Side-Channel Attacks : Sécurité et Attaques par Canaux Auxiliaires

Attaques différentielles, Attaques template, Masquage et vérification

Quentin Meunier
2025

Sorbonne Université
Laboratoire d'Informatique de Paris 6
4 Place Jussieu, 75252 Paris, France

Q SORBONNE
b UNIVERSITE

Introduction : Side-Channel Attacks

Temps Emission
d'exécution N2 EM
J N &

- I
Consommation
de courant

Analyse statistique
Canaux cachés Traces pour retrouver la clef

Introduction : Les SCA dans la vraie vie

& Home SusscRomande Suisse Monde Economie Sports #NOUSSOMMESLEFUTUR Insolite Stars&Co HiTesh Jeusvidéo Flusv

PAYS-BAS

Pas de neige sur le toit? Cultivez-
vous de I'herbe?

La police néerlandaise incite les habitants de Haarlem a
observer de prés les toits de leur ville. S'ils ne sont pas
couverts de neige, cela pourrait indiquer la présence d'une
plantation de cannabis.

Politie Basisteam Haarlem X
@POL_Haarlem - Follow
Geen sneeuw op het dak van de buren? Melden van

vermoeden #hennepkwekerij kan ook anoniem via
@M08007000.

Introduction : Les SCA dans la vraie vie

3 occitanie

Accueil > Occitanie > Pyrénées-Orientales > Perpignan

DROGUE. Des milliers de
plants de cannabis saisis
dans des maisons de luxe,
les trafiquants trahis par
leur trop forte
consommation d'électricité

Ils opéraient dans des maisons de luxe de la région du Maresme, située dans la provinee de Barcelone. & © Mossos
d'Esquadra

Attaques
Rappel : Consommation des instructions et des données
Principe de la DPA : Differential Power Analysis
Principe de la CPA : Correlation Power Analysis

Attaque par template

Masquage

Attaques

Consommation électrique d’instructions assembleur

0.15 4

0.10 4

0.05 4

0.00 4

—0.05 1

nop mul nop add

-0.104 I

T T T T T
25 50 75 100 125 150 175, 200

e Des instructions différentes consomment différemment

Consommation des données

e Modéle simple : considérer le poids de Hamming des données
e Ce modéle simple marche!

HW vs Voltage Measurement

o
N
N
N
\\
-0.12 \
. N
2 AN
§ AN
g
\
% ~0.14 4 AN
o AN
g \
g \,
L N
.
-0.16 \
N\
.
018 AN
| T f i i
r T t T T T T t T T T T t T T T [2 4 6 &
2269 2270 2271 Hamming Weight of Intermediate Value

Principe de la DPA

e Objectif : retrouver la clé secréte d'un algorithme cryptographique a partir de la consommation
d’encryptions matérielles ou logicielles

e Hypothése de base : la valeur de consommation d'un calcul a un instant donné dépend de la
valeur du résultat du calcul

e Conséquence : la valeur d’un bit intermédiaire du calcul b a une incidence sur la consommation a
cet instant

e Hypothése supplémentaire : La consommation d'un calcul fixé suit une loi normale a un instant
donné (c'est le cas en pratique)

e Si on choisit le bit b suffisamment tét dans le calcul, cela découple les hypothéses requises sur les
différents octets de la clé = On s'intéresse a la premiére ronde (ou a la derniére en attaquant la
derniére clé de ronde)

e Dans la suite on s'intéresse a |I'attaque d'un octet de la clé

Principe de la DPA : exemple sur I’AES

e On part d'un ensemble de traces T de consommation (pour lesquelles on connait le plain text
PT), et pour chaque valeur possible pour I'octet de clé (€ [0;255]), on divise les traces en 2
ensembles Ty et T1 selon la valeur de b sous cette hypothése de clé

e Si I'hypothése de clé est mauvaise :

e On a réparti les traces selon un critére arbitraire, qui s'apparente & un critére aléatoire du point de
vue de la consommation

e Tp et T7 doivent avoir les mémes moyennes de consommation au point d'intérét qui correspond a
I'instant ou b est calculé

e Si I’hypothése de clé est la bonne :

e On a trié les traces selon un critére qui a une influence sur la consommation, cela doit donc étre
visible au point d'intérét

e Ty et Ty doivent donc avoir des moyennes de consommation différentes au point d'intérét (sinon cela
veut dire que I'hypothése de base est fausse)

e On peut donc déterminer si I'hypothése de clé est la bonne en regardant I'écart entre les moyennes

des traces To et T

10

Principe de la DPA : exemple sur I’AES

Pour une hypothése
d'un octet de clé k :
b = calcul(k, PT)

PT=0xABCD...

Eo E;

OO

Tri des traces
en 2 ensembles

selon la valeur PT=0x14DF...

- @

l Moyenne l
NN wesa

Différence et

. résultat attendu .
Si k est une Sikestla

mauvaise hypothése bonne hypothése

—" =Y

IRVA

11

Principe de la DPA : exemple sur I’AES

e Comment choisir le bit b?

e Le premier calcul effectué est un AddRoundKey, qui met en jeu uniquement un octet de clé avec le
plain text connu

e Donc par exemple, regarder un bit (n'importe lequel) de x[0] [0] aprés le premier ARK pour attaquer
I'octet de clé 0 : on peut penser a faire ce choix

e Probléme : Une hypothése de clé différente d'un bit (au sens de hamming) de la bonne clé donnera
également un bon tri des traces, |'opposé de la clé également (méme tri que la bonne hypothése)

o (k®d) ® PT = (k@ PT) @ 6 proche de k & PT pour § petit
e Et comme on ne regarde qu'un bit, c'est encore pire : 1 seul découpage possible !

e Sion regarde le bit 0, toutes les clés paires donneront le méme découpage (bon ou mauvais), et
toutes les clés impaires, le découpage “inverse”

e Pour ne pas avoir ces problémes, on regarde un bit aprés la premiére SBox : tous les bits de
I'hypothése de clé entrent en compte dans le calcul et deux clés proches n'ont pas de raisons de
donner des résultats proches (moyennage sur les valeurs de PT)

e Sbhox[(k @& &) @ PT] ne “matche” Sbox[k & PT] pour tous les PT que si § =0

e Variante : Au lieu de ne regarder qu'un seul bit, on regarde le poids de Hamming de la valeur
intermédiaire, et on trie les traces dans TO ou T1 selon que le HW soit inférieur ou supérieur a 4

