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Comment savoir si un code fuit des informations secrètes ?

• Première idée : Faire plein d’attaques et s’assurer qu’elles échouent
• Suffisant ?

• Comment s’assurer qu’avec plus de traces l’attaque ne marchera pas non plus ?
• Comment s’assurer qu’il n’existe pas une attaque qu’on ne connait pas et qui marche ?

• ⇒ Faire des attaques n’est en général pas suffisant
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Des questions simples aux réponses moins simples

• Plus généralement, on souhaite pouvoir dire des choses sur la base d’observations
• Exemple : un nouveau médicament réduit-il vraiment la fièvre plus vite ou plus efficacement que

l’ancien ?
• Les données que l’on observe varient toujours d’un patient à l’autre
• Comment savoir si la différence observée n’est pas simplement due au hasard ? (comment prendre en

compte la variablilité)

• ⇒ Les observations sont souvent à la base de la prise de décision
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Approche statistique

• Statistiques : science de pouvoir dire des choses à partir d’observations

• Certains cas faciles : si on lance une pièce 20 fois et qu’on obtient 19 faces ⇒ Grande confiance
dans le fait que la pièce est truquée

• Mais si on obtient 15 fois face ?

• Solution : Faire plus de lancer pour savoir
• Problèmes :

• Il n’est pas toujours possible d’augmenter le nombre d’observations
• Certains effets peuvent être faibles (par exemple, si la pièce fait face 51% du temps), mais on

voudrait quand même s’assurer de leur absence

• Mais les statistiques permettent aussi de conclure parfois avec peu de données, même quand on
pourrait croire que c’est impossible

• ⇒ Besoin de quantification précise
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Principe de l’approche en statistique

• Évaluer la vraisemblance (= probabilité) des observations sous certaines hypothèses

• En déduire quelle hypothèse est la plus crédible

• À la fin, on veut une réponse oui/non, il faut donc définir a priori les conditions d’acceptation / de
rejet, en termes de probabilité

• Approche intuitive pour l’exemple de la pièce :
• Si elle n’est pas truquée, quelle est la probabilité d’observer 15 fois face sur 20 lancers ?
• On fixe un seuil a priori, par exemple 5% : on conclura donc que la pièce est truquée si cette

probabilité est inférieure à 5%

• P(15 faces sur 20 lancers) pour une pièce équilibrée =
20∑

i=15

C i
20(

1
2
)i × (

1
2
)20−i = 2.07%

• On en conclut donc que les observations sont très peu compatibles avec une pièce équilibrée
• On peut toujours se tromper, mais on sait quantifier notre risque d’erreur
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Remarques sur l’exemple

• On ne peut pas vraiment choisir d’autre hypothèse pour les calculs : trop de cas de pièces
truquées

• ⇒ On doit donc se contenter de la probabilité d’observation pour une pièce non truquée et conclure
avec cela

• Le seuil dépend beaucoup du contexte et des conséquences associées (particule qui va plus vite
que la lumière, risque d’effet secondaire grave, etc.)

• ⇒ dépend du risque d’erreur que l’on tolère
• 5% fréquent, mais : si on tolère un risque d’erreur de 5% (conlusion à tort que la pièce est truquée),

cela signifie que si on fait l’expérience 20 fois pour une pièce non truquée, on se trompera en
moyenne 1 fois sur les 20
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Pourquoi a-t-on besoin de statistiques ?

• On observe des données toujours bruitées

• Les intuitions sont parfois trompeuses
• Beaucoup de questions nécessitent de conclure même quand :

• Le nombre de données est petit
• L’effet est faible
• Les mécanismes sont complexes

• Le test statistique permet de :
• Quantifier l’incertitude
• Mesurer la plausibilité
• Prendre une décision avec un risque d’erreur maîtrisé

• Les statistiques permettent de mettre en évidence des effets mais ne les expliquent pas
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Généralités

• But d’un test statistique : étant donné un échantillon, on souhaite tester la vraisemblance d’une
hypothèse H0 contre une autre H1

• H0 est dite l’hypothèse nulle, H1 l’hypothèse alternative

• En général, on choisit H1 comme étant le complément de H0 mais ce n’est pas nécessairement le
cas

• Dans le langage courant, l’hypothèse nulle est l’hypothèse qui dit qu’il n’y a pas d’effet, pas de
corrélation, etc. (pas nécessairement le cas dans le test)

• Un test statistique permet de rejeter H0 avec un certain seuil de confiance

• Si H1 est le complément de H0, rejeter H0, c’est accepter H1 ; en revanche, ne pas rejeter H0 n’est
pas accepter H0
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Généralités

• La statistique de test S est une variable aléatoire définie indépendamment des données observées,
qui résume l’information sur un échantillon

