial time.

24/31
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Application: New attack on UOV T /VOX

x € O7 in polynomial time

Decide x € O? in O((”_°t2t_3)2("_2°;2t+1)).

Singular points attack and asymptotic result
Singular points of V() leak the trapdoor

2
n—20 n—2o0+2t—3 n—20+2t+1
oy ) )
——

4 2

# trials

Cost of each trial from x€O?

Previous result

This attack improves the attack which required:

O(qnf2o+2tnw)

[Cogliati, Faugére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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Practical results and bit complexity

Parameters | [l Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s5 | 15.4s

Figure 4: x € 07 with msolve on UOV .
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Practical results and bit complexity

Parameters | [l Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s5 | 15.4s

Figure 4: x € 07 with msolve on UOV .

We add log,(q) x (n — 20 + t) to obtain the full cost:

Parameters | l Vv
Security level (log, gates) || 143 | 207 | 272
Kipnis-Shamir (log, gates) || 166 | 233 | 313

This work (log, gates) 140 | 188 | 243

Figure 5: Full attack on UOV.
26/31
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Quotient Ring UOV

The Quotient Ring transform

® Generate a UOV(q?, m, n) key with £m equations.
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® Secure UOV(qg’, m, n,£m) and UOV(q, fm, ¢n) are.
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Quotient Ring UOV

The Quotient Ring transform

® Generate a UOV(q?, m, n) key with £m equations.
® Represent it in Fq via a F e 2 Fglx]/(f).
® This is a (non-generic) UOV instance for parameters g, ¢m, ¢n.

® Secure UOV(qg’, m, n,£m) and UOV(q, fm, ¢n) are.

VOX: QR-UOV+
UOVH (g, m/t,n/t, m,t) w UOV4(q, m, n, t).

MinRank attacks on the big field instance of VOX

Initial parameters are not secure [Furue, lkematsu 2023]

Practical attack on all new parameters [Guo, Ding 2024]
28/31



Geometric interpretation of the big field scheme

The dimension of the public key variety in F

fm generic quadratic polynomials in n variables define a variety of dimension n — ¢/m.

In (QR-)UOV, O Cc V() = dim(V(Z)) >dimO > m
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Geometric interpretation of the big field scheme

The dimension of the public key variety in F ...

fm generic quadratic polynomials in n variables define a variety of dimension n — ¢/m.

In (QR-)UOV, O Cc V() = dim(V(Z)) >dimO > m

... leaks the secret key

If m > n— ¢m then the big-field polynomial system is easier to solve than a generic
system, and the solutions are points of O.

This attack is taken into account in [QRUOV] but not in [VOX].

29/31



Practical attack on VOX

Dimension computation

UOV-F(q*, m/¢,n/t, m, t) defines a variety that contains O N V/(G) but it should
be the empty variety for a generic system.
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Practical attack on VOX

Dimension computation

UOVI(q®, m/t,n/t, m, t) defines a variety that contains O N V(G) but it should
be the for a generic system.

Subfield attack

Practical key recovery attack on the and use of

]qu/ C qu to attack a subset of new parameters.

Parameters I Ic [l [lla \Y Vb
4 6 9 7 15 8 14
A 6 3 7 5 8 7
time 0.29s | 2°7gates* | 1.35s | 56.7s | 0.56s | 6.11s

Figure 6: Timing for the subfield attack on VOX (2023) on my laptop.
30/31
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Thank you for your attention!

One vector to full key recovery in polynomial time

From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+

e V(/) has a singular locus.

e Singular points of UOV yield faster attacks.

e Key recovery from one vector for UOVF in polynomial time.

Future/On-going work
Find efficient algorithms to achieve the Debarre and Manivel bound.

® In the generic case, as a precomputation for solving systems.
® In the UOV case, as key recovery attacks.

31/31



Proposed UOV+} parameters

Level g,o,v,t epk gain vs UOV
I 251, 48, 55, 6 36%
"l 1021, 70, 79, 7 44%
V 4093, 96, 107, 8 27%
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How many equations characterize the secret?

Let 6(n,s,r)=(r+1)(n—r) — s(r‘52)

The Debarre and Manivel Bound®

Let X be a complete intersection of m quadrics of rank n.

e If 6(n,s,r) <0, then X contains no (proj.) r-dimensional subspaces

® Otherwise, d(n, s, r) is the dimension of the variety of linear spaces included in X.

Application to UOV

If o = g is a , then a UOV secret is characterized by a number of
polynomials from the public key.
For practical parameters, 3 or 4 polynomials are enough.

>The original statement is for arbitrary degrees.




Applications to cryptanalysis

Two possible directions:

Solving underdetermined polynomial systems

Computing the largest subspace in generic complete intersections.
— improves forgery attacks against UOV.

Original key recovery attacks against UOV

Computing the smallest non-generic subspace in a UOV variety.
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Generic application: How to solve underdetermined systems?

Task: Find solution of P(x) =0 € Fg[x1, ..., xn]

® Compute a subspace S of dimension s — k such that pys, ..., pgs = 0.
@ Solve Pjs(x) = 0, a system of s — k equations and variables.

n

Algorithms using this approach for systems

® [Thomae, Wolf 2012] step a in polynomial time for k = 1.
® (WIP) [Reid 72]: step a in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically. 7 = g — k=3.

e FEfficient algorithm for k = 37
® Does step a become more expensive than step b?
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Analyzing our previous work through

® Tangent spaces reveal information only if x € O.
e Singular points are expensive to compute.

® Singular points require 7 + 1 polynomials: does not achieve the bound.
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UOV application: Can we find a large linear subspace in a large variety?

I = {p1,p2,p3) and O C V(I), dmO =s, §(n—1,5s—1,3) <0

Polar varieties

Critical locus of the projection of V/(/) on well-chosen space 1.

Motivation: the degree of these varieties is controlled, which yields efficient algorithms.
Challenge

How to choose I1 so that it is easy to compute the polar variety when O is unknown?

— Easy to distinguish UOV from generic systems with polar varieties... when O is
known.
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