
Side-Channel Attacks : Sécurité et Attaques par Canaux Auxiliaires

Attaques différentielles, Attaques template, Masquage et vérification

Quentin Meunier

2025

Sorbonne Université
Laboratoire d’Informatique de Paris 6
4 Place Jussieu, 75252 Paris, France

1

Introduction : Side-Channel Attacks

Émission
EM

Consommation
de courant

Temps
d'exécution

Traces
Analyse statistique

pour retrouver la clefCanaux cachés

2

Introduction : Les SCA dans la vraie vie

3

Introduction : Les SCA dans la vraie vie

4

Outline

Attaques

Rappel : Consommation des instructions et des données

Principe de la DPA : Differential Power Analysis

Principe de la CPA : Correlation Power Analysis

Attaque par template

Masquage

5

Outline

Attaques

Rappel : Consommation des instructions et des données

Principe de la DPA : Differential Power Analysis

Principe de la CPA : Correlation Power Analysis

Attaque par template

Masquage

6

Consommation électrique d’instructions assembleur

• Des instructions différentes consomment différemment

7

Consommation des données

• Modèle simple : considérer le poids de Hamming des données
• Ce modèle simple marche !

8

Principe de la DPA

• Objectif : retrouver la clé secrète d’un algorithme cryptographique à partir de la consommation
d’encryptions matérielles ou logicielles

• Hypothèse de base : la valeur de consommation d’un calcul à un instant donné dépend de la
valeur du résultat du calcul

• Conséquence : la valeur d’un bit intermédiaire du calcul b a une incidence sur la consommation à
cet instant

• Hypothèse supplémentaire : La consommation d’un calcul fixé suit une loi normale à un instant
donné (c’est le cas en pratique)

• Si on choisit le bit b suffisamment tôt dans le calcul, cela découple les hypothèses requises sur les
différents octets de la clé ⇒ On s’intéresse à la première ronde (ou à la dernière en attaquant la
dernière clé de ronde)

• Dans la suite on s’intéresse à l’attaque d’un octet de la clé

9

Principe de la DPA : exemple sur l’AES

• On part d’un ensemble de traces T de consommation (pour lesquelles on connait le plain text
PT), et pour chaque valeur possible pour l’octet de clé (∈ [0; 255]), on divise les traces en 2
ensembles T0 et T1 selon la valeur de b sous cette hypothèse de clé

• Si l’hypothèse de clé est mauvaise :
• On a réparti les traces selon un critère arbitraire, qui s’apparente à un critère aléatoire du point de

vue de la consommation
• T0 et T1 doivent avoir les mêmes moyennes de consommation au point d’intérêt qui correspond à

l’instant où b est calculé

• Si l’hypothèse de clé est la bonne :
• On a trié les traces selon un critère qui a une influence sur la consommation, cela doit donc être

visible au point d’intérêt
• T0 et T1 doivent donc avoir des moyennes de consommation différentes au point d’intérêt (sinon cela

veut dire que l’hypothèse de base est fausse)

• On peut donc déterminer si l’hypothèse de clé est la bonne en regardant l’écart entre les moyennes
des traces T0 et T1

10

Principe de la DPA : exemple sur l’AES

PT=0xABCD...

Pour une hypothèse
d'un octet de clé k :
b = calcul(k, PT)

Tri des traces
en 2 ensembles
selon la valeur
de b

PT=0xABCD... PT=0x14DF...

E0 E1

Moyenne

Différence et
résultat attendu

Si k est une
mauvaise hypothèse

Si k est la
bonne hypothèse

11

Principe de la DPA : exemple sur l’AES

• Comment choisir le bit b ?
• Le premier calcul effectué est un AddRoundKey, qui met en jeu uniquement un octet de clé avec le

plain text connu
• Donc par exemple, regarder un bit (n’importe lequel) de x[0][0] après le premier ARK pour attaquer

l’octet de clé 0 : on peut penser à faire ce choix

• Problème : Une hypothèse de clé différente d’un bit (au sens de hamming) de la bonne clé donnera
également un bon tri des traces, l’opposé de la clé également (même tri que la bonne hypothèse)

• (k ⊕ δ) ⊕ PT = (k ⊕ PT) ⊕ δ proche de k ⊕ PT pour δ petit

• Et comme on ne regarde qu’un bit, c’est encore pire : 1 seul découpage possible !
• Si on regarde le bit 0, toutes les clés paires donneront le même découpage (bon ou mauvais), et

toutes les clés impaires, le découpage “inverse”

• Pour ne pas avoir ces problèmes, on regarde un bit après la première SBox : tous les bits de
l’hypothèse de clé entrent en compte dans le calcul et deux clés proches n’ont pas de raisons de
donner des résultats proches (moyennage sur les valeurs de PT)

• Sbox[(k ⊕ δ) ⊕ PT] ne “matche” Sbox[k ⊕ PT] pour tous les PT que si δ = 0

• Variante : Au lieu de ne regarder qu’un seul bit, on regarde le poids de Hamming de la valeur
intermédiaire, et on trie les traces dans T0 ou T1 selon que le HW soit inférieur ou supérieur à 4

12

Exemple DPA sur l’AES en multi-bit

• On mesure les 8 valeurs de consommation suivantes en sortie de la SBox : 5.3, 5.9, 2.0, 2.2, 5.4,
0.8, 4.1, 5.2

• Pour les 8 traces, le plaintexts associés sont : 0x59, 0xF1, 0x75, 0xB7, 0x64, 0x15, 0x85, 0xC2
• L’octet de clé correct est 0x41

Octet de clé = 0x41 Octet de clé = 0x00
PT SBox[k ⊕ pt] HW T0 ou T1 SBox[k ⊕ pt] HW T0 ou T1
0x59 0xAD 5 T1 0xCB 5 T1
0xF1 0xE7 6 T1 0xA1 3 T0
0x75 0x18 2 T0 0x9D 5 T1
0xB7 0x0D 3 T0 0xA9 4 -
0x64 0x3F 6 T1 0x43 3 T0
0x15 0x20 1 T0 0x59 4 -
0x85 0x1C 3 T0 0x97 5 T1
0xC2 0xEC 5 T1 0x25 3 T0

T0 = (2.0 + 2.2 + 0.8 + 4.1)/4 = 2.3 T0 = (5.9 + 5.4 + 5.2)/3 = 5.5
T1 = (5.3 + 5.9 + 5.4 + 5.2)/4 = 5.4 T1 = (5.3 + 2.0 + 4.1)/3 = 3.8
|T0 − T1| = 3.1 |T0 − T1| = 1.7 13