12

Exemple DPA sur I'AES en multi-bit

e On mesure les 8 valeurs de consommation suivantes en sortie de la SBox : 5.3, 5.9, 2.0, 2.2, 5.4,
0.8,4.1,52

e Pour les 8 traces, le plaintexts associés sont : 0x59, 0xF1, 0x75, 0xB7, 0x64, 0x15, 0x85, 0xC2

e L'octet de clé correct est 0x41

Octet de clé = 0x41 Octet de clé = 0x00

PT SBox[k @ pt] | HW | TO ou T1 SBox[k @ pt] | HW | TO ou T1

0x59 || 0xAD 5 T1 0xCB 5 T1

OxF1 || OxE7 6 T1 OxA1 3 TO

0x75 || 0x18 2 TO 0x9D 5 T1

0xB7 || 0xOD 3 TO 0xA9 4 -

0x64 || Ox3F 6 T1 0x43 3 TO

0x15 || 0x20 1 TO 0x59 4 =

0x85 || 0x1C 3 TO 0x97 5 T1

0xC2 || OxEC 5 T1 0x25 3 TO
TO=(20+22+4+08+4.1)/4=23 || TO=(59+54+5.2)/3=55
T1=(53+59+54+52)/4=54 || Tl =(53+20+4.1)/3=38
|TO — T1| = 3.1 |TO — T1| = 1.7 13

Principe de la CPA

e Objectif : retrouver la clé secréte d'un algorithme cryptographique a partir de la consommation
d’encryptions matérielles ou logicielles

e Hypothése de base : la valeur de consommation d’un calcul un instant donné dépend de la valeur
du résultat du calcul

e Attaque basée sur un modéle de consommation d'énergie
e De méme que pour la DPA, I'attaque cible un point particulier dans le temps au cours de
I'exécution
e La valeur intermédiaire doit dépendre de la valeur secréte et changer a chaque trace
e = elle doit dépendre du plaintext

e Pour I'AES, comme pour la DPA, on cible en général un point aprés la premiére SBox ou avant la
derniére

e Pas encore de mélange des octets de clé entre eux, permet de tester moins d'hypothéses

e Modéle le plus utilisé pour la consommation d'énergie : poids de Hamming (HW) d'une valeur
particuliére ou distance de Hamming (HD) entre 2 valeurs intéressantes (par exemple stockées
consécutivement dans le méme registre)

e Dans la suite, on ne considére qu’un seul octet de clé

14

Principe de la CPA : Corrélation empirique

e Le modéle de consommation est corrélé avec la consommation énergétique réelle en utilisant le
coefficient de corrélation empirique (dit coefficient de Pearson).

e Ce coefficient de corrélation empirique entre 2 échantillons x; et y; (1 < i < n) est donné par :

L Oxy
= 20 1
F= %oy (1)
avec
(2)
(3)

ou X et y sont les moyennes empiriques de x; et y;.

15

Principe de la CPA

e On ne considére qu'un seul instant temporel : le moment auquel la valeur interne est calculée

HW of the internal value for
each trace for a correct Key Hypothesis

+
+
+ +
+
+- +

Measures i
+ Trace #0 12 3 4 5 1,000

+ Power

. et (B[] B
+
+ + Vector
+
= HW of the (uncorrect) internal value for
Trace #0 1 2 3 4 5 1,000 each trace for a wrong Key Hypothesis
Vector |1v4|4 3|zva|4 7|:.s|n.s| 000 |3.1| +
+ o+
+
+ +
+

Trace #0 1 23 4 5 1,000

Power
Model [s[4]2]a]3]1] 2]

Vector

e Complexité totale pour tous les instants : # traces x # samples x # key hypotheses 16

Principe de la CPA

e Cas 1 : on connait le POI pour faire I'attaque
e Etant données N traces de consommation de L échantillons, on note t, la valeur de consommation

de la trace n au POI (avec 1 < n < N).
e Pour K clés (sous-clés) possibles (on a typiquement K = 256), on note h, x la valeur estimée de
la consommation, selon le modele choisi, pour la trace n et I'hypothése de clé k (0 < k < K)
e Remarque : cette valeur dépend du plaintext
e On peut ensuite voir d quel point le modéle et les mesures correspondent pour chaque hypothése

de clé k en calculant :

Z(hn,k - Fk)(tn - E)
7 — N":l } (4)
D (o =Bl D (tn — 7

ol hy et T sont respectivement les valeurs moyennes de la consommation modélisée et de la
consommation mesurée.
e Puis, en prenant le maximum des r, pour toutes les valeurs de k, on peut en déduire quelle
hypothése de clé est la plus probable
17

Principe de la CPA

e Cas 2 : on ne connait pas le POI pour faire I'attaque
e Etant données N traces de consommation de L échantillons, on note t,; la valeur de

consommation au point i de la trace n (avec 1 < n < N,1 </ < L).
e Pour K clés (sous-clés) possibles (on a typiquement K = 256), on note h, x la valeur estimée de
la consommation, selon le modele choisi, pour la trace n et I'hypothése de clé k (0 < k < K)
e Remarque : cette valeur dépend du plaintext, mais pas du point dans le temps
e On peut ensuite voir a quel point le modéle et les mesures correspondent pour chaque hypothése

de clé k et a chaque instant i en calculant :

N
Z(hn,k - Fk)(tn,i - ?I)
g = ol (5)
N N
> bk — 1) (i —)
n=1 n=1

ol hy et t; sont respectivement les valeurs moyennes de la consommation modélisée et de la
consommation mesurée a |'instant J.
e Puis, en prenant le maximum des ry ; pour toutes les valeurs de i et k, on peut en déduire quelle

hypothése de clé est la plus probable 1s

Principe de la CPA

e Remarque : on peut montrer que rjx peut étre calculé avec la formule suivante, qui présente
I'avantage de permettre un calcul “online” (en un seul parcours de |'ensemble des données) :

N N N
NZ hn,ktn,i - (Z hn,k)(z tn,i)
n=1 n=1 n=1
= N N N N (©)
(Q_ Akl = NI h (D tni) =N 2))
n=1 n=1 n=1 n=1

Avantages de n’avoir qu’une passe sur les données

e Quand le nombre de traces est trés élevé, permet de calculer les valeurs de CPA a la volée, sans
avoir a stocker les traces

e Permet de regarder réguliérement les valeurs de corrélations obtenues pour les meilleures
hypothéses (par exemple toutes les 1000 traces) et de s'arréter dés que I'écart est jugé
significatif : évite de regarder toutes les traces