• On choisit S de façon à connaître sa loi sous H0

• La valeur que prend cette variable aléatoire pour les données observées est appelée statistique
observée

• La construction d’un test donne la forme de la région de rejet de H0

• On parle de test unilatéral (à droite) lorsque l’on rejette H0 si la statistique observée est trop
grande

• On parle de test bilatéral lorsque l’on rejette H0 si la statistique observée est trop grande ou trop
petite
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Généralités

• Le risque dit de première espèce (α) est le risque de rejeter H0 à tort

• Le risque dit de deuxième espèce (β) est le le risque de ne pas rejeter H0 à tort

H0 non
rejetée

H0 rejetée

H0 vraie H0 fausse

Bonne décision
(1 - α)

Risque α Bonne décision
(1 - β)

Risque β

• α est choisi arbitrairement, on prend typiquement α = 0.05 ou α = 0.01
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Généralités

• α et β sont liés : plus on diminue l’un, et plus on augmente l’autre

S

H1
H0

β α

Distribution des
valeurs de la
statistique de
test sous H0 et H1

Fixer α  à 5% revient
à positionner S tel que
l'aire hachurée à droite
représente 5% de l'aire
sous la courbe bleue
 
Si la statistique
observée est supérieure à
S, on rejette H0

• La valeur limite du seuil α qui conduit au rejet de H0 est appelée p-valeur : c’est la probabilité
d’observer une réalisation de la statistique de test aussi éloignée de son espérance lorsque H0 est
vraie

• En d’autres termes, c’est la probabilité d’observer quelque chose d’au moins aussi surprenant que
ce que l’on observe sous l’hypothèse que H0 est vraie (on dit dès fois que c’est la probabilité que
ce qu’on observe soit “dû au hasard”)

• Si la p-valeur est supérieure au α fixé, on considère qu’il n’est pas exceptionnel sous H0 d’observer
la valeur effectivement observée ; par conséquent, H0 n’est pas rejetée

• Si la p-valeur est inférieure au α fixé, la valeur observée est jugée exceptionnelle sous H0 ; on
décide alors de rejeter H0 14



Généralités

• Il existe plusieurs choses que l’on peut souhaiter tester sur un échantillon :
• L’égalité de la moyenne de l’échantillon à une valeur fixée
• La comparaison de la moyenne de l’échantillon à une valeur fixée (inférieure/supérieure)
• L’adéquation d’un échantillon à une distribution donnée
• etc.

• Chaque test statistique répond à un problème donné

• Construire un test statistique from scratch est difficile car à la fin il faut trouver une fonction
(variable aléatoire) pour la statistique de test dont la distribution ne dépend pas des paramètres
du modèle
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Problème : comment savoir si une implémentation est résistante aux SCA ?

• Point de vue du concepteur

• Différent du point de vue d’un attaquant : chercher à protéger le système de toutes les attaques

• Hypothèses différentes aussi : on connait la clé

• 1ère approche : tester toutes les attaques connues et vérifier que toutes échouent

• 2e approche : caractériser les fuites secrètes de manière statistique

• Dans ce cas, H0 correspond à l’hypothèse : “il n’y a pas de lien entre les valeurs manipulées à un
instant donné et la consommation à cet instant”

• On rejette H0 si la probabilité sous H0 d’observer ce que l’on observe est trop faible

• Ce que l’on obtient est une probabilité de fuite secrète, que l’on veut la plus petite possible
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Test de Student (ou t-test) de Welch

• Test pour comparer la moyenne de deux échantillons de tailles respectives n0 et n1 et de variances
différentes

• La statistique de test est donnée par : t = |xn0−xn1 |√
s20
n0

+
s21
n1

• Le nombre de degrés de liberté à utiliser pour la loi de Student associée peut être approximé par :

v =

(
s20
n0

+
s21
n1

)2

(
s20
n0

)2

n0−1 +

(
s21
n1

)2

n1−1

• Avec :

• xn = 1
n

n∑
i=1

xi la moyenne empirique d’un échantillon

• s2n = 1
n−1

n∑
i=1

(xi − xn)
2 la variance empirique non biaisée d’un échantillon

• Remarque : lorsque n0 et n1 grandissent, le nombre de degrés de liberté grandit également ; dans
ce cas, la loi de Student tend vers la loi normale (plus besoin de calculer v)
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Test de Student (ou t-test) de Welch : exemple

• Un concepteur veut savoir si son implémentation de l’AES est résistante aux SCA

• Pour cela, il fait un t-test sur chacun des bits i de l’octet de clé k en sortie de la première SBox
• Pour un bit i donné, il sépare les traces en 2 échantillons :

• Un échantillon avec les traces où le bit i vaut 0
• Un échantillon avec les traces où le bit i vaut 1