Principe de la CPA

• Objectif : retrouver la clé secrète d’un algorithme cryptographique à partir de la consommation
d’encryptions matérielles ou logicielles

• Hypothèse de base : la valeur de consommation d’un calcul un instant donné dépend de la valeur
du résultat du calcul

• Attaque basée sur un modèle de consommation d’énergie
• De même que pour la DPA, l’attaque cible un point particulier dans le temps au cours de

l’exécution
• La valeur intermédiaire doit dépendre de la valeur secrète et changer à chaque trace
• ⇒ elle doit dépendre du plaintext

• Pour l’AES, comme pour la DPA, on cible en général un point après la première SBox ou avant la
dernière

• Pas encore de mélange des octets de clé entre eux, permet de tester moins d’hypothèses

• Modèle le plus utilisé pour la consommation d’énergie : poids de Hamming (HW) d’une valeur
particulière ou distance de Hamming (HD) entre 2 valeurs intéressantes (par exemple stockées
consécutivement dans le même registre)

• Dans la suite, on ne considère qu’un seul octet de clé

14

Principe de la CPA : Corrélation empirique

• Le modèle de consommation est corrélé avec la consommation énergétique réelle en utilisant le
coefficient de corrélation empirique (dit coefficient de Pearson).

• Ce coefficient de corrélation empirique entre 2 échantillons xi et yi (1 ≤ i ≤ n) est donné par :

r̂ =
σ̂X ,Y

σ̂X σ̂Y
(1)

avec

σ̂X ,Y =
1
N

N∑
i=1

(xi − x)(yi − y) (2)

σ̂X =

√√√√ 1
N

N∑
i=1

(xi − x)2 =
√

σ̂X ,X , et σ̂Y =

√√√√ 1
N

N∑
i=1

(yi − y)2 (3)

où x et y sont les moyennes empiriques de xi et yi .

15

Principe de la CPA

• On ne considère qu’un seul instant temporel : le moment auquel la valeur interne est calculée

1.4 4.3 2.6 4.7 1.8 3.1

Trace # 0 1 2 3 4 1,000

Measures

...Vector

1 4 3 5 2 3

Trace # 0 1 2 3 4 1,000

HW of the internal value for
each trace for a correct Key Hypothesis

...Power
Model
Vector

HW of the (uncorrect) internal value for
each trace for a wrong Key Hypothesis5

0.5

1

5

5 4 2 4 3 2

Trace # 0 1 2 3 4 1,000

...Power
Model
Vector

1

5

• Complexité totale pour tous les instants : # traces × # samples × # key hypotheses
16

Principe de la CPA

• Cas 1 : on connait le POI pour faire l’attaque
• Étant données N traces de consommation de L échantillons, on note tn la valeur de consommation

de la trace n au POI (avec 1 ≤ n ≤ N).
• Pour K clés (sous-clés) possibles (on a typiquement K = 256), on note hn,k la valeur estimée de

la consommation, selon le modèle choisi, pour la trace n et l’hypothèse de clé k (0 ≤ k < K)
• Remarque : cette valeur dépend du plaintext

• On peut ensuite voir à quel point le modèle et les mesures correspondent pour chaque hypothèse
de clé k en calculant :

rk =

N∑
n=1

(hn,k − hk)(tn − t)√√√√ N∑
n=1

(hn,k − hk)
2

N∑
n=1

(tn − t)2

(4)

où hk et t sont respectivement les valeurs moyennes de la consommation modélisée et de la
consommation mesurée.

• Puis, en prenant le maximum des rk pour toutes les valeurs de k, on peut en déduire quelle
hypothèse de clé est la plus probable

17

Principe de la CPA

• Cas 2 : on ne connait pas le POI pour faire l’attaque
• Étant données N traces de consommation de L échantillons, on note tn,i la valeur de

consommation au point i de la trace n (avec 1 ≤ n ≤ N, 1 ≤ i ≤ L).
• Pour K clés (sous-clés) possibles (on a typiquement K = 256), on note hn,k la valeur estimée de

la consommation, selon le modèle choisi, pour la trace n et l’hypothèse de clé k (0 ≤ k < K)
• Remarque : cette valeur dépend du plaintext, mais pas du point dans le temps

• On peut ensuite voir à quel point le modèle et les mesures correspondent pour chaque hypothèse
de clé k et à chaque instant i en calculant :

rk,i =

N∑
n=1

(hn,k − hk)(tn,i − ti)√√√√ N∑
n=1

(hn,k − hk)
2

N∑
n=1

(tn,i − ti)
2

(5)

où hk et ti sont respectivement les valeurs moyennes de la consommation modélisée et de la
consommation mesurée à l’instant i .

• Puis, en prenant le maximum des rk,i pour toutes les valeurs de i et k, on peut en déduire quelle
hypothèse de clé est la plus probable

18

Principe de la CPA

• Remarque : on peut montrer que ri,k peut être calculé avec la formule suivante, qui présente
l’avantage de permettre un calcul “online” (en un seul parcours de l’ensemble des données) :

rk,i =

N
N∑

n=1

hn,ktn,i − (
N∑

n=1

hn,k)(
N∑

n=1

tn,i)√√√√((
N∑

n=1

hn,k)
2 − N

N∑
n=1

h2
n,k)((

N∑
n=1

tn,i)
2 − N

N∑
n=1

t2n,i)

(6)

Avantages de n’avoir qu’une passe sur les données

• Quand le nombre de traces est très élevé, permet de calculer les valeurs de CPA à la volée, sans
avoir à stocker les traces

• Permet de regarder régulièrement les valeurs de corrélations obtenues pour les meilleures
hypothèses (par exemple toutes les 1000 traces) et de s’arrêter dès que l’écart est jugé
significatif : évite de regarder toutes les traces

19

Principe d’une attaque par template

• Objectif : retrouver la clé secrète d’un algorithme cryptographique à partir de la consommation
d’encryptions matérielles ou logicielles

• Hypothèse de base : la valeur de consommation d’un calcul un instant donné dépend de la valeur
du résultat du calcul

• Attaque basée sur un modèle de consommation d’énergie

• De même que pour la DPA et la CPA, l’attaque cible un point particulier dans le temps au cours
de l’exécution

• Contrairement à la DPA et à la CPA, cette attaque nécessite de pouvoir faire changer la clé entre
deux exécutions

20

Principe d’une attaque par template

• Le principe de cette attaque est de contruire un “profil” de consommation du dispositif en fonction
de la valeur de la clé

• Une fois le profil construit, il est possible de retrouver la valeur de la clé à partir de mesures, en
regardant à quel profil correspondent le mieux les valeurs observées

