
Side-Channel Attacks : Sécurité et Attaques par Canaux Auxiliaires

Introduction, Systèmes cryptographiques et consommation, Chiffrement

symétrique

Quentin Meunier

2025

Sorbonne Université

Laboratoire d’Informatique de Paris 6

4 Place Jussieu, 75252 Paris, France

1

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

2

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

3

Algorithmes cryptographiques et implémentation

Les protocoles cryptographiques reposent sur des algorithmes mathématiques supposés sûrs

• Difficile/Impossible de retrouver une information secrète dans un temps raisonnable

Les implémentations des algorithmes prouvés sûrs peuvent être vulnérables

• Attaques liées au logiciel et au matériel sur lesquels les algorithmes sont déployés

Objectif de l’UE : montrer comment des informations obtenues ou des fautes injectées lors de

l’exécution d’une implémentation peuvent permettre de retrouver les secrets de protocoles

cryptographiques et mettre à mal la sécurité escomptée

• Éléments sur la sécurité, principe des attaques par canal auxiliaire et par injection de fautes

• Exemples d’attaques par canal auxiliaire : AES, RSA, VerifyPIN

• Exemple de contre-mesures logicielles et matérielles

• Réalisation et simulation d’attaques physiques

4

Classification des attaques physiques

• Attaques invasives

• Depackaging de la puce

• Station de mesure pour observer des signaux en particulier

• Très puissantes mais très couteuses

• Attaques semi-invasives

• Depackaging de la puce mais pas de contact électrique avec la surface

• Utilisation de rayons X, d’un champ électromagnétique ou de lumière (laser) pour induire une faute

• ⇒ En déduire des informations secrètes ou contourner une protection

• Cout du matériel et de l’expertise élevé

• Attaques non-invasives

• Attaque du système tel quel, pas de traces de l’attaque après coup

• Cout relativement faible en comparaison

5

Attaques non-invasives : 2 catégories

• Attaques passives / par observation : temps, puissance dissipée, émission électromagnétique (EM)

• Attaques actives / par perturbation : glitch d’horloge ou de tension, impulsion EM

0A 0D 0C D5 FF ...

01 0D 0C D5 FF ...

• Dans cette UE, concentration sur les attaques par observation du courant consommé
6

Évaluation de l’UE

Rapports de TME et travail personnel

• TME utilisant la mesure de consommation pour attaquer :

• L’authentification par code PIN

• L’AES par DPA, CPA et Attaque par template

• Remise de 3 rapports sur le travail réalisé en TME

• Ces notes comptent pour 50% de la note finale

Examen final : début février

• Réalisé à partir de questions en lien avec les cours + TME

• 50% de la note finale

7

Déroulement de l’UE : Cours et TME

• 26/09 Cours Introduction à l’UE + Adrian Thillard : Attaques par canaux auxiliaires

• 03/10 Cours Quentin Meunier : Attaques par canaux auxiliaires

• 10/10 TME1 : Prise en main de la carte ChipWhisperer

• 17/10 TME2 : Attaque de la vérification d’un mot de passe

• 24/10 Cours Quentin Meunier : Attaques différentielles et template + TME3 : Influence du HW

• 21/11 TME4 : DPA Mono-bit et Multi-bit

• 05/12 TME5 : Attaque CPA

• 12/11 Cours Quentin Meunier : Masquage et analyse du masquage + TME6

• 19/12 TME7 : Masquage, schéma de Herbst ou Attaque par template

• 09/01 TME8 : Masquage, schéma de Herbst ou Attaque par template

• 16/01 Cours Jessy Clédière : Injection de faute : attaques et contre-mesures

• 23/01 TME9 : Attaque en faute différentielle (exploitation)

• 27/01 Cours Karine Heydemann + David Vigilant : Fautes, protections et compilation (Attention

: cours le mardi)

8

Carte pour les TME : Chipwhisperer

9

Carte pour les TME : Chipwhisperer

• Carte achetée à 329.81 euros l’unité

• Une carte par personne ou par binôme prêtée au début de l’UE

• Vous êtes responsables de la rendre en bon état à la fin de l’UE, sous peine de remboursement 10