• Ici, l’hypothèse H0 est : “Les 2 échantillons ont la même moyenne”, ce qui correspond à une
absence de fuite

• Pour les traces où le bit i vaut 0, il obtient les mesures : 0.66, 0.54, 0.59, 0.68, 0.52, 0.61, 0.63,
0.55

• Pour les traces où le bit i vaut 1, il obtient les mesures : 0.56, 0.55, 0.58, 0.54, 0.59, 0.54, 0.57,
0.53

• On obtient x0 = 0.5975, x1 = 0.5575, s2
0 = 0.0034, s2

1 = 0.00045, t = 1.832, v = 8.84
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Test de Student (ou t-test) de Welch : exemple

• Pour convertir ces valeurs de t et v en probabilité, on utilise un logiciel ou on regarde dans une
table

• α est très proche de 5% : on a environ 5% de chances de se tromper en rejetant H0, c’est-à-dire
5% de chances de se tromper en concluant qu’il y a une fuite secrète sur ce bit

• Remarque : Dans la pratique, le nombre de traces est souvent très grand, donc pas besoin de
calculer v → on prend la loi normale (ligne k = ∞)
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t-test spécifique

• Un test est dit spécifique lorsque l’on cherche à caractériser la fuite sur un endroit précis d’un
programme (ou circuit)

• Par exemple sur l’AES, sur le bit 0 de l’octet 0 après la première SBox

• La personne qui effectue cette caractérisation connait le programme ou circuit, et donc la valeur
de clé

• Découpage des traces en deux échantillons en fonction de la valeur du bit, calcul des moyennes et
variances, puis calcul de la statistique de test

• Problème de cette approche : il faut tester tous les bits internes pour s’assurer qu’il n’y a pas de
fuite... (~128 × 4 × 10 au minimum pour l’AES 128)

• ... mais aussi bien d’autres cas : valeur sur plusieurs bits (par exemple, valeur d’un octet à 0 vs.
toutes les autres valeurs), combinaisons de valeurs intermédiaires, etc.

• Le plus commun en multi-bit : discriminer selon le poids de Hamming (HW), selon qu’il soit
inférieur ou supérieur à 4
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t-test spécifique : exemple

• t-test spécifique sur le bit 3 de l’octet [3][1] de l’état en sortie de SBox, pour la première ronde de
l’AES (10 000 traces)
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t-test spécifique : exemple

• Trace de consommation correspondante (première ronde de l’AES)
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Sample (kPts.)
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t-test spécifique : exemple

• Trace de consommation correspondante (première ronde de l’AES)

0 2 4 61 3 5
Sample (kPts.)
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add_round_key() sub_bytes() shift_rows() mix_columns()
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t-test spécifique : exemple

• t-test spécifique sur le bit 3 de l’octet [3][1] de l’état en sortie de SBox, pour la première ronde de
l’AES (10 000 traces)
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void sub_bytes(uint8_t x[4][4]) {
  int32_t i;
  int32_t j;
  for (i = 0; i < 4; i += 1) {
    for (j = 0; j < 4; j += 1) {
      x[i][j] = sbox[x[i][j]];
    }
  }
}

uint8_t col[4];
for (i = 0; i < 4; i += 1) {
  col[0] = x[0][i];
  col[1] = x[1][i];
  col[2] = x[2][i];
  col[3] = x[3][i];
  mix_column(col);
  x[0][i] = col[0];
  x[1][i] = col[1];
  x[2][i] = col[2];
  x[3][i] = col[3];
}

void add_round_key(uint8_t x[4][4], ...) {
  int32_t i;
  int32_t j;
  for (i = 0; i < 4; i += 1) {
    for (j = 0; j < 4; j += 1) {
      x[j][i] ^= r_key[round * 16 + i * 4 + j];
    }
  }
}

x[3][1] = sbox[x[3][1]]
        = sbox[pt[7] ^ k[7]]

Initialement, x[3][1] = pt[7]

x[3][1] ^= k[7]
         = pt[7] ^ k[7]

x[3][2] = x[3][1]

col[3] = x[3][2] lecture col[3] et
calcul
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t-test spécifique : remarques et difficultés

• Sur 8 bits, corrélation entre le HW d’une valeur et le HW de la valeur ⊕ une constante cst : 1 -
0.25 × HW(cst)

• En théorie, les deux sont corrélés sauf quand HW(cst) = 4
• En pratique, si la fuite sur la valeur est elévée, on observe une fuite quelque soit cst
• Conséquence : ce n’est pas parce que l’on observe une fuite sur SBox[k ⊕ pt] que SBox[k ⊕ pt]

fuit (et donc que k fuit) : il peut s’agir uniquement d’une fuite sur pt qui “traverse” la SBox