• ⇒ Attaque en deux phases :
• Phase d’acquisition : construction des profils, nécessite beaucoup de traces avec la clé qui varie et qui

est connue
• Phase d’exploitation : la clé est fixée et inconnue, le but de l’attaque est de la retrouver ; cette phase

requiert peu de traces

21

Principe d’une attaque par template : première phase

• Enregistrer beaucoup de traces (de l’ordre de 100 000) avec clé et plain text connus et variables

• Choisir quelques instants d’intérêts (typiquement 5), qui correspondent aux instants qui
maximisent la variance inter-traces

• Classifier les traces selon un critère, qui peut être par exemple (pour l’attaque d’un octet de clé) :
• La valeur en sortie de la première SBox
• Le poids de Hamming de la valeur en sortie de la première SBox

• Pour chaque valeur du critère, reconstruire la loi normale multidimensionnelle dont les paramètres
sont ceux obtenus de manière empirique

• Le nombre N de dimensions est le nombre d’instants d’intérêt
• Les paramètres de la loi sont le vecteur des moyennes µ de taille N et la matrice de covariance Σ

entre les dimensions (de taille N × N)

• Remarque : la densité de la loi normale multidimensionnelle pour un vecteur x de taille N est
fµ,Σ(x) =

1

(2π)N/2|Σ|
1
2
e−

1
2 (x−µ)TΣ−1(x−µ)

22

Principe d’une attaque par template : exemple première phase

• Exemple pour une attaque considérant un seul instant d’intérêt t0 (considère la consommation à
un seul sample) : loi normale de dimension 1

• On trie les traces en fonction de la valeur du poids de Hamming en sortie de la 1ère Sbox
• ⇒ On obtient 9 distributions empiriques
• Pour chaque distribution empirique, on reconstruit une distribution de probabilité en estimant les

paramètres µ et σ de la loi normale

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

• Pour une mesure de consommation x , chaque distribution donne la “probabilité” d’obtenir la
valeur x pour un poids de Hamming donné

23

Principe d’une attaque par template : exemple première phase

• Exemple pour une attaque considérant un seul instant d’intérêt t0 (considère la consommation à
un seul sample) : loi normale de dimension 1

• On trie les traces en fonction de la valeur du poids de Hamming en sortie de la 1ère Sbox
• ⇒ On obtient 9 distributions empiriques
• Pour chaque distribution empirique, on reconstruit une distribution de probabilité en estimant les

paramètres µ et σ de la loi normale

HW = 0

Probabilité/Fréquence

x = Consommation Mesurée

HW = 1
HW = 2

HW = 3
HW = 4

HW = 5
HW = 6

HW = 7
HW = 8

Consommation

• Pour une mesure de consommation x , chaque distribution donne la “probabilité” d’obtenir la
valeur x pour un poids de Hamming donné 23

Principe d’une attaque par template : exemple première phase

• Exemple d’une distribution reconstruite pour 2 instants d’intérêt t0 et t1 pour un HW donné
• Pour le poids de Hamming correspondant, associe une probablilité au fait d’observer la

consommation c0 à t0 et c1 à t1
• Même principe quand on a un nombre plus élevé de points d’intérêt (et de dimensions dans la loi

normale)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

Consommation à t0

Consommation à t1

Fréquence

24

Principe d’une attaque par template : deuxième phase

• La deuxième phase correspond à l’attaque d’un système similaire à celui profilé mais dont on ne
connait pas la clé (constante)

• Enregistrement des traces avec plaintext variable et connu (de l’ordre d’une dizaine à une
cinquantaine)

• Pour chaque trace :
• Création du vecteur de consommation c correspondant aux points d’intérêt
• Puis, pour chaque hypothèse de clé :

• Calcul de la valeur v du critère (ex : poids de Hamming de la sortie de la SBox), elle-même fonction du
plaintext et de l’hypothèse de clé

• Calcul du score s = pv (c) de la distribution associée à ce critère pour ce vecteur de consommation : plus
la valeur est grande, plus le modèle est satisfaisant

• Pour chaque hypothèse de clé, on multiplie tous les scores obtenus : le score total le plus grand
est normalement obtenu pour la bonne clé

• Permet d’éliminer les mauvaises hypothèses de clé, qui auront un score très faible pour au moins une
sous-partie des plaintexts car le HW ne sera toujours correct que pour la bonne hypothèse de clé

• Remarque : En réalité, pour éviter les problèmes de stabilité numérique, on somme des log au lieu de
faire des multiplications (ne change pas le max)

25

Principe d’une attaque par template : exemple deuxième phase

0x00

Trace 0

Trace 1

Trace 2

Trace 3

0x01 0x02 0x03 0x04 ...

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

Hypothèse de clé | HW / Proba

Consommation

26

Principe d’une attaque par template : exemple deuxième phase

0x00

6 / Ɛ 0 / 0.2 2 / 0.6 1 / 0.9 4 / ƐTrace 0

Consommation

Trace 1

Trace 2

Trace 3

0x01 0x02 0x03 0x04 ...

1.4

1.4

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

Hypothèse de clé | HW / Proba

26

Principe d’une attaque par template : exemple deuxième phase

0x00

6 / Ɛ 0 / 0.2 2 / 0.6 1 / 0.9 4 / Ɛ

4 / 0.8 5 / 0.7 7 / Ɛ 4 / 0.8 3 / 0.1

Trace 0

Consommation

Trace 1

Trace 2

Trace 3

0x01 0x02 0x03 0x04 ...

1.4

3.0

3.0

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

Hypothèse de clé | HW / Proba

26

Principe d’une attaque par template : exemple deuxième phase

0x00

6 / Ɛ 0 / 0.2 2 / 0.6 1 / 0.9 4 / Ɛ

4 / 0.8 5 / 0.7 7 / Ɛ 4 / 0.8 3 / 0.1

2 / Ɛ 7 / Ɛ 4 / 0.15 5 / 0.9 6 / 0.5

Trace 0

Consommation

Trace 1

Trace 2

Trace 3

0x01 0x02 0x03 0x04 ...

1.4

3.0

3.4

3.4

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

Hypothèse de clé | HW / Proba

26

Principe d’une attaque par template : exemple deuxième phase

Hypothèse de clé | HW / Proba

0x00

6 / Ɛ 0 / 0.2 2 / 0.6 1 / 0.9 4 / Ɛ

4 / 0.8 5 / 0.7 7 / Ɛ 4 / 0.8 3 / 0.1

2 / Ɛ 7 / Ɛ 4 / 0.15 5 / 0.9 6 / 0.5

Trace 0

Pour chaque hypothèse, on multiplie tous les scores ; clé = max

Consommation

Trace 1

Trace 2

Trace 3

0x01 0x02 0x03 0x04 ...