Informations pratiques concernant les TME

• Les TME peuvent être faits sur votre machine personnelle ou sur les machines de l’université, et

nécessitent l’utilisation d’une machine virtuelle sur VirtualBox

• Peut arriver que cela ne marche pas sur votre machine personnelle (mac, adaptateur mac, ...),

dans ce cas utiliser les machines de l’université

• Si vous comptez faire le TME sur votre ordinateur, téléchargez la VM avant la première séance de

TME ! (3 Go)

• Consignes des TME sur moodle

11

Dernières informations

• Les transparents présentés par les intervenants sont mis sur moodle après les séances

• Regarder le planning CCA + MSI : des incohérences peuvent arriver, les 2 plannings devraient être

identiques

• Les TME durent 2 ou 4h

• Plagiat, partage de son code, récupération de code ou de rapport des années précédentes : 0 au

TME correspondant

• Pour les rapports : être concis, expliquer la démarche de ce qui a été fait, comment et pourquoi ;

extraits de code dans le rapport et code complet à fournir à côté

• Référence pour le cours : Power analysis attacks: Revealing the secrets of smart cards, S.

Mangard, E. Oswald, T. Popp (2007). Springer Science & Business Media.

12

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

13

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

14

Composants des systèmes cryptographiques

• Matériel dédié (ex : coprocesseur AES)

• Matériel généraliste (ex : processeur, micro-controlleur)

• Logiciel cryptographique (ex : implémentation logicielle de l’AES)

• Mémoire

• Interface

15

Cellules logiques

• Les cellules logiques sont les briques de base d’un circuit

• Cellules combinatoires, portes logiques (ex : NAND, XOR)

• Cellules séquentielles, registres (ex : Bascule D)

a

Cellule NAND
à 2 entrées

Bascule D active
sur front montant

b
q

clk

D Q

Q

16

Cellules logiques

• Les cellules sont en général réalisées à l’aide de transistors de technologie CMOS

• Un transistor agit comme un interrupteur contrôlé par une tension

• La fonction connecte la sortie et le “1 Logique” (VDD) avec de PMOS

• Le complément de la fonction connecte la sortie et le “0 Logique” (GND) avec des NMOS

Pull-up
Network

Pull-down
Network

q

a

b

VDD

GND

Gate

Transistor NMOS

Drain

Source

Gate

Transistor PMOS

Source

Drain

17

Consommation électrique des cellules logiques

• 2 types de consommation

• Statique : lorsqu’il n’y a pas de changement d’état dans la cellule

• Dynamique : liée au changement d’état de la cellule (⇔ changement de la

valeur en sortie)

• Causes de la consommation dynamique :

• Chargement de la capacité de la cellule : capacité interne et externe (fils

contrôlés par la sortie et entrées des transistors suivants)

• Court-circuit pendant un court instant après un changement d’état : période

pendant laquelle les deux transistors sont passants

Transition Consommation Type de consommation

0 → 0 P00 statique

0 → 1 P01 statique + dynamique

1 → 0 P10 statique + dynamique

1 → 1 P11 statique

• En général, on a P00 ≈ P11 ≪ P01, P10

• ⇒ La consommation dynamique est prépondérante

qa

VDD

GND

18

Consommation électrique des cellules logiques

Temps

1

2

3

Po
te

n
ti

e
l
(V

)
C

o
u
ra

n
t

(A
)

Temps

0

0

• Consommation (courant) pour un inverseur CMOS

• Pic de consommation un peu plus grand lors du changement d’état de la sortie de 0 → 1

19

Glitches

• La sortie d’une porte met un certain temps à changer d’état quand ses entrées changent

• ⇒ Certaines portes peuvent avoir une valeur temporaire en sortie

a

c

NAND

INV
b

d

d

c

tprop,INV

tprop,NAND

b

a

• Les glitches peuvent avoir un effet important sur la consommation

20

Glitches

• La sortie d’une porte met un certain temps à changer d’état quand ses entrées changent

• ⇒ Certaines portes peuvent avoir une valeur temporaire en sortie

a

c

NAND

INV
b

d

d

c

tprop,INV

tprop,NAND

b

a

• Les glitches peuvent avoir un effet important sur la consommation

20

Glitches

• La sortie d’une porte met un certain temps à changer d’état quand ses entrées changent