19

Principe d’une attaque par template

e Objectif : retrouver la clé secréte d'un algorithme cryptographique a partir de la consommation
d’encryptions matérielles ou logicielles

e Hypothése de base : la valeur de consommation d'un calcul un instant donné dépend de la valeur
du résultat du calcul

e Attaque basée sur un modéle de consommation d'énergie

e De méme que pour la DPA et la CPA, I'attaque cible un point particulier dans le temps au cours

de I'exécution

e Contrairement a la DPA et a la CPA, cette attaque nécessite de pouvoir faire changer la clé entre

deux exécutions

20

Principe d’une attaque par template

e Le principe de cette attaque est de contruire un “profil” de consommation du dispositif en fonction
de la valeur de la clé

e Une fois le profil construit, il est possible de retrouver la valeur de la clé a partir de mesures, en
regardant a quel profil correspondent le mieux les valeurs observées

e = Attaque en deux phases :

e Phase d'acquisition : construction des profils, nécessite beaucoup de traces avec la clé qui varie et qui

est connue
e Phase d'exploitation : la clé est fixée et inconnue, le but de I'attaque est de la retrouver; cette phase

requiert peu de traces

21

Principe d’une attaque par template : premiére phase

e Enregistrer beaucoup de traces (de I'ordre de 100 000) avec clé et plain text connus et variables

e Choisir quelques instants d'intéréts (typiquement 5), qui correspondent aux instants qui
maximisent la variance inter-traces
e Classifier les traces selon un critére, qui peut &tre par exemple (pour I'attaque d'un octet de clé) :
e La valeur en sortie de la premiére SBox
e Le poids de Hamming de la valeur en sortie de la premiére SBox
e Pour chaque valeur du critére, reconstruire la loi normale multidimensionnelle dont les paramétres
sont ceux obtenus de maniére empirique

e Le nombre N de dimensions est le nombre d'instants d'intérét
e Les paramétres de la loi sont le vecteur des moyennes . de taille N et la matrice de covariance
entre les dimensions (de taille N x N)

e Remarque : la densité de la loi normale multidimensionnelle pour un vecteur x de taille N est
1 L) TE " (x—
fmz()= e 3 (x—np) (x—p)
(2m)N/2|%| 2

22

Principe d’une attaque par template : exemple premiére phase

e Exemple pour une attaque considérant un seul instant d'intérét t0 (considére la consommation a
un seul sample) : loi normale de dimension 1

e On trie les traces en fonction de la valeur du poids de Hamming en sortie de la 1ére Sbox

e = On obtient 9 distributions empiriques

e Pour chaque distribution empirique, on reconstruit une distribution de probabilité en estimant les
paramétres i et o de la loi normale

Probabilité/Fréquence

Consommation

23

Principe d’une attaque par template : exemple premiére phase

e Exemple pour une attaque considérant un seul instant d'intérét t0 (considére la consommation a
un seul sample) : loi normale de dimension 1

e On trie les traces en fonction de la valeur du poids de Hamming en sortie de la 1ére Sbox

e = On obtient 9 distributions empiriques

e Pour chaque distribution empirique, on reconstruit une distribution de probabilité en estimant les
paramétres i et o de la loi normale

Probabilité/Fréquence

x = Consommation Mesurée Consommation

e Pour une mesure de consommation x, chaque distribution donne la “probabilité” d’'obtenir la
valeur x pour un poids de Hamming donné 23

Principe d’une attaque par template : exemple premiére phase

e Exemple d'une distribution reconstruite pour 2 instants d'intérét t0 et t1 pour un HW donné

e Pour le poids de Hamming correspondant, associe une probablilité au fait d'observer la
consommation c0 a tO et cl a t1

e Méme principe quand on a un nombre plus élevé de points d'intérét (et de dimensions dans la loi
normale)

.. | Fréguence

24

Principe d’une attaque par template : deuxiéme phase

e La deuxieme phase correspond a |'attaque d'un systéme similaire & celui profilé mais dont on ne
connait pas la clé (constante)
e Enregistrement des traces avec plaintext variable et connu (de I'ordre d'une dizaine a une
cinquantaine)
e Pour chaque trace :
e Création du vecteur de consommation ¢ correspondant aux points d'intérét
e Puis, pour chaque hypothése de clé :
e Calcul de la valeur v du critére (ex : poids de Hamming de la sortie de la SBox), elle-méme fonction du
plaintext et de I'hypothése de clé
e Calcul du score s = p,(c) de la distribution associée a ce critére pour ce vecteur de consommation : plus
la valeur est grande, plus le modéle est satisfaisant
e Pour chaque hypothése de clé, on multiplie tous les scores obtenus : le score total le plus grand
est normalement obtenu pour la bonne clé
e Permet d’'éliminer les mauvaises hypothéses de clé, qui auront un score trés faible pour au moins une
sous-partie des plaintexts car le HW ne sera toujours correct que pour la bonne hypothése de clé
e Remarque : En réalité, pour éviter les problémes de stabilité numérique, on somme des log au lieu de
faire des multiplications (ne change pas le max)

25

Principe d’une attaque par template : exemple deuxiéme phase

Probabilité/Fréquence

HW =1 HW =7

HW =0 HW = 2 HW = 4 HW = 6 HW =8
/N
/ \

Consommation

Hypothese de clé | HW / Proba
Consommation 0x00 | 0x01

0x02 | 0x03 | 0x04
Trace 0

Trace 1

Trace 2

Trace 3

26

Principe d’une attaque par template : exemple deuxiéme phase

Probabilité/Fréquence

HW =1 = HW =7
HW =0 HW = 2 HW = 4 HW = 6 HW =8
/ \

1.4 Consommation

Hypothese de clé | HW / Proba
Consommation 0x00 | Ox01 | 0x02 | 0x03 | 0x04

Trace 0 14 6/¢€ |0/0.2(2/061/09 |4/¢€

Trace 1

Trace 2

Trace 3

26

Principe d’une attaque par template : exemple deuxiéme phase

Probabilité/Fréquence

HW =1 = HW =7
HW =0 HW = 2 HW =4 HW = 6 HW =8
/ 7\~\ ///7 \\\
/ \

/

3.0 Consommation

Hypothese de clé | HW / Proba
Consommation 0x00 | Ox01 | 0x02 | 0x03 | 0x04

Trace 0 14 6/¢€ |0/0.2(2/061/09 |4/¢€
Trace 1 30 |4/08 [5/0.7|7/€ |4/0.8 |3/0.1

Trace 2

Trace 3

26

Principe d’une attaque par template : exemple deuxiéme phase

Probabilité/Fréquence

HW =1 HW =7

HW =0 HW = 2 HW =4 HW = 6 HW =8
VRN N\ ;
/ \

Consommation

Hypothese de clé | HW / Proba

Consommation 0x00 | Ox01 | 0x02 | 0x03 | 0x04

Trace 0 14 6/€ |0/0.2(2/061/09 |4/¢€
Trace 1 30 |4/08 [5/0.7|7/€ |4/0.8 |3/0.1
Trace 2 34 |2/& |7/& |4/0.155/09 [6/0.5