...

1.4

3.0

3.4

HW = 0

Probabilité/Fréquence
HW = 1

HW = 2
HW = 3

HW = 4
HW = 5

HW = 6
HW = 7

HW = 8

Consommation

26

Outline

Attaques

Masquage

Masquage Matériel

Masquage logiciel

Exemple de l’AES, schéma de Herbst

Vérification du masquage

27

Outline

Attaques

Masquage

Masquage Matériel

Masquage logiciel

Exemple de l’AES, schéma de Herbst

Vérification du masquage

28

Masquage : introduction

P ou P'

k

res

Masquage

Démasquage

km

resm

m

[secret]

[masque]

fuites ?

Dépend des
opérations de P

P

k

res

• Appliquable au niveau logiciel ou au niveau matériel sur un circuit

29

Principe du Masquage

• Objectif : decoupler les valeurs manipulées par l’algorithme ou le programme des valeurs secrètes

• Plus précisément : faire en sorte que la distribution des valeurs des expressions intermédiaires soit
indépendante des valeurs secrètes : Threshold Probing Security (TPS) à l’ordre 1

• Introduction de variables de type masque : variables dont la valeur change à chaque exécution
(distribution aléaltoire uniforme sur n bits)

• Intérêt : si m est un masque, alors l’expression e = m ⊕ e’ a une distribution uniforme
distribution si m n’apparait pas dans e’

e m e ⊕ m

0
0 0
1 1

1
0 1
1 0

• Representation avec des secrets et masques ou avec des shares selon la propriété de sécurité
vérifiée

• Secrets et masques : manipule des expressions de type m et k ⊕ m
• Shares : manipule des shares, par exemple s0 et s1 tels que s0 ⊕ s1 = s

30

Masquage Matériel du "AND" (ET logique)

• Problème : Soit 2 entrées secrètes sur n shares a et b ; comment calculer une sortie c sur n shares
telle que c = a.b de manière sécurisée ?

• Par exemple, pour n = 2 :
• On a a = a0 ⊕ a1 et b = b0 ⊕ b1
• On veut calculer c0 et c1 tels que c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) sans jamais recalculer a et b

• De nombreux schémas existants

31

Exemple : Domain-Oriented Masking AND [Groß et al., 2017] à l’ordre 1

a0

b0

b1

a1

z10

c0

c1

b1

a1

b0

a0

a1.b1

a0.b0

a0.b1

a1.b0

a1.b0⊕z10

a0.b1⊕z10

a1.b0⊕z10

a0.b1⊕z10

a0.b1⊕z10⊕a1.b1

a1.b0⊕z10⊕a0.b0

32

Ordre Supérieur

• Attaque à l’ordre n : une attaque à l’ordre n peut utiliser n valeurs intermédiaires (fils, ou probes)
• Idée : les mesures des différentes probes peuvent être combinées
• Intuitivement, si manipule m et k ⊕m, on peut retrouver k en 2 observations, tandis que si l’on

manipule m1, m2 et k ⊕m1 ⊕m2, il faut 3 observations
• En pratique, peut résulter d’une mesure de consommation globale

• Securité à l’ordre n : la sécurité à l’ordre n fournit une résistance face aux attaques à l’ordre n

• Implique que le nombre de shares t > n

• La sécurité à l’ordre n requiert d’énumérer tous les tuples possibles de taille n, et de montrer que
la propriété est vérifiée pour chacun

• Le circuit DOM-AND à l’ordre 1 n’offre pas de sécurité à l’ordre 2 : la distribution jointe des
expressions (a0, a1) n’est pas indépendante de a

33

Autres Propriétés de Sécurité (à l’ordre t)

• Non-Interférence (NI) : la distribution de chaque tuple de t expressions dépend au plus de t shares
par entrée

• Implique TPS si les sharings sont uniformément distribués

• Strong Non-Intérference (SNI) : la distribution de chaque tuple de t expressions dépend au plus de
t shares par entrée, moins le nombre de sorties du circuit parmi les expressions du tuple

• Implique Non-Interférence

• Probe Isolating Non-Interference (PINI)
• Implique NI et est impliqué par SNI

34

Exemple : Domain-Oriented Masking AND [Groß et al., 2017] à l’ordre 1

a0

b0

b1

a1

z10

c0

c1

b1

a1

b0

a0

a1.b1

a0.b0

a0.b1

a1.b0

a1.b0⊕z10

a0.b1⊕z10

a1.b0⊕z10

a0.b1⊕z10

a0.b1⊕z10⊕a1.b1

a1.b0⊕z10⊕a0.b0

• 1-NI : chaque distribution d’expression dépend au plus d’un share par entrée
• 1-SNI : chaque distribution d’expression dépend au plus d’un share par entrée, excepté pour les

sorties qui ne doivent dépendre d’aucun share 35

Ordre Supérieur : DOM-AND à l’ordre 2

a0 b0 b1 b2a1 a2

z20

a1.b1

a0.b0

a0.b2

a2.b0

a2.b2

a0.b1

a1.b2

a2.b1

a1.b0

a1.b0⊕z10

a0.b1⊕z10

a1.b2⊕z21

a2.b1⊕z21

a0.b2⊕z20

a2.b0⊕z20

a2.b0⊕z20⊕a2.b2

a1.b0⊕z10⊕a1.b1

a0.b1⊕z10⊕a0.b0

z21

z10

c2

c0

c1

a2.b0⊕a2.b1⊕a2.b2⊕z20⊕z21

a0.b0⊕a0.b1⊕a0.b2⊕z10⊕z20

a1.b0⊕a1.b1⊕a1.b2⊕z10⊕z21

36

Prise en Compte des Glitches

• Considère que les valeurs temporaires sur les fils sont suffisantes pour fuir de l’information, et sont
incluses dans le modèle de fuite

• Modifie la fuite associée à chaque probe
• Orthogonal à la propriété de sécurité

a0

b0

b1

a1

z10

c0

c1

{b1}

{a1}

{b0}

{a0}

{a1,b1}

{a0,b0}

{a0,b1}

{a1,b0}

{a1,b0,z10}

{a0,b1,z10}

{a1.b0⊕z10}

{a0.b1⊕z10}

{a0.b1⊕z10,a1,b1}

{a1.b0⊕z10,a0,b0}

37

Schémas de Masquage du AND

• DOM AND : Schéma dit Domain Oriented Masking [Groß et al., 2017], resistant aux glitches

• ISW AND : Premier schéma proposé en 2006 [Ishai et al., 2003]

• ISW AND refresh : Variante avec un refresh sur une des entrées [De Cnudde et al., 2016]

• TI AND : Schéma dit Threshold Implementation n’utilisant pas de random
intermédiaires [Nikova et al., 2006]

• NI Mult and SNI Mult : Schémas vérifiant les propriétés NI et SNI [Bordes and Karpman, 2021]

• PINI Mult : Schéma implémentant la propriété PINI, introduit dans [Wang et al., 2023]

• GMS AND : Deux implémentations du AND utilisant le Generalized Masking Scheme, décrit dans
l’article, utilisant respectivement 3 et 5 shares [Reparaz et al., 2015]

• Et bien d’autres...