• Corrélation entre les HW en entrée et en sortie de la SBox : 2.5%
• Corrélation entre les valeurs des bits en entrée et en sortie de la SBox :

• 9.4% pour les bits 0 et 6
• 6.3% pour les bits 1 et 4
• 4.7% pour le bit 2
• 3.1% pour le bit 7
• 0 pour les bits 3 et 5

• ⇒ Pose la question du modèle de fuite : valeurs lues/écrites en mémoire ? Lues/écrites en
registres ? ⊕ de l’ancienne et de la nouvelle valeur lors de l’écriture en registre ?
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t-test spécifique : autres exemples

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000

IV : HW(SBox[pt0 ^ k0])

-6

-4

-2

0

2

4

6

8

0 1000 2000 3000 4000 5000 6000

IV : SBox[pt6 ^ k6] & 0x4

-40

-20

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000

IV : HW(pt15)

-20

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000

IV : HW(SBox[pt12 ^ k12])

25



t-test spécifique : remarques et difficultés

• Grande variabilité en fonction du bit, de l’octet et de la valeur ciblée
• Effets bizarres

• Fuites sur pt[15] à chaque itération externe de sub_bytes
• Valeurs à la fin de mix_columns
• Fuite plus grande avant la SBox alors que la valeur ciblée est après

• Certaines observations ne peuvent pas être expliquées sans connaitre le détail du processeur
• Remarque : pour N = 10000, p-valeurs pour des valeurs de la statistique :

• 4.5 → 0.000008
• 6 → 0.000000005
• 8 → 0.000000000000001
• 9 → 0 avec la précision maximale dans R (22 chiffres après la virgule)
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t-test non-spécifique

• Cherche à répondre au problème de l’infaisabilité en pratique de tous les t-test spécifiques
• Idée : si un bit interne fuit de l’information (consommation) selon sa valeur 0 ou 1, alors la

moyenne entre 2 ensembles de traces, dont l’un correspond à une valeur du bit fixe et l’autre à
une valeur aléatoire (uniforme), doit avoir un écart observable

Consommation
quand le bit
vaut 0

Consommation
quand le bit
vaut 1

Consommation moyenne

Différence exploitée par la DPA
(vue par un t-test spécifique)

Différence vue par un
t-test non-spécifique
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t-test non-spécifique

• Soit un bit intermédiaire du calcul w , et à l’instant de son calcul, les moyennes de consommation
µw=0 et µw=1 des traces pour lesquelles il vaut respectivement 0 et 1

• Si ces moyennes sont suffisamment différentes (i.e. que w fuit de l’information), alors elles sont
chacunes éloignées de la moyenne de toutes les traces µ ≃ µw=0+µw=1

2 (si n0 ≃ n1)

• Il suffit donc de tester le programme avec des entrées fixées d’un côté vs. des entrées aléatoires de
l’autre et de regarder pour chaque instant si on observe un écart de moyenne entre les deux
ensembles de traces associés

• La statistique de test au moment du calcul de w sur un test non-spécifique est forcément plus
petite que celle sur un test spécifique sur la valeur de w si w fuit de l’information, puisque
µw=0 < µ < µw=1 ou µw=1 < µ < µw=0

• Pour les variances, on doit avoir s2 > s2w=1 et s2 > s2w=0 donc le dénominateur de la statistique de
test est plus grand pour un test non-spécifique

• ⇒ Ces 2 effets font que le test non spécifique est moins sensible

• Une fuite détectée sur un t-test non spécifique ⇒ une fuite détectée un t-test spécifique

• Mais le t-test non spécifique ne dit pas de quel bit il s’agit...
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t-test non spécifique : cas pratique

• En pratique, on peut avoir un algorithme avec des variables secrètes, publiques, et des masques
• Qu’est-ce qui est fixe en fixed et qu’est-ce qui varie en random ?

• Les masques devraient toujours varier (en fixed et random)
• Cas 1 : (PT random, K fixe) vs. (PT random, K random)
• Cas 2 : (PT fixe, K fixe) vs. (PT random, K random)
• Cas 3 : (PT fixe, K fixe) vs. (PT random, K fixe)
• Cas 4 : (PT fixe, K fixe) vs. (PT fixe, K random)

• Problème cas 1 : le PT peut ici agir comme un masque, or dans le pire cas il pourrait être constant

• Problème cas 2 : détecte les fuites sur le plaintext et la clé, pas uniquement la clé

• Problème cas 3 : détecte les fuites sur le plaintext
• ⇒ Le cas 4 devrait être utilisé de préférence quand c’est possible (clé variable), sinon cas 3 :

• Équivalent dans certains cas, dans l’AES par exemple car on commence par xorer clé et plaintext
• Mais ne permet pas de capturer les fuites sur le Key Schedule : pour capturer les fuites sur les bits de

la clé, il faut que la clé varie en random
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Comment calculer une moyenne ?