Trace 3

26

Principe d’une attaque par template : exemple deuxiéme phase

Probabilité/Fréquence

HW =1 HW =7

HW =0 HW = 2 HW = 4 HW = 6 HW =8
/N
/ \

Consommation

Hypothese de clé | HW / Proba
Consommation 0x00 | Ox01 | 0x02 | 0x03 | 0x04
Trace 0 14 6/€ |0/0.2 |2/

0.6 |1/]0.9 |4/ &
Trace 1 3.0 |4//0.8 |5/0.7|7/€& |4/0.8|3/0.1
Trace 2 3.4 2/ ||7/& |4/0

.155//0.9 (6//0.5

Trace 3

2 [J]] 12
Pour chaque hypothése, on multiplie tous les scores ; clé = max

26

Attaques

Masquage
Masquage Matériel

Masquage logiciel

Exemple de I'AES, schéma de Herbst

Vérification du masquage

27

Masquage

28

Masquage : introduction

k [secret]

Dépend des [masque]
K opérations de P m
! ke
fuites ?

res

res

e Appliquable au niveau logiciel ou au niveau matériel sur un circuit

29

Principe du Masquage

e Objectif : decoupler les valeurs manipulées par I'algorithme ou le programme des valeurs secrétes

e Plus précisément : faire en sorte que la distribution des valeurs des expressions intermédiaires soit
indépendante des valeurs secrétes : Threshold Probing Security (TPS) a I'ordre 1

e Introduction de variables de type masque : variables dont la valeur change a chaque exécution
(distribution aléaltoire uniforme sur n bits)

e Intérét : si m est un masque, alors I'expression e = m @ e’ a une distribution uniforme
distribution si m n'apparait pas dans e’

o Rk o®

= o|lm o

e Representation avec des secrets et masques ou avec des shares selon la propriété de sécurité
vérifiée
e Secrets et masques : manipule des expressions de typemet k ¢ m
e Shares : manipule des shares, par exemple s0 et s1 tels que sO & s1 = s

30

Masquage Matériel du "AND" (ET logique)

e Probléme : Soit 2 entrées secrétes sur n shares a et b; comment calculer une sortie ¢ sur n shares
telle que ¢ = a.b de maniére sécurisée ?
e Par exemple, pour n =2 :

e Onaa =a0 @ aletb = b0 & bl
e On veut calculer cO et c1 tels que cO @ c1 = (a0 & al).(b0 @ bl) sans jamais recalculer a et b

e De nombreux schémas existants

31

Exemple : Domain-Oriented Masking AND [GroR et al., 2017] a 'ordre 1

a0.b1®z10
a0.b1 210

al.b0®z10

al.b0®z10

a0.b1®z10DPal.bl

al.b0®z10®a0.b0

32

Ordre Supérieur

Attaque a |'ordre n : une attaque a 'ordre n peut utiliser n valeurs intermédiaires (fils, ou probes)

e |dée : les mesures des différentes probes peuvent étre combinées

e Intuitivement, si manipule m et k & m, on peut retrouver k en 2 observations, tandis que si I'on
manipule ml, m2 et k & ml & m2, il faut 3 observations

e En pratique, peut résulter d'une mesure de consommation globale

Securité a l'ordre n : la sécurité a I'ordre n fournit une résistance face aux attaques a l'ordre n

e Implique que le nombre de shares t > n
La sécurité a I'ordre n requiert d’énumérer tous les tuples possibles de taille n, et de montrer que
la propriété est vérifiée pour chacun

Le circuit DOM-AND a I'ordre 1 n’offre pas de sécurité a I'ordre 2 : la distribution jointe des
expressions (a0, al) n'est pas indépendante de a

33

Autres Propriétés de Sécurité (a I'ordre t)

e Non-Interférence (NI) : la distribution de chaque tuple de t expressions dépend au plus de t shares
par entrée

e Implique TPS si les sharings sont uniformément distribués

e Strong Non-Intérference (SNI) : la distribution de chaque tuple de t expressions dépend au plus de
t shares par entrée, moins le nombre de sorties du circuit parmi les expressions du tuple

e Implique Non-Interférence
e Probe Isolating Non-Interference (PINI)
e Implique NI et est impliqué par SNI

34

Exemple : Domain-Oriented Masking AND [GroR et al., 2017] a 'ordre 1

) 0$\ a0.b0
L/

a0.b1®z10

ao'b'e?“o 20.b1©210®al bl

o a D2y | S)«

210— - ><
o DD T

: al.b0®z10®Da0.b0
al.b0®Dz10

al.b0®z10

al ™ al.bl
—

al

e 1-NI : chaque distribution d'expression dépend au plus d'un share par entrée
e 1-SNI : chaque distribution d’expression dépend au plus d'un share par entrée, excepté pour les
sorties qui ne doivent dépendre d’aucun share 5

Ordre Supérieur : DOM-AND a I'ordre 2

a0

al a2 b0 bl b2

42609220

‘ a2.b0

220

’—"\ a0.b2

20620220

‘ 0.60
a2.b1@©221
‘ a2.bl
221
4‘ ™ alb2
alb2@z21
20.b1@210
‘ a0.bl
210
‘ al.b0
albo@z10

2061 ©210@a0.b0

a2b0®220@a2.b2

Yo—e

a2.60@a2.b1 ©a2.629220®221

Do
) a0.b0Ba0.b1 Ba0.b2B 210D 220

cl
al.b0@al.bl Bal b2@210@221

al.b0@2z10@al bl

— »

36

Prise en Compte des Glitches

e Considére que les valeurs temporaires sur les fils sont suffisantes pour fuir de I'information, et sont
incluses dans le modéle de fuite

e Modifie la fuite associée a chaque probe

e Orthogonal a la propriété de sécurité

a oﬁ\ {a0,b0}
/

{a0.b1©210}
{a0,b1,210} :

b0 {.‘i:)()] (a0b1) >} >
z10— ><:
b1 (o1})MD' é

' {a1,60,210}

{a0.b1z10,a1,b1}

{al.b0®210,a0,b0}

{al.b0Dz10}

{al,b1}

al D
—a =

37

Schémas de Masquage du AND

e DOM AND : Schéma dit Domain Oriented Masking [GroR et al., 2017], resistant aux glitches
e ISW AND : Premier schéma proposé en 2006 [Ishai et al., 2003]
e ISW AND refresh : Variante avec un refresh sur une des entrées [De Cnudde et al., 2016]

e Tl AND : Schéma dit Threshold Implementation n'utilisant pas de random
intermédiaires [Nikova et al., 2006]

e NI Mult and SNI Mult : Schémas vérifiant les propriétés NI et SNI [Bordes and Karpman, 2021]
e PINI Mult : Schéma implémentant la propriété PINI, introduit dans [Wang et al., 2023]

e GMS AND : Deux implémentations du AND utilisant le Generalized Masking Scheme, décrit dans
I'article, utilisant respectivement 3 et 5 shares [Reparaz et al., 2015]

e Et bien d'autres...

e Les schémas différent sur les propriétés de sécurité vérifiées, le nombre de portes, le nombre de
registres, etc.