• ⇒ Certaines portes peuvent avoir une valeur temporaire en sortie

a

c

NAND

INV
b

d

d

c

tprop,INV

tprop,NAND

b

a

• Les glitches peuvent avoir un effet important sur la consommation

20

Glitches

• La sortie d’une porte met un certain temps à changer d’état quand ses entrées changent

• ⇒ Certaines portes peuvent avoir une valeur temporaire en sortie

a

c

NAND

INV
b

d

d

c

tprop,INV

tprop,NAND

b

a

• Les glitches peuvent avoir un effet important sur la consommation

20

Glitches

• La sortie d’une porte met un certain temps à changer d’état quand ses entrées changent

• ⇒ Certaines portes peuvent avoir une valeur temporaire en sortie

a

c

NAND

INV
b

d

d

c

tprop,INV

tprop,NAND

b

a

• Les glitches peuvent avoir un effet important sur la consommation

20

Modèles de consommation

• Modèles précis

• Simulation analogique avec la netlist des transistors et les éléments (capacités) parasites du circuit

• Simulation logique avec la netlist des cellules et des informations sur les temps de propagation

• Modèle simple : Distance de Hamming (HD)

• Nombre de transitions 0 → 1 et 1 → 0 qui se produisent durant un certain laps de temps

• Toutes les transitions de toutes les cellules ont le même poids dans le modèle

• HD(v0, v1) = HW(v0 ⊕ v1) où HW est le poids de Hamming (nombre de bits à 1 dans le mot)

• Exemple : HD(0xAE, 0x33) = 5

• ⇒ Modèle puissant (simple et proche de la réalité) qui peut-être utilisé par des attaquants qui ont

connaissance de certaines parties du système (ex : bus, mémoire, registres)

• Si on ne dispose pas d’informations suffisantes sur l’architecture pour utiliser le modèle distance
de Hamming, modèle Poids de Hamming (HW)

• Équivalent à la distance de Hamming si tous les bits de v0 ou v1 sont égaux à 0 (ou 1)

• Si tous les bits de v0 ou v1 sont constants mais différents, relation d’autant plus forte avec HD que le

nombre de bits à 0 ou 1 est élevé

• Si les bits de v0 ou v1 sont distribués uniformément : pas de relation avec HD

• Variations au modèle HD : affecter des poids différents aux différentes cellules, et aux transitions 1

→ 0 et 0 → 1

21

Setup utilisé en TP

CPU

addu r0, r2
sltu r4, r5, r
sw r4, 0(r6)
bne r4, r3, a

Exécute

Mesure la
consommation

Alimente

Charge le code

Déclenche
la capture

Transmet les
mesures

aes.c

Câble USB

Jupyter

Carte ChipWhisperer Lite

22

Caractéristiques des oscilloscopes

• Taux d’échantillonage : nombre de mesures de consommation qu’il est possible de faire par

seconde

• Résolution : Nombre de valeurs possibles du signal après conversion d’une grandeur physique

continue en grandeur numérique

Pour la carte ChipWhisperer Lite :

• Fréquence d’échantillonage de 29.48 MHz et résolution sur 10 bits

• Fréquence du processeur de 7.37 MHz

• ⇒ 4 samples / cycle

23

Simple Power Attacks

• Un processeur est fait de cellules logiques combinatoires et de registres

• Lors de l’exécution d’une instruction, changement d’état de certaines cellules

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

• But d’une attaque : exploiter les changements d’état liés à une variable/information secrète

• Dans le cadre de l’UE : processeur = boite noire, on ne sait pas d’où vient la fuite, modèle de

consommation = HW (si besoin d’un modèle) 24

Simple Power Attacks : profil de consommation des instructions

• Différentes instructions consomment différemment

25

Simple Power Attacks : chemin d’exécution

• Un chemin d’exécution, ou une trace d’exécution est la séquence de toutes les instructions

exécutées par le processeur

• Varie d’une exécution à l’autre si des branchements conditionnels dépendent des entrées

1 uint8_t gf_times2(uint8_t a) {

2 uint8_t r;