• Ne pas faire : x1 + x2 + ...+ xn puis diviser par n
• Raison : quand le nombre de termes à sommer est grand, différence progressive entre les ordres de

grandeurs des termes sommés

• Faire : x0 = 0, puis itérativement : xi = xi−1 +
xi−xi−1

i

• ⇒ La même idée peut être appliquée au calcul de la variance pour n’avoir qu’une passe sur les
données

Avantages de n’avoir qu’une passe sur les données

• Permet de calculer régulièrement la statistique de test (par exemple toutes les 1000 traces) et de
s’arrêter dès que le seuil est dépassé : évite de regarder toutes les traces si une fuite apparait dès
1000 traces

• Quand le nombre de traces est très élevé, permet de calculer la statistique sans avoir à stocker les
traces

30



Attaques et tests multi-variés

• Jusqu’à présent, nous n’avons considéré que la fuite en un point (univarié)

• Une attaque multi-variée cherche à mettre en relation des mesures de différents instants
• Il faut savoir quels instants on veut mettre en relation : sinon, explosion combinatoire

• Exemple en bi-varié pour 3000 samples : 9 millions de combinaisons possibles

• Le but est de choisir des instants où les mesures devraient être corrélées, et où leur combinaison
permet de réveler de l’information

• Utile pour attaquer les codes masqués : si l’on ne considère qu’un seul instant, il n’y a pas de fuite
d’information

• Par exemple, une CPA bi-variée (dite à l’ordre 2) permet de retrouver la clé d’un code masqué à
l’ordre 1

• De la même manière, il y a des tests statistiques multi-variés
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Exemple d’attaque multi-variée : CPA à l’ordre 2 sur AES masqué

• Dans le schéma présenté, en sortie de SBox à la première ronde, expressions du type SBox[k ⊕
pt] ⊕ m’

• ⇒ Plus de fuite selon le modèle de fuite en valeur

• Supposons que l’on ait accès à la consommation de l’expression m’
• Comment combiner les consommations aux deux instants pour annuler m’ ?

• On ne peut pas faire un “⊕” sur les consommations
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CPA à l’ordre 2 sur AES masqué

• Idée : il faut trouver un moyen de corréler une fonction des consommations avec le ⊕ des deux
valeurs

• Sous l’hypothèse que la consommation est le HW, il faut donc trouver une fonction f(HW(SBox[k
⊕ pt] ⊕ m’), HW(m’)) qui ait une corrélation non nulle avec HW((SBox[k ⊕ pt] ⊕ m’) ⊕
m’) = HW(SBox[k ⊕ pt])

• Fonction possible : valeur absolue de la différence

• En effet sur 8 bits, si u et v sont uniformes et indépendants :
ρ(|HW(u) - HW(v)|, HW(u ⊕ v)) = 0.24

• Sous l’hypothèse que la consommation est le HW, |HW(u) - HW(v)| = |P(u) - P(v)|

• ⇒ On cherche donc à maximiser la corrélation entre |P(SBox[k ⊕ pt] ⊕ m’) - P(m’)| et
HW(SBox[k ⊕ pt])

• Si impossible d’obtenir la consommation correspondant à l’expression m’, possible de faire
l’attaque sur 2 expressions masquées : HW(SBox[k0 ⊕ pt0] ⊕ m’) et HW(SBox[k1 ⊕ pt1] ⊕
m’)

• Inconvénient : requiert de tester 65 536 hypothèses de clé au lieu de 256
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CPA à l’ordre 2 sur AES masqué

• Mais en réalité, on en revient à l’architecture et au code assembleur

• Même registre pour m’ et SBox[k ⊕ pt] ⊕ m’ :
fuite en transition de SBox[k ⊕ pt]

• ⇒ CPA à l’ordre 1

• Sinon, si la SBox est calculée dans une boucle, même registre utilisé pour toutes les expressions
SBox

• Au moment de la première transition :
fuite de HW(SBox[k0 ⊕ pt0] ⊕ SBox[k4 ⊕ pt4])

• ⇒ CPA à l’ordre 1 possible avec 65 536 hypothèses
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Objectifs

• Retrouver un secret à partir d’une faute lors de l’exécution d’un algorithme de chiffrement
• L’effet de la faute doit en général être assez précis par rapport :

• Au moment où elle intervient durant l’exécution
• À la donnée modifiée et sa taille (bit, mot)

• En général, on n’obtient pas directement la clé recherchée, mais une réduction de l’espace d’états
(valeurs possibles pour la clé)

• L’attaquant se base sur la valeur du ciphertext fauté, en la comparant avec le ciphertext non fauté
par une analyse différentielle