38

Description du schéma ISW a I'ordre t pour une porte AND

e Soient a=a1 @ ... H arr1 et b= by @ ... D bry1 deux entrées secrétes découpées en t + 1 shares
o Pour1<i<j<t+1(i#j), on définit z; et z; de la maniére suivante :

® z;; est un bit random

o z ;= (zi; D ajb)) ® a;b;

e On calcule les bits ¢; de la sortie de la maniére suivante :

¢i = aib; & @Zi,j
J#i
e Le circuit résultant calcule a.b et est TPS a l'ordre t

e Une porte AND est ainsi convertie en O(t?) portes

e Remarque : ce schéma ne prend pas en compte les glitches

39

Exemple ISW : porte AND pour t = 2

)
—

L

Tﬁn

40

Masquage par Threshold-Implementation (TI) [Nikova et al., 2006]

Cadre : fonctions combinatoires, plusieurs entrées et plusieurs sorties constituées de n shares
e Comme précédemment, le codage pour une valeur donnée d'une entrée doit étre uniforme parmi les
codages possibles
Contrainte : n'utilise pas de valeur aléatoire au milieu du calcul

Idée : si chaque sortie ne dépend pas d'un indice (identique) pour toutes les entrées, alors chaque
sortie est indépendante de chacune des valeurs secréte

e Exemple : z; ne dépend pas de x1, y1; z2 ne dépend pas de x2, y», etc.

Chaque caractéristique de chaque fonction z; (consommation, rayonnement EM, etc.) est
indépendante de x, y et z

Marche aussi pour les valeurs intermédiaires

41

Masquage Tl : exemple du AND

e X=xX1Dx2Dx3, y=y10y2Dy3
Les 3 fonctions de sorties :

® 71 = X2¥2 D Xx2y3 D X3)2
® 7> = x3y3 D Xx1y3 D x3y1
® z3 =x1y1 © Xx1y2 D x2y1

e Sont une implémentation Tl de x.y

e Probleme de cette réalisation : si la sortie z est utilisée en entrée d'un autre circuit TI, il faut que
le codage de chaque valeur soit uniforme parmi les codages possibles (hypothése requise pour
garantir la sécurité) : ce n'est pas le cas ici (propriété dite d’équilibre ou de balance)

42

Masquage Tl : exemple du AND

e On s'intéresse au cas x = 1 et y = 1 (seule possibilité pour que la sortie vaille 1)

e Sous I'hypothése d'uniformité de codage et d'indépendance des entrées, chacune des lignes a la
méme probabilité

e On observe que le codage en sortie n'est pas uniforme

X
w
X
()
X
o

<
w

<
IN]
=
N
w
N
N)
N
-

HHEMHMHMMHKMRMEOOOOOOOO
HKHEHKHEFHOOOOOOOORKKHEKHR

HHOOHKHHOORHKOOHKEKOO
HOROHROROROROROHMKO
HOOHHOOKRHKOORHKHKO O K|

HOOHOHFHOHFHOOOOHRHHOO
HHOOFHFOHOOKKOOOOO

FHHROOOOHKHKHEKHKOOOO
HOFFOOOOOHFHOOHHOOHRHH

e Une implémentation équilibrée n'est pas possible avec seulement 3 shares
43

Masquage Tl : exemple du AND

e Implémentation équilibrée a 4 shares :

¢ z1=(x30x)(y2Dy3)Dy2Dy3 Dya®x2Dx3Dxa
¢ 2=(a9x3) (11 Oya)By1DBysDys Bx1 Dx3Dxs
o z3=(Dx)(y1Dya) Dy2Dx
o z2=(x10x)(2Py3)Dy1 Dx1

e Beaucoup de portes pour une protection a l'ordre 1

a4

Masquage logiciel

But : rendre aléatoires les valeurs intermédiaires du calcul, les décorréler des valeurs des secrets

e Trés dépendant de I'algorithme

Peut &tre ajouté dans le source code

e Méme si en pratique, les programmes masqués sont souvent écrits directement en assembleur par
des experts

e Probléme résiduel : il y a toujours une sensibilité avant/pendant le masquage

e 2 grands types de masquage : booléen (xor &) et arithmétique (+ mod 2")

45

Exemple de masquage de I’AES (Schéma de Herbst [Herbst et al., 2006])

State Masks

m1[m1 m1]ma’

(m1', m2',[m3', m4')

AddRoundKey

e Pour chaque exécution, utilisation de 6

masques sur 8 bits : m, m’, et (m1, m2, m3,

HEIEIE
HEIEIE
HEIEIE
HEIEIE

m4) (masques par ligne)

e Calcul de (m1’, m2', m3’, m4'), image de

3(3[3]3
3(3(3(3
313[3]3
3(3(3(3

(m1, m2, m3, m4) par le MixColumns (linéaire

par rapport a |'addition dans GF(2®) et donc

au @) o [[[

e Ajout d'une fonction ChangeMasks ChangeMasks ul Ll
e Adaptation de la génération des clés de ronde EREE
m3|m3[m3|m3

en conséquence

MixColumns

46

Exemple de masquage de I’AES (Schéma de Herbst [Herbst et al., 2006])

e Conséquence : il faut adapter certaines opérations
e AddRoundKey : au lieu de xorer un octet d'une ligne i avec K, il faut le xorer avec K @ mi’ & m

e Adaptation de la génération des clés de ronde en conséquence
e SBox : il faut calculer une autre permutation, I'unique permutation SBox’ telle que SBox'[x & m]
= SBox[x] & m’
e ShiftRows : ne modifie pas les masques, pas de modification

MixColumns : pas de modifications, mais il faut précalculer les mi’ au début

Probléme
e La génération des clés de ronde utilise les clés en clair

e = On peut aussi la masquer

47

Exemple de masquage de I’AES : Key Schedule
- == = - - - - . Statut de masquage de la r\a"
Opérations ajoutées

e k2 k3 k4 k5 k6 k8 k9 k10 k11 k12 k13 k14 k15
Mo0DE) gec=mcoSErocamoos ST e P e e o P SeoSEroigbiass e eI

mmIMT—fé Lo Lo od &7 6T o &7 &7 o7 & & &7 o &

33333
RARRE

-F----4----H-----F---- EREE B B B B] et Bl BT SR --=--1--ml'+m

48

Exemple de masquage de I’AES : Key Schedule

Clé orlgmale

]1 k
Clederondeﬂziiiiiiiiiiii KL 4
k12 k13 k14 k15!
,,,,,,,,,, mi'+m
m2-.
m3".
m4'.
SB' SB' 3 SB'
E 77777 E s 7ml’+m Fm'
7777777777 I 7lnl'+m w "‘"“'W‘*"‘lr [IR A
mi'+m
L@,E@ Le,,},@,,,, L tebelbole | | .