3 if ((a >> 7) == 0) {

4 r = a << 1;

5 }

6 else {

7 r = (a << 1) ^ 0x1B;

8 }

9 return r;

10 }

• Code avec plusieurs chemins d’exécution

selon la valeur de a

1 uint8_t gf_times2(uint8_t a) {

2 uint8_t r;

3 r = ((int8_t) a) >> 7;

4 r = r & 0x1B;

5 r = r ^ (a << 1);

6 return r;

7 }

• Code avec un unique chemin d’exécution

26

Simple Power Attacks : conditions

• Possible de retrouver la valeur d’une variable de condition if/else à partir de la trace d’instructions

• Exemple : bit de poids fort de a de la fonction gf times2

• Code assembleur

srl r8, r4, 7

bne r8, r0, else

sll r2, r4, 1

j endif

else:

sll r2, r4, 1

xori r2, r2, 0x1B

endif:

jr r31

• Profil de consommation de ces instructions :

srl bne sll j xori jr

branche "then"
a7 = 0

branche "else"
a7 = 1

27

Simple Power Attacks : notion de seuil

• Comment discriminer les 2 cas ?

• En superposant les traces, on a :

valeur
du
seuil

• Si on connait le profil de consommation, on peut donc retrouver la valeur de la condition à partir

d’un sample bien choisi et d’un seuil

• Il est aussi possible de recombiner les valeurs de plusieurs samples si cela ne suffit pas

28

Simple Power Attacks : équilibrage des branches

• Soit le code suivant

1 bool ok = true;

2 bool dummy = true;

3 for (int i = 0; i < size

; i+= 1) {

4 if (tab[i] != t[i]) {

5 ok = false;

6 }

7 else {

8 dummy = false;

9 }

10 }

• Code assembleur

for:

beq r4, r10,

fin for

lw r8, 0(r4)

lw r9, 0(r5)

beq r8, r9, else

addiu r2, r0, 0

j endif

else:

addiu r15, r0, 0

endif:

addiu r4, r4, 4

addiu r5, r5, 4

j for

• Trace d’exécution dans le cas “then”:

beq, lw, lw, beq, addiu, j, addiu,

addiu, j

• Trace d’exécution dans le cas “else”:

beq, lw, lw, beq, addiu, addiu, addiu,

j

• ⇒ Équilibrer les branches if/else ne marche pas en général

29

Simple Power Attacks : exemple de l’exponentiation modulaire

• Pseudo-code de l’exponentiation modulaire

1 mpi_t exp(mpi_t b, mpi_t e, mpi_t m) {

2 mpi_t res = 1;

3 for (int32_t i = 64; i >= 0; i -= 1) {

4 res = square(res);

5 res = modulo(res , m);

6 if (get_bit(e, i) == 1) {

7 res = mult(res , b);

8 res = modulo(res , m);

9 }

10 }

11 return res;

12 }

• ⇒ La trace de consommation permet de révéler la valeur de tous les bits de l’exposant

• Dans RSA, ce calcul est effectué avec en exposant la clé secrète

• Les implémentations de ce calcul sont maintenant toujours sécurisées (multiply always)

30

Simple Power Attacks : exemple de l’exponentiation modulaire

• Square and Multiply

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

• Square and Multiply always

0 200 400 600 800 1000 1200

−0.3

−0.2

−0.1

0

0.1

0.2

31

Simple Power Attacks : exemple de l’exponentiation modulaire

• Square and Multiply

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

• Square and Multiply always

0 200 400 600 800 1000 1200

−0.3

−0.2

−0.1

0

0.1

0.2

31

Simple Power Attacks : exemple de l’exponentiation modulaire

• Square and Multiply

1 1 100001

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

1 1 0

• Square and Multiply always

0 200 400 600 800 1000 1200

−0.3

−0.2

−0.1

0

0.1

0.2

31

Simple Power Attacks : exemple de l’exponentiation modulaire

• Square and Multiply

1 1 100001

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

1 1 0

• Square and Multiply always

0 200 400 600 800 1000 1200

−0.3

−0.2

−0.1

0

0.1

0.2

31

Variation de la consommation liée aux données

• En plus des instructions, les données aussi influencent la consommation

• Dans ce cas aussi le poids de Hamming peut être un bon modèle de consommation :