• Hypothèse : pouvoir générer plusieurs chiffrements avec le même plaintext
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Moyens possibles de réalisation de fautes

• Glitch d’horloge : front montant qui arrive plus tôt que prévu

• Glitch de tension : surtension pendant un très court instant

• Impulsion électromagnétique proche du circuit

• Laser : impulsion laser sur le circuit décapsulé
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Exemple de DFA : “single-fault” sur l’AES

• Hypothèse : la faute se produit au début de la 8e ronde et affecte un octet du state (n’importe
comment mais un seul octet)

• Cas du premier octet avec une faute δ : x’ = x ⊕ δ

SBox
8e ronde

Début 8e ronde
ShiftRow
8e ronde

MixColumns
8e ronde

SBox
9e ronde

ShiftRow
9e ronde

MixColumns
9e ronde

SBox
10e ronde

ShiftRow
10e ronde
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Exemple de DFA : “single-fault” AES

Après MixColumns
9e ronde

1er AddRoundKey
10e ronde

SBox
10e ronde

ShiftRow
10e ronde

2d1

d1

d1

3d1 2d2

3d2

d2

d2

2d3

d3

3d3

d3 3d4

2d4

d4

d4

2d1

d1

d1

3d1 2d2

3d2

d2

d2

2d3

d3

3d3

d3 3d4

2d4

d4

d4

SBox
10e ronde

ShiftRow
10e ronde

x0+

k0

x4+

k4

x8+

k8

x12+

k12

Texte chiffré avec faute

x'0 x'8 x'12

x'5 x'9 x'13

x'2 x'6 x'10 x'14

x'11 x'15

x0 x8 x12

x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

2e AddRoundKey
10e ronde

2e AddRoundKey
10e ronde

x1+

k1

x5+

k5

x9+

k9

x13+

k13
x2+

k2

x6+

k6

x10+

k10

x14+

k14
x3+

k3

x7+

k7

x11+

k11

x15+

k15

x'0+

k0

x'4+

k4

x'8+

k8

x'12+

k12
x'1+

k1

x'5+

k5

x'9+

k9

x'13+

k13
x'2+

k2

x'6+

k6

x'10+

k10

x'14+

k14
x'3+

k3

x'7+

k7

x'11+

k11

x'15+

k15

AddRoundKey-1

10e ronde
ShiftRow-1

10e ronde
SBox-1

10e ronde

AddRoundKey-1

10e ronde
ShiftRow-1

10e ronde
SBox-1

10e ronde

SBox-1[x0+k0]

SBox-1[x'0+k0]

x'1

x'4

x'3 x'7

x'0+

k0

x'4+

k4

x'8+

k8

x'12+

k12
x'1+

k1

x'5+

k5

x'9+

k9

x'13+

k13
x'2+

k2

x'6+

k6

x'10+

k10

x'14+

k14
x'7+

k7

x'11+

k11

x'15+

k15

x'3+

k3

x4

x1

x0+

k0

x4+

k4

x8+

k8

x12+

k12
x1+

k1

x5+

k5

x9+

k9

x13+

k13
x2+

k2

x6+

k6

x10+

k10

x14+

k14
x7+

k7

x11+

k11

x15+

k15

x3+

k3

x'0 x'1 x'2 x'3 x'4 x'5 x'6 x'7 x'8 x'9 x'10 x'11 x'12 x'13 x'14 x'15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Texte chiffré Sans faute

Après ShiftRow
9e ronde

MixColumns
9e ronde

d1

d4

d2

d3
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Exemple de DFA : “single-fault” sur l’AES

On en tire donc les 4 équations suivantes

• 2δ = SBox−1[x0 ⊕ k0]⊕ Sbox−1[x
′
0 ⊕ k0]

• δ = SBox−1[x13 ⊕ k13]⊕ Sbox−1[x
′
13 ⊕ k13]

• δ = SBox−1[x10 ⊕ k10]⊕ Sbox−1[x
′
10 ⊕ k10]

• 3δ = SBox−1[x7 ⊕ k7]⊕ Sbox−1[x
′
7 ⊕ k7]

• δ, k0, k13, k10 et k7 sont des inconnues, les xi et x
′
i sont connus

• Résolution : pour chaque valeur de δ, on énumère pour chaque équation les valeurs possibles de ki .