• Les schémas diffèrent sur les propriétés de sécurité vérifiées, le nombre de portes, le nombre de
registres, etc.

38

Description du schéma ISW à l’ordre t pour une porte AND

• Soient a = a1 ⊕ ...⊕ at+1 et b = b1 ⊕ ...⊕ bt+1 deux entrées secrètes découpées en t + 1 shares
• Pour 1 ≤ i < j ≤ t + 1 (i ̸= j), on définit zi,j et zj,i de la manière suivante :

• zi,j est un bit random
• zj,i = (zi,j ⊕ aibj)⊕ ajbi

• On calcule les bits ci de la sortie de la manière suivante :
ci = aibi ⊕

⊕
j ̸=i

zi,j

• Le circuit résultant calcule a.b et est TPS à l’ordre t

• Une porte AND est ainsi convertie en O(t2) portes

• Remarque : ce schéma ne prend pas en compte les glitches

39

Exemple ISW : porte AND pour t = 2

40

Masquage par Threshold-Implementation (TI) [Nikova et al., 2006]

• Cadre : fonctions combinatoires, plusieurs entrées et plusieurs sorties constituées de n shares
• Comme précédemment, le codage pour une valeur donnée d’une entrée doit être uniforme parmi les

codages possibles

• Contrainte : n’utilise pas de valeur aléatoire au milieu du calcul
• Idée : si chaque sortie ne dépend pas d’un indice (identique) pour toutes les entrées, alors chaque

sortie est indépendante de chacune des valeurs secrète
• Exemple : z1 ne dépend pas de x1, y1 ; z2 ne dépend pas de x2, y2, etc.

• Chaque caractéristique de chaque fonction zi (consommation, rayonnement EM, etc.) est
indépendante de x , y et z

• Marche aussi pour les valeurs intermédiaires

41

Masquage TI : exemple du AND

• x = x1 ⊕ x2 ⊕ x3, y = y1 ⊕ y2 ⊕ y3

• Les 3 fonctions de sorties :
• z1 = x2y2 ⊕ x2y3 ⊕ x3y2
• z2 = x3y3 ⊕ x1y3 ⊕ x3y1
• z3 = x1y1 ⊕ x1y2 ⊕ x2y1

• Sont une implémentation TI de x .y

• Problème de cette réalisation : si la sortie z est utilisée en entrée d’un autre circuit TI, il faut que
le codage de chaque valeur soit uniforme parmi les codages possibles (hypothèse requise pour
garantir la sécurité) : ce n’est pas le cas ici (propriété dite d’équilibre ou de balance)

42

Masquage TI : exemple du AND

• On s’intéresse au cas x = 1 et y = 1 (seule possibilité pour que la sortie vaille 1)
• Sous l’hypothèse d’uniformité de codage et d’indépendance des entrées, chacune des lignes a la

même probabilité
• On observe que le codage en sortie n’est pas uniforme

x3 x2 x1 y3 y2 y1 z3 z2 z1
0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 1 1 1 0 1 0
0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1
0 1 0 1 1 1 1 0 0
1 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
1 0 0 1 1 1 0 0 1
1 1 1 0 0 1 0 1 0
1 1 1 0 1 0 1 0 0
1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1

• Une implémentation équilibrée n’est pas possible avec seulement 3 shares
43

Masquage TI : exemple du AND

• Implémentation équilibrée à 4 shares :
• z1 = (x3 ⊕ x4)(y2 ⊕ y3)⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ x3 ⊕ x4
• z2 = (x1 ⊕ x3)(y1 ⊕ y4)⊕ y1 ⊕ y3 ⊕ y4 ⊕ x1 ⊕ x3 ⊕ x4
• z3 = (x2 ⊕ x4)(y1 ⊕ y4)⊕ y2 ⊕ x2
• z4 = (x1 ⊕ x2)(y2 ⊕ y3)⊕ y1 ⊕ x1

• Beaucoup de portes pour une protection à l’ordre 1

44

Masquage logiciel

• But : rendre aléatoires les valeurs intermédiaires du calcul, les décorréler des valeurs des secrets

• Très dépendant de l’algorithme

• Peut être ajouté dans le source code

• Même si en pratique, les programmes masqués sont souvent écrits directement en assembleur par
des experts

• Problème résiduel : il y a toujours une sensibilité avant/pendant le masquage

• 2 grands types de masquage : booléen (xor ⊕) et arithmétique (+ mod 2n)

45

Exemple de masquage de l’AES (Schéma de Herbst [Herbst et al., 2006])

• Pour chaque exécution, utilisation de 6
masques sur 8 bits : m, m’, et (m1, m2, m3,
m4) (masques par ligne)

• Calcul de (m1’, m2’, m3’, m4’), image de
(m1, m2, m3, m4) par le MixColumns (linéaire
par rapport à l’addition dans GF (28) et donc
au ⊕)

• Ajout d’une fonction ChangeMasks

• Adaptation de la génération des clés de ronde
en conséquence

AddRoundKey

SubBytes

ShiftRows

ChangeMasks

MixColumns

(m1', m2', m3', m4')

m

m'

m'

(m1, m2, m3, m4)

(m1', m2', m3', m4')

m4'

m3'

m2'

m1'

m4' m4' m4'

m3' m3' m3'

m2' m2' m2'

m1' m1' m1'

m m

mm

m m

mm m

m

m

m m

m

m

m

m' m'

m'm'

m' m'

m'm' m'

m'

m'

m' m'

m'

m'

m'

m' m'

m'm'

m' m'

m'm' m'

m'

m'

m' m'

m'

m'

m'

m1 m1

m2m2

m3 m3

m4m4 m4

m3

m2

m1 m1

m2

m3

m4

m4'

m3'

m2'

m1'

m4' m4' m4'

m3' m3' m3'

m2' m2' m2'

m1' m1' m1'

State Masks

46

Exemple de masquage de l’AES (Schéma de Herbst [Herbst et al., 2006])