32

Bruit de mesure

• En réalité, deux mesures de consommation d’un même calcul vont être un peu différentes

• Il s’agit du Bruit électronique

• Raisons

• Variations dans la tension d’alimentation

• Variation du signal d’horloge

• Émissions EM alentours

• Modification de la température du système

• Conversion analogique-numérique

• Il existe aussi un autre type de bruit quand on considère une attaque : le Bruit algorithmique

(switching noise) : la consommation des cellules qui nous intéressent pour l’attaque n’est qu’une

partie de la consommation mesurée

• Sur la carte ChipWhisperer Lite, on mesure la consommation globale de tout le processeur, le

bruit algorithmique correspond donc à la consommation de toutes les cellules qui changent de

valeur dans le(s) même(s) cycle(s) que les cellules attaquées

• En général pas gênant pour les SPA, doit être considéré pour les attaques différentielles : requiert

un plus grand nombre de traces

33

Caractérisation du bruit électronique

• La consommation en un point avec entrées fixées : peut être modélisée par une loi normale

• Somme de contributions/facteurs indépendants : loi binomiale

• Chaque facteur ajoute ou soustrait un petit peu de consommation

μ

+/-σ (68.3%)

+/-2σ (95.5%)

Puissance consommée

P
ro

b
a
b
ili

té
 /

 F
ré

q
u
e
n
ce

34

Caractérisation du bruit électronique

• D’après des mesures réelles (POI en sortie de la Sbox AES, key = 0xae, pt = 0xc4)

• Pas une loi normale : biais du capteur ? Problème de conversion ?

35

Influence des données sur la consommation

• Cas du chargement d’un octet, résultat de la SBox de l’AES

• Une distribution par valeur de poids de Hamming

• Distributions globale : somme de toutes ces distributions

Puissance consommée

P
ro

b
a
b

ili
té

/
Fr

é
q

u
e
n
ce

HW = 4

HW = 3

HW = 2

HW = 1
HW = 0 HW = 8

HW = 7

HW = 6

HW = 5

36

Influence des données sur la consommation

• Cas du chargement d’un octet, résultat de la SBox de l’AES, mesures réelles

• Même effet/problème qu’avec les entrées fixées

• + Tous les bits ne consomment pas forcément la même quantité : un poids de Hamming

identique peut mener à des consommations différentes si les bits à 1 ne sont pas les mêmes
37

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

38

Outline

Introduction à l’UE

Systèmes cryptographiques et consommation électrique

Rappels sur le chiffrement symétrique et l’AES

39

Chiffrement symétrique

• Algorithme de chiffrement symétrique :

ciphered text

plaintext

f

key

f-1

key

plaintext

• Quelles propriétés et garanties ?

40

Chiffrement symétrique

• Algorithme de chiffrement symétrique :

ciphered text

plaintext

f

key

f-1

key

plaintext

• Quelles propriétés et garanties ?

40

Chiffrement symétrique

• Algorithme de chiffrement symétrique :

ciphered text

plaintext

f

key

f-1

key

plaintext

• Quelles propriétés et garanties ? 40

Chiffrement symétrique

• Pouquoi ne pas utiliser un ⊕ entre la clé (K) et le plaintext (PT) pour obtenir le chiffré (CT) ?

plaintext:
0x6A

key:
0xA5

key:
0xA5

ciphered text:
0xCF

plaintext:
0x6A

• 1er Problème : on peut déduire des bits de clé si on connait des parties de PT (ex : protocole,
en-tête, contrôle du dispositif)

• Utiliser une clé aussi longue que le message et une nouvelle clé pour chaque message : infaisable en

pratique

• 2e Problème : si l’attaquant a la possibilité de modifier le message : inverser un bit de CT revient

à inverser un bit de PT

41

Chiffrement symétrique

• Pouquoi ne pas utiliser un ⊕ entre la clé (K) et le plaintext (PT) pour obtenir le chiffré (CT) ?

plaintext:
0x6A

key:
0xA5

key:
0xA5

ciphered text:
0xCF

plaintext:
0x6A

• 1er Problème : on peut déduire des bits de clé si on connait des parties de PT (ex : protocole,
en-tête, contrôle du dispositif)