49

Comment Vérifier un Schéma de Masquage ?

e Empiriquement : Effectuer des simulations ou des captures, et utiliser des tests statistiques comme
le t-test
e Inconvénient : Ne donne pas de garantie (dépendant de facteurs d'implémentation), localisation

N Ml

eor rd, r4, r6
add ro, ro, r4
add r2, r2, #-1
ldr r7, [rl, #4]
bne r7, r9, loop

des fuites

Statistical
Analysis

Masked Assembly Code

Simulated
Power Traces

50

Comment Vérifier un Schéma de Masquage ?

e Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution
statistiquement indépendante des secrets (TPS)

Masks Secrets

— —

A X Y Al - b ~ kb
a0 =(m)~ (Ma) & (/ kb)) ‘na & (mb ~ kb) — —v

) R -m A (ma & (mb ~ kb))|— —-
al = a0 ~ ((ma) ~ ka) & (@mb) -ma A(Eg (m) —| Prover —»j

co = (&) A® -(ma ~ ka) & mb — —
cl = ((ma) "~ (ka) & (mb) ~ kb))~ al
Masked Program Expression List

e lére idée : énumérer toutes les valeurs des entrées, des secrets et des masques, et regarder si les
distributions obtenues sont identiques pour toutes les valeurs des secrets
e Ne passe pas a |'échelle
e = Les outils de vérification formelle sont symboliques
51

Veérification Formelle de Masquage

Plusieurs familles de techniques, parmi lesquelles :
e La vérification par Inférence
e Etablir des propriétés pour des expressions simples
e Inférer des propriétés lors d'opérations entre expressions, a partir des propriétés de ces epressions et de
|'opérateur
e La vérification par Substitution
e Transformer successivement une expression grace aux masques jusqu'a ce que la propriété de securité
soit vérifiée

e Les 2 techniques peuvent étre utilisées a la fois pour la vérification logicielle et matérielle

52

Exemple d’Outil de Vérification par Substitution : VerifMSI [Meunier and Taleb, 2023]

e Bibliotheque Python pour la vérification d'expressions symboliques (HW et SW)
e Chaque variable a un type parmi secret, mask et public

e Les variables et constantes ont une taille fixe arbitraire (ex : 9 bits)

e Support pour les opérations booléennes et arithmetiques

e Possibilité d'utiliser des valeurs concrétes pour la simulation

e Beneficie du flot de contréle Python

e Représentations possibles avec shares ou secrets

e Constructions matérielles (portes, registres), glitches

e Implémente différentes propriétés de sécurité

e Veérifications aux ordres supérieurs

53

VerifMSI : Vérification matérielle d’un circuit

Circuit DOM-AND en VerifMSI

Secret and Masks declaration

a = symbol () , 1) # 1—bit secret
b = symbol(s , 1) # 1—bit secret
z10 = symbol() , 1) # 1—bit mask
Remaining gates and registers
Do the sharing for 'a’ and 'b’ alb0 = xorGate(alb0, z10)
a0, al = getPseudoShares(a, 2) alb0 = Register(alb0)
b0, bl = getPseudoShares(b, 2) a0Obl = xorGate(aObl, z10)
Create input gates a0bl = Register(a0Obl)
a0 = inputGate(a0) c0 = a0bo
al = inputGate(al) c0 = xorGate(cO, aObl)
b0 = inputGate(bO0) cl = albl
bl = inputGate(bl) cl = xorGate(cl, alb0)
z10 = inputGate(z10) # Check the TPS security property
Cross products checkSecurity (order, wGlitches , , c0, cl)

a0b0 = andGate (a0, b0)
a0bl = andGate(a0, bl)
alb0 = andGate(al, bO)
albl = andGate(al, bl)

54

VerifMSI : Algorithme principal de vérification

Algorithm 1 Algorithm for verifying threshold probing security

Require: nodeln is the root of the expression to analyse
Ensure: False is returned if the distribution of the expression nodelIn is dependent from a secret it contain. Otherwise, True is probably
returned.
procedure ThresholdProbingSecurity(nodeIn)
n < simplify(nodeIn)
masksTaken < set()
while True do
if secretVarOcc(n, .) = O then

return True > No more secret
if maskedBy(n, ., .) then

return True > A mask is masking the current node
mask, nodeToReplace <— SelectMask(n, masksTaken) > mask is the mask node masking the node to replace

if mask = None then
return False
masksTaken.add(mask)
n < GetReplacedGraph(n, mask, nodeToReplace)
n < simplify(n)

55

Exemple d’Outil de Vérification par Inférence [Ben El Quahma et al., 2019]

Types de distributions définis :

e Random Uniform (RUD)
e Unknown (UKD)

e Constant (CST)
e (Statistically) Independent from Secrets (ISD) : méme distribution pour toutes les valeurs du secret.

e=(k ®m) & m e’= (k @ my) & my

k my mo e e’
0 0 0 0

. 0 1 0 P(e=0\k=0)=% 0 P(e’:O\k:O):%
1 0 0 P(e=1lk=0)=1 1 P(e'=1|k=0)=1
1 1 1 1
0 0 0 0

a 0 1 1 P(e:O\k:l):% 0 P(e'=0|k=1)=1
1 0 0 P(e=1lk=1)=7 0 P(e'=1|k=1)=0
1 1 0 0

56

(k ® m) & m = (RUD) & RUD = ISD — faux
» Nécessaire de mémoriser les dépendances structurelles

(k ® m) & m = (RUD{m,k}) & RUD{m} = UKD

Types garantis sans fuite

> cRUD Type potentiellement vulnérable
» eISD » e UKD avec dépendance structurelle sur un
» e UKD sans dépendance structurelle sur un secret

secret

57

Schéma de vérification

r0 « k; r1 «— ml; r2 < m2; r3 < m3

1 eor r4, r0, r1 # k & ml

2 eor r5, r0, r2 # k & m2

3 and r5, r5, r3 # (k & m2) & m3

4 and r5, 5, r4 # (k ® ml) & ((k & m2) & m3)

y La distribution de la racine est elle statistiquement
@ indépendante de k7
@ @ m3 » Etiqueter les variables d'entrée selon leur type
mask » Combinaison ascendante de types de distribution
mi K m>2 utilisant des régles d'inférence

mask secret ~mask

Arbre d’expression de la derniére instruction

58

Masques dominants

e expressione =€ & m /e =¢e + mmod 2"
e mRUD

e m n'apparait pas dans e’

— eRUD et m est un masque dominant de e.