• Conséquence : il faut adapter certaines opérations
• AddRoundKey : au lieu de xorer un octet d’une ligne i avec K, il faut le xorer avec K ⊕ mi’ ⊕ m

• Adaptation de la génération des clés de ronde en conséquence

• SBox : il faut calculer une autre permutation, l’unique permutation SBox’ telle que SBox’[x ⊕ m]
= SBox[x] ⊕ m’

• ShiftRows : ne modifie pas les masques, pas de modification

• MixColumns : pas de modifications, mais il faut précalculer les mi’ au début

Problème

• La génération des clés de ronde utilise les clés en clair

• ⇒ On peut aussi la masquer

47

Exemple de masquage de l’AES : Key Schedule

Clé de ronde i
(i = 0 à 8)

k0 k2 k3

Statut de masquage de la clé
Opérations ajoutées

k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

SB' SB' SB' SB'

Rcon

m1'
m4'
m3'
m2'

m'

m1'
m2'
m3'
m4'

mi'+m

m

m'

mi'+m+m'

mi'+m mi'

mi'+m

Clé de ronde i + 1

m

48

Exemple de masquage de l’AES : Key Schedule

Clé de ronde 9 k0 k2 k3

Statut de masquage de la clé
Opérations ajoutées

k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

SB' SB' SB' SB'

Rcon

m1'
m4'
m3'
m2'

mi'+m

m

m'

mi'+m+m'

m'

Clé de ronde 10

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

k0 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14k1 k15

mi'+m

mi'+m

Clé originale

Clé de ronde 0

mi'+m

mi'+m+m'mi'+m+m'

49

Comment Vérifier un Schéma de Masquage ?

• Empiriquement : Effectuer des simulations ou des captures, et utiliser des tests statistiques comme
le t-test

• Inconvénient : Ne donne pas de garantie (dépendant de facteurs d’implémentation), localisation
des fuites

eor r4, r4, r6
add r0, r0, r4
add r2, r2, #-1
ldr r7, [r1, #4]
bne r7, r9, loop
...

ISS w/
Power
Model

Masked Assembly Code
Simulated
Power Traces

Statistical
Analysis

50

Comment Vérifier un Schéma de Masquage ?

• Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution
statistiquement indépendante des secrets (TPS)

a0 = m ^ (ma & (mb ^ kb))

a1 = a0 ^ ((ma ^ ka) & mb)

c0 = (ma & mb) ^ m

c1 = ((ma ^ ka) & (mb ^ kb))^ a1

Masks Secrets

Masked Program

-mb ^ kb
-ma & (mb ^ kb)
-m ^ (ma & (mb ^ kb))
-ma ^ ka
-(ma ^ ka) & mb
-...

Expression List

Prover

• 1ère idée : énumérer toutes les valeurs des entrées, des secrets et des masques, et regarder si les
distributions obtenues sont identiques pour toutes les valeurs des secrets

• Ne passe pas à l’échelle

• ⇒ Les outils de vérification formelle sont symboliques
51

Vérification Formelle de Masquage

• Plusieurs familles de techniques, parmi lesquelles :
• La vérification par Inférence

• Établir des propriétés pour des expressions simples
• Inférer des propriétés lors d’opérations entre expressions, à partir des propriétés de ces epressions et de

l’opérateur

• La vérification par Substitution
• Transformer successivement une expression grâce aux masques jusqu’à ce que la propriété de securité

soit vérifiée

• Les 2 techniques peuvent être utilisées à la fois pour la vérification logicielle et matérielle

52

Exemple d’Outil de Vérification par Substitution : VerifMSI [Meunier and Taleb, 2023]

• Bibliothèque Python pour la vérification d’expressions symboliques (HW et SW)

• Chaque variable a un type parmi secret, mask et public

• Les variables et constantes ont une taille fixe arbitraire (ex : 9 bits)

• Support pour les opérations booléennes et arithmetiques

• Possibilité d’utiliser des valeurs concrètes pour la simulation

• Beneficie du flot de contrôle Python

• Représentations possibles avec shares ou secrets

• Constructions matérielles (portes, registres), glitches

• Implémente différentes propriétés de sécurité

• Vérifications aux ordres supérieurs

53

VerifMSI : Vérification matérielle d’un circuit

Circuit DOM-AND en VerifMSI

Sec r e t and Masks d e c l a r a t i o n
a = symbol (’ a ’ , ’ S ’ , 1) # 1−b i t s e c r e t
b = symbol (’ b ’ , ’ S ’ , 1) # 1−b i t s e c r e t
z10 = symbol (’ z10 ’ , ’M’ , 1) # 1−b i t mask

Do the s h a r i n g f o r ’ a ’ and ’ b ’
a0 , a1 = getPseudoShares (a , 2)
b0 , b1 = getPseudoShare s (b , 2)
Create i n pu t ga t e s
a0 = inpu tGate (a0)
a1 = inpu tGate (a1)
b0 = inpu tGate (b0)
b1 = inpu tGate (b1)
z10 = inpu tGate (z10)
Cros s p r oduc t s
a0b0 = andGate (a0 , b0)
a0b1 = andGate (a0 , b1)
a1b0 = andGate (a1 , b0)
a1b1 = andGate (a1 , b1)

Remaining ga t e s and r e g i s t e r s
a1b0 = xorGate (a1b0 , z10)
a1b0 = Re g i s t e r (a1b0)
a0b1 = xorGate (a0b1 , z10)
a0b1 = Re g i s t e r (a0b1)
c0 = a0b0
c0 = xorGate (c0 , a0b1)
c1 = a1b1
c1 = xorGate (c1 , a1b0)
Check the TPS s e c u r i t y p r o p e r t y
c h e c kS e c u r i t y (o rde r , wG l i t che s , ’ t p s ’ , c0 , c1)

54

VerifMSI : Algorithme principal de vérification

Algorithm 1 Algorithm for verifying threshold probing security

Require: nodeIn is the root of the expression to analyse
Ensure: False is returned if the distribution of the expression nodeIn is dependent from a secret it contain. Otherwise, True is probably

returned.
procedure ThresholdProbingSecurity(nodeIn)

n ← simplify(nodeIn)
masksTaken ← set()
while True do

if secretVarOcc(n, .) = 0 then
return True ▷ No more secret

if maskedBy(n, ., .) then
return True ▷ A mask is masking the current node

mask, nodeToReplace ← SelectMask(n, masksTaken) ▷ mask is the mask node masking the node to replace
if mask = None then

return False
masksTaken.add(mask)
n ← GetReplacedGraph(n, mask, nodeToReplace)
n ← simplify(n)