• Utiliser une clé aussi longue que le message et une nouvelle clé pour chaque message : infaisable en

pratique

• 2e Problème : si l’attaquant a la possibilité de modifier le message : inverser un bit de CT revient

à inverser un bit de PT
41

Rappels sur l’AES

• Algorithme de chiffrement symétrique basé sur une clé secrète

AESk

128

128

• Standard utilisé partout

• Plusieurs tailles de clés (128, 192 et 256 bits), version 128 la plus répandue

• Aucune faiblesse connue d’un point de vue cryptanalytique (cf. suite)

• ...Mais de nombreuses attaques utilisant le matériel ou les implémentations

42

Rappels sur l’AES : Structure

• 10 rondes (pour la version 128), avec les opérations AddRoundKey, SubBytes, ShiftRows,

MixColumns (sauf dernière ronde)

Add Round Key

SubBytes

Shift Rows Mix Columns

Source : Wikipedia

(1 clé par ronde,
mais toutes dérivées
de la clé initiale)

AddRoundKey

SubBytes

ShiftRows

MixColumns

plain text

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphered text

x9

43

Rappels sur l’AES : Key Schedule

• Génération des 10 clés de ronde à partir de la clé originale

Clé de ronde i

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

Clé de ronde i + 1

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

SB SB SB SB

Rcon

44

Chiffrement symétrique : propriétés de l’AES

• L’AES ne possède pas les deux problèmes vus précédemment :

• 1. On peut observer autant de couples (PT, CT) que l’on veut (même avec PT ou CT choisi), cela

ne permet pas de déduire de l’information sur la clé

• 2. La modification d’un bit dans PT (resp. CT) résulte en la modification potentielle de tous les bits

de CT (resp. PT) : propriété de diffusion

• Il reste un problème : le même PT chiffré deux fois donne deux fois le même CT

• Logique... non ?

• Pour éviter cela, utilisation d’un vecteur d’initialisation (IV) : aléatoire (uniforme, indépendant,

etc.)

• Alice fait CT = f(AESk , IV, PT) puis envoie (IV, CT)

• La fonction f est telle que Bob peut déchiffrer le message en connaissant k, mais telle que Eve ne

puisse rien déduire ni de PT ni de k à partir de (IV, CT)

45

Chiffrement symétrique : propriétés de l’AES

• Dans le cas des messages “longs”, i.e. de plus de 128 bits (toujours le cas en pratique), on évite

de mettre un IV par bloc de message chiffré (1 bloc = 128 bits)

• ⇒ On utilise un seul IV et on “chaine” les blocs entre eux

• Plusieurs modes de chainage : CBC, CFB, OFB

• Inconvénient : empêche de faire le chiffrement en parallèle des blocs...

46

Modes de chainage de l’AES : Mode CBC

• Mode CBC : le plus utilisé

PT1

CT1

EK

PT2

CT2

EK

PTn

CTn

EK

...

IV

47

Modes de l’AES : Mode CFB

• Avantage : pas besoin de AES−1

PT1

CT1

EK

PT2

CT2

EK

PTn

CTn

EK

...

IV

48

Modes de l’AES : Mode OFB

• Avantages : pas besoin de AES−1 et déchiffrement identique au chiffrement

PT1

CT1

EK

PT2

CT2

EK

PTn

CTn

EK

...

IV

49

Si l’on pousse le raisonnement plus loin...

• Seule une “bonne” fonction de hachage est nécessaire pour faire du chiffrement symétrique

Cipher:

IV

K

PT2PT1PT0

h(K || IV) h(K ||)

...

CT0 CT1

• Déchiffrement : algorithme identique (inverser PT et CT)

• ⇒ Plus besoin d’algorithme de chiffrement symétrique comme l’AES

• Confirmé par Joan Daemen en personne...

50

Merci !

Contact:

Email: quentin.meunier@lip6.fr

50

quentin.meunier@lip6.fr

	Introduction à l'UE
	Systèmes cryptographiques et consommation électrique
	Rappels sur le chiffrement symétrique et l'AES