• Chaque équation retourne 0, 2 ou 4 valeurs possibles pour ki

• Si aucune des 4 équations ne retourne 0 valeur possible pour ki , alors cette valeur de δ est
possible, et la combinaison des ki doit être explorée

• Il y a (toujours ?) 15 valeurs de δ satisfaisant les 4 équations, presque toujours 2 valeurs possibles
pour les ki dans ce cas, soit 240 ou 256 combinaisons à explorer pour 4 octets de clé
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Exemple de DFA : “single-fault” sur l’AES

• En répétant le processus avec les équations pour les autres colonnes, il y a moins de 232 valeurs
possibles pour la clé entière

• Nécessite un key schedule inverse puis un chiffrement complet pour chaque hypothèse de clé complète

• ⇒ On peut faire une énumération exhaustive (∼30 minutes sur ma machine pour un code
séquentiel compilé en -O3)

• Pour considérer une faute sur les autres octets de x au début de la 8e ronde, on peut calculer les
équations correspondantes

• Il n’y a en réalité que 4 ensembles de 16 équations car chaque ensemble de 16 équations est valide
pour 4 octets différents

• On peut retrouver la clé en environ 2h (code séquentiel sur une machine moyenne) pour une faute
sur n’importe quel octet de x
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Attaques de cache

• Attaques plutôt récentes

• Concernent un grand nombre de processeurs

• Atténuation des effets de ces attaques pas facile

• Peuvent être utilisées en combinaison d’autres attaques (ex : Meltdown)
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Hiérarchie mémoire des processeurs Intel

Core

L1I L1D

L2 I&D

Core

L1I L1D

L2 I&D

L3 I&D L3 I&D

Memory

• Le cache L3 est partagé entre les coeurs

• Les données incluses dans les caches L1/L2 sont forcément dans le cache L3 : caches inclusifs

• Comment utiliser cela pour faire une attaque ?
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Remarques sur la hiérarchie mémoire

• Question : puisque les pages physiques des processus sont disjointes (mécanisme de mémoire
virtuelle), quel intérêt ?

• Librairies dynamiques
• Memory deduplication (ou Kernel Same-page Merging) : technique utilisée dans les hyperviseurs de

machines virtuelles (mais aussi dans les OS) pour réduire l’empreinte mémoire

• ⇒ Il y a donc des pages partagées (en lecture) entre les processus

• 1ere Remarque : si on invalide (flush) une ligne de cache du L3, elle est invalidée dans tous les
caches L1/L2 (conséquence de la propriété d’inclusivité)

• ⇒ On peut donc s’amuser à ralentir les autres processus
• Mais ça ne fait pas une attaque...

• 2e Remarque : un hit en cache est plus rapide qu’un miss

• Et donc...
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Remarques sur la hiérarchie mémoire

• ...Si un autre processus exécute du code d’une librairie partagée, on peut savoir si des instructions
contenue dans une ligne de cache ont été exécutées

• Principe :

1 flush(line with some insts);
2 wait();
3 a = timestamp ();
4 load(line with some insts)
5 b = timestamp ()
6 line_acessed = (b - a) < threshold

• OK, mais je n’ai rien à cacher...

• ...Sauf quand j’utilise RSA !
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RSA

• Algorithme de chiffrement asymétrique avec paire (clé publique, clé privée) pour l’envoi de
messages chiffrés à un destinataire identifié et la signature de messages

• Utilisé pour l’échange de clé des algorithmes symétriques en général
• Étapes pour la génération des clés :

• Choisir p, q deux nombres entiers premiers et calculer n = pq

• Choisir un exposant public e (par exemple e = 65537)
• Calculer l’exposant privé d = e−1 mod (p − 1)(q − 1)

• La clé privée est (p, q, d)

• La clé publique est (n, e)

• Chiffrement (ou vérification de signature) : E(m) = me mod n

• Déchiffrement (ou signature) : D(c) = cd mod n
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Pseudo-code de l’exponentiation modulaire

1 mpi_t exp(mpi_t b, mpi_t e, mpi_t m) {
2 mpi_t res = 1;
3 for (int32_t i = 64; i >= 0; i -= 1) {
4 res = square(res);
5 res = modulo(res , m);
6 if (get_bit(e, i) == 1) {
7 res = mult(res , b);
8 res = modulo(res , m);
9 }

10 }
11 return res;
12 }

• Connaitre la séquence des fonctions appelées parmi square, modulo et mult permet de retrouver
l’exposant

• Bien sûr, ce code se trouve dans une librairie dynamique
• Et donc un autre processus que celui qui fait le déchiffrement peut retrouver l’exposant secret d

• En réalité, ce n’est pas aussi immédiat pour CRT-RSA, mais retrouver l’exposant lors du
déchiffrement permet quand même de retrouver la clé secrète
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Principe de l’attaque Flush+Reload [Yarom and Falkner, 2014]

• Scénarios (source image : [Yarom and Falkner, 2014]) :

Attacker

(A)
Victim

Attacker

(B)
Victim

Attacker

(C)
Victim

Attacker

(D)
Victim

Attacker

(E)
Victim

Attacker

Access Something else

Victim

Wait ReloadFlush

• A : Pas d’accès du processus victime

• B : Accès du processus victime

• C : Accès du processus victime durant le
reload (manqué)