Pour chaque expression, 2 ensembles : domg (e), dom, (e)
Exemples :

o domg ((k + m1) & (k & ml G m2)) = m2
e dom; ((k + m1) ¢ 0) = dom;(k + m1) = ml

59

Autres régles d’inférence

e Pour @, + mod 2"
e Pour AND, OR

e Distribution des accés SBox = distribution de |'expression d'accés (propriété de permutation)

Régle Disjoint
e Deux expressions uISD et vISD

e Aucun masque en commun entre u et v

= (u op v)ISD pour tout opérateur binaire op

60

Exemple d’analyse de distribution

Derniére instruction i4 : (k & m;) & ((k ® mp) & m3)

ISD {k, m1, m2, m3}

ISD {k, m2, m3}

m3
-
RUD{m3}
ml k m2
—
RUD{m1} UKD{k} RUD{m2}

> i4 est statistiquement indépendante de k

61

Comment Vérifier un Schéma de Masquage ?

e Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution

statistiquement indépendante des secrets (TPS)

Masks Secrets

NN

2 =(m)" @ & (@)} (D))

al = a0 ~ ((ma " (a) & (@mb)
0 = (@& @) "(®)

cl = ((@) ~ ka) & (@)~ kb))~ al

-mb ~ kb

-ma & (mb ~ kb)

-m ~ (ma & (mb ~ kb))
-ma "~ ka

-(ma ~ ka) & mb

Prover

Masked Program

e lére idée : énumérer toutes les valeurs des entrées, des secrets et des masques,

Expression List

distributions obtenues sont identiques pour toutes les valeurs des secrets

e Ne passe pas a |'échelle

e = Les outils de vérification formelle sont symboliques

—
—
—
—

—V

et regarder si les

62

Comment Vérifier un Schéma de Masquage ?

e Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution

statistiquement indépendante des secrets (TPS)

e Inconvénients : Les expressions considérées pour la preuve ne modélisent pas forcément bien les

fuites réelles
e = Un schéma de masquage prouvé peut fuire en pratique

Masks Secrets

NN

N . -mb ~ kb —
a0 =(m)" (@3 & (@/ kD) -ma & (mb ~ kb) -
S ew = ((@ " @) &@) :ma "(E: & (mb ko)) :: Prover
0 = (@&@@) A@D :(ma ~ ka) & mb —
cl = ((@) ~ ka) & (@)~ kb))~ al
Masked Program Expression List

e lére idée : énumérer toutes les valeurs des entrées, des secrets et des masques,

distributions obtenues sont identiques pour toutes les valeurs des secrets

e Ne passe pas a |'échelle
e = Les outils de vérification formelle sont symboliques

—
—
—
—

—V

et regarder si les

62

Reduire I’Ecart Entre les Expressions Analysées et les Fuites Réelles

e 2 techniques de vérification ont été proposées pour remplacer la vérification des valeurs
intermédiaires

Use
t1)
ao
t1
al

e Vérifier les transitions entre variables
e Vérifier les transitions entre Registres Généraux (GPR)

Variables
=mb ~ kb
= t0 & ma
=tl " m

=ma ~ ka
= t0 & mb
=tl "~ a0

—

Transition for :
(ma ~ ka) ~ (mb * kb)

Transition for (t1:
((mb ~ kb) & ma) *
((ma ~ ka) & mb)

Assembly Code

, Analyse
—w: eor r0, r8, r9
I
I
! and @, ro, ré
I
L eor@, rl, r5
Prover | |eor r2, r6, r7
. |and 3 r2, r8
I
I |eor (r3), r3, rl
1
I
I
1
r5: m rg: mb
ré: ma r9: kb
r7: ka

Transition for @:
m

Transition for (r3):
((mb ~ kb) & ma) ~ m

—

—

Prover

63

Prouvé sans Fuite Secréte ?

e Cas du “ISW And"
e Prouvé sans fuite dans le modéle en valeur
e Prouvé sans fuite dans le modéle en transition entre GPR

08 T T T T
a=a0”al ——
b=b0~bl ——

o7l c=c0”cl

; r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m

o
o
T

and.w r4, r0, r3 ; a0 & bl $

eors r4, r7 ; t0O = (a0 & bl1) " m éos- |
and.w r5, r2, rl ; al & b0 8

ands r0, rl ; a0 & bo 8

ands r3, r2 ; bl & al 004r 1
eors r4, r5 ; tl = t0 -~ (al & bO) g

eors r0, r7 ; cO0 = (a0 & b0) " m Eo.z- B
eors r4, r3 ; cl = t1 ~ (al & bl) g

str r0, [r6, #0] 80_2_

str r4, [r6, #4]

LIRS
11 120 130 140

0
Time (sample)

e Comment se rapprocher des fuites réelles ?
64

Cas Etudié : Board STM32F1 [De Grandmaison et al., 2022]

Port D BusD
Port A
MuxA
PortB |uixReah ris e Arm Cortex-M3 : Modélisé a partir
RegFile Mo ||| d'une description RTL
MuRegB g e Memoire : Modéle en boite noire
#imm / sh MuxDataAdder (paS de RTL)
Data Add . L .
L~ Al e Conception et Implémentation de
Reglmmy m ”
nombreux “leakage test vectors” :
L e Détection des sources de fuite
AGU =N MuxDataWrite (black—box)
Ll xDataReg .) .
WRIGAIT Regagrt DataReg e Validation (white-box)
‘Addr Adder 2| (g e Classement
[#Eimm % ‘3
[]
MuxRegAddr2 I@ddrz LSU E 5
Addr DataOut Dataln

e Accessible en ligne : https://www-soc.lip6.fr/armistice

65

https://www-soc.lip6.fr/armistice

Arm Cortex-M3 : Exemple

BusD

MuxDataAdder

Data Adder

Port D
Port A
MuxA
Port| B A
MuxRegA RegA
MuxB | | |
Lo
MuxRegB RegB
#imm / sh
Lo
Reglmny
Lo
uxRegAddrl RegAddrl
[#imm

MuxRegAddr2 Regaddr2

Addr Adder

DataReg

MuxDaf

aWritg

Formatting
Extraction

DataOut Dataln

66

Arm Cortex-M3 : Exemple

Port D BusD
ml
Port A
MuxA —ye
PoryB MuxRegA @
MuxB | | |
Lo
MuxRegB RegB
#imm / sh MuxDataAdder
Data Adder
Lo
Reglmny
eor r6, r4, r5 MuxDataWrite
Lo
uxRegAddrl RegAddrl DataReg
Addr Adder 2 c
l#imm |2
gl |E
Lo 2
MuxRegAddr2 RegAddr2 S| |x
e |d
PortA: ml
Addr DataOut Dataln
PortB mo0