55

Exemple d’Outil de Vérification par Inférence [Ben El Ouahma et al., 2019]

Types de distributions définis :

• Random Uniform (RUD)

• Unknown (UKD)

• Constant (CST)
• (Statistically) Independent from Secrets (ISD) : même distribution pour toutes les valeurs du secret.

e = (k ⊕ m1) & m2
k m1 m2 e

0

0 0 0


P(e=0|k=0)= 3
4

P(e=1|k=0)= 1
4

0 1 0
1 0 0
1 1 1

1

0 0 0


P(e=0|k=1)= 3
4

P(e=1|k=1)= 1
4

0 1 1
1 0 0
1 1 0

e’= (k ⊕ m1) & m1
e’
0


P(e’=0|k=0)= 1

2
P(e’=1|k=0)= 1

2

0
1
1
0


P(e’=0|k=1)=1
P(e’=1|k=1)=0

0
0
0

56

Dépendances

(k ⊕ m) & m = (RUD) & RUD = ISD =⇒ faux

▶ Nécessaire de mémoriser les dépendances structurelles

(k ⊕ m) & m = (RUD{m,k}) & RUD{m} = UKD

Types garantis sans fuite

▶ eR UD
▶ eI SD
▶ eU KD sans dépendance structurelle sur un

secret

Type potentiellement vulnérable

▶ eU KD avec dépendance structurelle sur un
secret

57

Schéma de vérification

r0 ← k ; r1 ← m1; r2 ← m2; r3 ← m3
1 eo r r4 , r0 , r1 # k ⊕ m1
2 eo r r5 , r0 , r2 # k ⊕ m2
3 and r5 , r5 , r3 # (k ⊕ m2) & m3
4 and r5 , r5 , r4 # (k ⊕ m1) & ((k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

mask mask

mask

secret

Arbre d’expression de la dernière instruction

La distribution de la racine est elle statistiquement
indépendante de k ?
▶ Étiqueter les variables d’entrée selon leur type

▶ Combinaison ascendante de types de distribution
utilisant des règles d’inférence

58

Masques dominants

• expression e = e’ ⊕ m / e = e’ + m mod 2n

• mRUD

• m n’apparaît pas dans e’

=⇒ eRUD et m est un masque dominant de e.

Pour chaque expression, 2 ensembles : dom⊕(e), dom+(e)
Exemples :

• dom⊕((k + m1) ⊕ (k ⊕ m1 ⊕ m2)) = m2

• dom+((k + m1) ⊕ 0) = dom+(k + m1) = m1

59

Autres règles d’inférence

• Pour ⊕, + mod 2n

• Pour AND, OR

• Distribution des accès SBox = distribution de l’expression d’accès (propriété de permutation)

Règle Disjoint

• Deux expressions uI SD et vI SD

• Aucun masque en commun entre u et v

=⇒ (u op v)I SD pour tout opérateur binaire op

60

Exemple d’analyse de distribution

Dernière instruction i4 : (k ⊕ m1) & ((k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

RUD{m1}

RUD{m3}

RUD

{k, m1}
RUD

{k, m2}

ISD {k, m2, m3}

ISD {k, m1, m2, m3}

RUD{m2}UKD{k}

▷ i4 est statistiquement indépendante de k

61

Comment Vérifier un Schéma de Masquage ?

• Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution
statistiquement indépendante des secrets (TPS)

• Inconvénients : Les expressions considérées pour la preuve ne modélisent pas forcément bien les
fuites réelles

• ⇒ Un schéma de masquage prouvé peut fuire en pratique

a0 = m ^ (ma & (mb ^ kb))

a1 = a0 ^ ((ma ^ ka) & mb)

c0 = (ma & mb) ^ m

c1 = ((ma ^ ka) & (mb ^ kb))^ a1

Masks Secrets

Masked Program

-mb ^ kb
-ma & (mb ^ kb)
-m ^ (ma & (mb ^ kb))
-ma ^ ka
-(ma ^ ka) & mb
-...

Expression List

Prover

• 1ère idée : énumérer toutes les valeurs des entrées, des secrets et des masques, et regarder si les
distributions obtenues sont identiques pour toutes les valeurs des secrets

• Ne passe pas à l’échelle

• ⇒ Les outils de vérification formelle sont symboliques 62

Comment Vérifier un Schéma de Masquage ?

• Formellement : vérifier que tous les calculs intermédiaires (valeurs) ont une distribution
statistiquement indépendante des secrets (TPS)

• Inconvénients : Les expressions considérées pour la preuve ne modélisent pas forcément bien les
fuites réelles

• ⇒ Un schéma de masquage prouvé peut fuire en pratique

a0 = m ^ (ma & (mb ^ kb))

a1 = a0 ^ ((ma ^ ka) & mb)

c0 = (ma & mb) ^ m

c1 = ((ma ^ ka) & (mb ^ kb))^ a1

Masks Secrets

Masked Program

-mb ^ kb
-ma & (mb ^ kb)
-m ^ (ma & (mb ^ kb))
-ma ^ ka
-(ma ^ ka) & mb
-...

Expression List

Prover

• 1ère idée : énumérer toutes les valeurs des entrées, des secrets et des masques, et regarder si les
distributions obtenues sont identiques pour toutes les valeurs des secrets

• Ne passe pas à l’échelle

• ⇒ Les outils de vérification formelle sont symboliques 62

Reduire l’Écart Entre les Expressions Analysées et les Fuites Réelles

• 2 techniques de vérification ont été proposées pour remplacer la vérification des valeurs
intermédiaires

• Vérifier les transitions entre variables
• Vérifier les transitions entre Registres Généraux (GPR)

t0 = mb ^ kb

t1 = t0 & ma

a0 = t1 ^ m

t0 = ma ^ ka

t1 = t0 & mb

a1 = t1 ^ a0

...

Use Variables

Transition for t0:
(ma ^ ka) ^ (mb ^ kb)

Transition for t1:
((mb ^ kb) & ma) ^
((ma ^ ka) & mb)

Prover

Analyse Assembly Code

eor r0, r8, r9

and r1, r0, r6

eor r1, r1, r5

eor r2, r6, r7

and r3, r2, r8

eor r3, r3, r1

...

Transition for r1:
m

Transition for r3:
((mb ^ kb) & ma) ^ m

Prover

r5: m
r6: ma
r7: ka

r8: mb
r9: kb

63

Prouvé sans Fuite Secrète ?

• Cas du “ISW And”
• Prouvé sans fuite dans le modèle en valeur
• Prouvé sans fuite dans le modèle en transition entre GPR

; r0:a0 , r1:b0 , r2:a1, r3:b1, r6:c[] r7:m
and.w r4, r0 , r3 ; a0 & b1
eors r4, r7 ; t0 = (a0 & b1) ^ m
and.w r5, r2 , r1 ; a1 & b0
ands r0, r1 ; a0 & b0
ands r3, r2 ; b1 & a1
eors r4, r5 ; t1 = t0 ^ (a1 & b0)
eors r0, r7 ; c0 = (a0 & b0) ^ m
eors r4, r3 ; c1 = t1 ^ (a1 & b1)
str r0 , [r6, #0]
str r4 , [r6, #4]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 90 100 110 120 130 140

C
or

re
la

tio
n

(5
00

00
 tr

ac
es

)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

• Comment se rapprocher des fuites réelles ?
64

Cas Étudié : Board STM32F1 [De Grandmaison et al., 2022]

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

• Arm Cortex-M3 : Modélisé à partir
d’une description RTL

• Memoire : Modèle en boite noire
(pas de RTL)

• Conception et Implémentation de
nombreux “leakage test vectors” :

• Détection des sources de fuite
(black-box)

• Validation (white-box)
• Classement

• Accessible en ligne : https://www-soc.lip6.fr/armistice

65

https://www-soc.lip6.fr/armistice

Arm Cortex-M3 : Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

66

Arm Cortex-M3 : Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

m1

m0

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

eor r6, r4, r5

r4: m1

r5: m0

r6: 0

r7: k ⊕ m0

r8: 0

66

Arm Cortex-M3 : Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1

r5: m0

r6: 0

r7: k ⊕ m0

r8: 0

eor r6, r4, r5

0

k ⊕ m0

eor r8, r6, r7

m1

m0

m1 ⊕ m0m1 ⊕ m0

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

66

Arm Cortex-M3 : Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1

r5: m0

r6: m1 ⊕ m0

r7: k ⊕ m0

r8: 0

eor r6, r4, r5

k ⊕ m0

eor r8, r6, r7

k ⊕ m1
m1 ⊕ m0

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

k ⊕ m1 66

Arm Cortex-M3 : Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
x
tr

a
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1

r5: m0

r6: m1 ⊕ m0

r7: k ⊕ m0

r8: k ⊕ m1

eor r6, r4, r5
eor r8, r6, r7

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

k ⊕ m1

m1

k

m0

k

k ⊕ m0 66

Retour sur le cas du “ISW And”

Instructions Leaks : expr. name
I1 and.w r5, r2, r1 MuxRegA, RegA : e0

RegB : e1
I2 ands r0, r1 PortA, RegA : e2

AluOut : e3
I3 ands r3, r2 AluOut : e4
I4 eors r4, r5 RegB : e5
I5 eors r0, r7 AluOut : e6
I6 eors r4, r3 AluOut : e7
I7 str r0, [r6, #0] -
I8 str r4, [r6, #4] PortB, RegB, DataReg,

DataOut, BufferMem : e7

Nom Expression Fuites
e0 a0 · b1⊕ a1 a, c
e1 a0 · b1⊕ b0 b, c
e2 a0⊕ a1 a, c
e3 a0 · b0⊕ a1 · b0 a, c
e4 a0 · b0⊕ a1 · b1 a, b, c
e5 a1 · b0⊕ b1 b, c
e6 a0 · b0⊕ a0 · b1⊕ a1 · b0 a, b, c
e7 a0 · b0⊕ a0 · b1⊕ a1 · b0⊕ a1 · b1 a, b, c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

80 90 100 110 120 130 140

C
o

rr
e

la
ti
o

n
 (

5
0

0
0

0
 t
ra

c
e

s
)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

e0 e0, e1 e2, e3 e5 e6 e7 e7 e7 e7 e7e4
e2

P
ip

el
in

e
 s

ta
ge

s DEC I1 I2 I3 I4 I5 I6 I7 I8
EXE1 I1 I2 I3 I4 I5 I6 I7 I8
EXE2 I7 I8
MEM I7 I8

Expressions

67

Merci !

Contact :
Email : quentin.meunier@lip6.fr

67

quentin.meunier@lip6.fr

References i

Ben El Ouahma, I., Meunier, Q. L., Heydemann, K., and Encrenaz, E. (2019).
Side-channel robustness analysis of masked assembly codes using a symbolic approach.
Journal of Cryptographic Engineering, 9 :231–242.

Bordes, N. and Karpman, P. (2021).
Fast verification of masking schemes in characteristic two.
In Advances in Cryptology–EUROCRYPT 2021 : 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021,
Proceedings, Part II, pages 283–312. Springer.

De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., and Rijmen, V. (2016).
Masking aes with shares in hardware.
In Cryptographic Hardware and Embedded Systems–CHES 2016 : 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, pages 194–212. Springer.

References ii

De Grandmaison, A., Heydemann, K., and Meunier, Q. L. (2022).
Armistice : Microarchitectural leakage modeling for masked software formal verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(11) :3733–3744.

Groß, H., Mangard, S., and Korak, T. (2017).
An efficient side-channel protected aes implementation with arbitrary protection order.
In Topics in Cryptology–CT-RSA 2017 : The Cryptographers Track at the RSA Conference 2017,
San Francisco, CA, USA, February 14–17, 2017, Proceedings, pages 95–112. Springer.

Herbst, C., Oswald, E., and Mangard, S. (2006).
An aes smart card implementation resistant to power analysis attacks.
In ACNS, volume 3989, pages 239–252. Springer.

Ishai, Y., Sahai, A., and Wagner, D. (2003).
Private circuits : Securing hardware against probing attacks.
In Annual International Cryptology Conference, pages 463–481. Springer.

References iii

Meunier, Q. and Taleb, A. (2023).
Verifmsi : Practical verification of hardware and software masking schemes implementations.
In 20th International Conference on Security and Cryptography, volume 1, pages 520–527.
SciTePress.

Nikova, S., Rechberger, C., and Rijmen, V. (2006).
Threshold implementations against side-channel attacks and glitches.
In International conference on information and communications security, pages 529–545. Springer.

Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., and Verbauwhede, I. (2015).
Consolidating masking schemes.
In Annual Cryptology Conference, pages 764–783. Springer.

Wang, W., Ji, F., Zhang, J., and Yu, Y. (2023).
Efficient private circuits with precomputation.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 286–309.

	Attaques
	Rappel : Consommation des instructions et des données
	Principe de la DPA : Differential Power Analysis
	Principe de la CPA : Correlation Power Analysis
	Attaque par template

	Masquage
	Masquage Matériel
	Masquage logiciel
	Vérification du masquage