MuxRegA / RegA: ml
MuxRegB / RegB: m0

ALUOut 66

Arm Cortex-M3 : Exemple

Port D BusD
0 ml
Port A ml® mo mle mo
MuxA
Port| B A\
MuxRegA RegA
MuxB [| | ALUOut
K Lo
® mo MuxRegB peop
#imm / sh MuxDataAdder
Data Adder
Lo
Reglmny
eor 16, rd, r5 MuxDataWritg
Lo
eorr8, ré6, r7 uxRegAddrl RegAddrl DataReg
Addr Adder 2 c
l#imm |2
. gl g
2
MuxRegAddr2 RegAddr2 5 £
2 (&
PortA: ml 0
Addr DataOut Dataln
PortB mo0 k ® m0
MuxRegA / RegA: ml ml & mo
MuxRegB / RegB: mO k ® m0
ALUOut ml @ m0

66

Arm Cortex-M3 : Exemple

Port D BusD
Port A k® ml
MuxA
Port B MuxRegA @
MuxB | | | ALUOut
Lo
MuxRegB RegB
#imm / sh MuxDataAdder
Data Adder
Lo
Reglmny
eor 16, rd, r5 MuxDataWritg
Lo
eorr8, ré6, r7 uxRegAddrl RegAddrl DataReg
Addr Adder 2 c
l#imm |2
. gl g
2
MuxRegAddr2 Regaddr2 5 £
e |d
PortA: ml 0
Addr DataOut Dataln
PortB mo0 k ® m0
MuxRegA / RegA: ml ml & mo
MuxRegB / RegB: mO k ® m0
ALUOut mlem0 k& ml

66

Arm Cortex-M3 : Exemple

BusD

MuxDataAdder
Data Adder

Port D
Port A
MuxA
Port B MuxRegA @
MuxB | | |
Lo
MuxRegB RegB
#imm / sh
Lo
Reglmny
eorr6, r4, r5
Lo
eorr8, ré6, r7 uxRegAddrl RegAddrl
[#imm
MuxRegAddr2 RegAddr2
PortA: ml 0
PortB mo0 k ® m0
MuxRegA / RegA: ml ml & mo
MuxRegB / RegB: mO k ® m0
ALUOut mlem0 k& ml

ml

k

mo

k

k ® m0

Addr Adder

DataReg

MuxDaf

aWritg

Formatting
Extraction

DataOut Dataln

66

Retour sur le cas du “ISW And”

e6 a0 - bO @ a0 - b1 @ al - bO a,
e7 a0 - b0 P a0 -bl@al-b0Pal- bl | a,

Instructions Leaks : expr. name Ty DEC T T LI fT TG
I1 and.wr5, r2, ri MuxRegA, RegA : e0 28 Exe2 17 18
RegB : el T ® MEM L 17 18
Expressions | €0 ©0fleze3 ea o5 66 €7 €7 €7 e7 et
12 ands r0, ril PortA, Regh : e2 e2
AluQut : e3 o .
13 ands r3, r2 AluOut : e4 aza0”al——
I4 eors r4, rb5 RegB : eb 2 EEOQE]]_'+
15 eors r0, r7 AluQut : €6 oer 1
16 eors r4, r3 AluQut : e7 'g
17 str r0, [r6, #0] o § o |
18 str r4, [r6, #4] PortB, RegB, DataReg, é
DataOut, BufferMem : e7 8 04 -]
Ir)
Nom Expression Fuites _5 03l i
e0 a0 - b1 @ al a, ¢ %
el | a0 - bl @ bO b, ¢ Shoall]
e2 a0 @ al a, c o
e3 a0 - b0 P al - bO a, c N
e4 | a0 - bO @ al - b1 a, b, ¢ orr J <.] W %}:
e al - b b1 b, ¢ y Nﬁ% A\ A
5 |a00@ : Lo] Ve
b

» € 80 90 100 . 110 120 130 140
c Time (sample)

67

Merci !

Contact :
Email : quentin.meunier@lip6.fr

quentin.meunier@lip6.fr

References i

@ Ben El Ouahma, I., Meunier, Q. L., Heydemann, K., and Encrenaz, E. (2019).
Side-channel robustness analysis of masked assembly codes using a symbolic approach.
Journal of Cryptographic Engineering, 9 :231-242.

[§ Bordes, N. and Karpman, P. (2021).
Fast verification of masking schemes in characteristic two.
In Advances in Cryptology—-EUROCRYPT 2021 : 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part Il, pages 283-312. Springer.

@ De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., and Rijmen, V. (2016).
Masking aes with shares in hardware.
In Cryptographic Hardware and Embedded Systems—CHES 2016 : 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, pages 194-212. Springer.

References ii

@ De Grandmaison, A., Heydemann, K., and Meunier, Q. L. (2022).
Armistice : Microarchitectural leakage modeling for masked software formal verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(11) :3733-3744.

@ GroB, H., Mangard, S., and Korak, T. (2017).
An efficient side-channel protected aes implementation with arbitrary protection order.
In Topics in Cryptology—CT-RSA 2017 : The Cryptographers Track at the RSA Conference 2017,
San Francisco, CA, USA, February 14-17, 2017, Proceedings, pages 95-112. Springer.

[§ Herbst, C., Oswald, E., and Mangard, S. (2006).
An aes smart card implementation resistant to power analysis attacks.
In ACNS, volume 3989, pages 239-252. Springer.

[Ishai, Y., Sahai, A., and Wagner, D. (2003).
Private circuits : Securing hardware against probing attacks.
In Annual International Cryptology Conference, pages 463—481. Springer.

References iii

[d Meunier, Q. and Taleb, A. (2023).
Verifmsi : Practical verification of hardware and software masking schemes implementations.
In 20th International Conference on Security and Cryptography, volume 1, pages 520-527.
SciTePress.

@ Nikova, S., Rechberger, C., and Rijmen, V. (2006).
Threshold implementations against side-channel attacks and glitches.

In International conference on information and communications security, pages 529-545. Springer.

[§ Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., and Verbauwhede, I. (2015).
Consolidating masking schemes.

In Annual Cryptology Conference, pages 764—783. Springer.

@ Wang, W., Ji, F., Zhang, J., and Yu, Y. (2023).
Efficient private circuits with precomputation.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 286—309.

	Attaques
	Rappel : Consommation des instructions et des données
	Principe de la DPA : Differential Power Analysis
	Principe de la CPA : Correlation Power Analysis
	Attaque par template

	Masquage
	Masquage Matériel
	Masquage logiciel
	Vérification du masquage