• D : Reload durant l’accès du processus victime
(potentiellement manqué)

• E : Multiples accès du processus victime
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Flush+Reload sur l’exponentiation de RSA
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Speculative Execution

(source image : [Yarom and Falkner, 2014])

• Difficulté : compromis pour trouver la bonne durée d’attente
• Trop courte : plus grande chance de manquer des accès à cause de recouvrements
• Trop longue : détection d’un seul accès au lieu de plusieurs

• Configuration préalable : détermination du seuil qui discrimine un hit d’un miss sur la machine
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Flush+Reload en pratique : Sources d’erreur

• Code d’autres applications tournant en même temps sur la machine

• Interruptions
• Préfetch des lignes de cache

• ⇒ Éviter les débuts de fonction

• Compliqué à faire soi-même ?

• Que des 1 ?
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Flush+Reload en pratique

• Extrait du code dans la fonction d’exponentiation de la lib MPI (Multi-Precision Integer)
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Obstacles à l’attaque Flush+Reload et variantes

• Si les caches L3 ne sont pas partagés par les différents coeurs : Flush+Flush [Gruss et al., 2016]
• La durée de l’instruction flush diffère selon que la ligne se trouve ou non dans la hiérarchie mémoire
• Comme Flush+Reload, mais flush au lieu du reload
• Pas d’accès mémoire requis, marche aussi quand les caches sont partagés

• Pas d’accès à une instruction comme rdtsc pour mesurer le temps
• Utiliser des API comme clock(), clock_gettime() (la précision peut ne pas être assez importante)
• En dernier recours, utiliser un thread qui incrémente un compteur volatile
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Obstacles à l’attaque Flush+Reload et variantes

• Si l’architecture ne contient pas d’instruction flush (ou si celle-ci est privilégiée) :
Evict+Reload [Gruss et al., 2015]

• ⇒ Remplir les sets du cache correspondant à la ligne à espionner en faisant plein d’accès à des lignes
mappées dans ce set

• Peut nécessiter de faire du rétro-engineering sur la politique de remplacement du cache
• Avantage : les pages n’ont plus besoin d’être partagées entre les processus

• Variante : Prime+Probe [Osvik et al., 2006]
• Remplir tous les ways des sets à observer
• Attendre
• Déterminer quels sets sont toujours occupés

• Ces attaques ont une moins bonne précision et une moins bonne granularité que Flush+Reload
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Utilisation des attaques de cache pour faire une Covert Channel

• Covert channel : canal de communication (caché) entre deux processus dont le système n’a pas
connaissance : permet de casser l’isolation des processus (un processus peut fuiter des
informations sans en avoir les droits)

• Les deux processus peuvent s’envoyer des messages en faisant des lectures en cache à des adresses
prédéfinies

• Un processus fait une lecture à une adresse correspondant à 0 et 1 (ou de 0 à 255), puis l’autre
processus regarde quelle ligne fait hit et en déduit le caractère transmis
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Covert Channel en pratique
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Covert Channel en pratique

• Il faut ajouter de la redondance et des mécanismes de correction d’erreur + gérer le
descheduling/rescheduling des threads

• Peut alors être très robuste : implémentation du protocole SSH sur des caches entre 2 machines
virtuelles allouées sur des serveurs amazon [Maurice et al., 2017]

(a) Image distortion caused by insertion
and deletion errors due to scheduling.

(b) Noisy image after handling insertion
and deletion errors.

(c) The image after applying error correc-
tion. It is equivalent to the original image.

(Source [Maurice et al., 2017])
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Meltdown

• Bug rendu public le 3 Janvier 2018

• Affecte tous les processeurs Intel du marché

• Permet de lire la mémoire de tous les processus tournant sur une machine

• Attaque dite micro-architecturale : combine une attaque de cache avec une attaque sur l’exécution
out-of-order

• Source de toutes les images : [Lipp et al., 2018]
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Meltdown : Exécution out-of-order

• Mécanisme matériel pour augmenter la performance d’un processeur

• Une instruction assembleur donnée peut s’exécuter avant une autre instruction assembleur qui la
précède dans le code source

• Souvent combiné à de l’exécution spéculative, i.e. sans savoir si l’instruction exécutée sera
vraiment exécutée, suite à un branchement

• En cas d’exécution spéculative à tort ou d’exception : tous les registres sont réinitialisés à une
valeur correcte ou par défaut
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Meltdown : Combiner l’exécution out-of-order avec Flush+Reload

• Possible de voir l’effet d’une instruction jamais exécutée

1 rai se_except i on( ) ;
2 / / the l i ne bel ow i s never reached
3 access(probe_array[data * 4096] ) ;

<i nst r . >
<i nst r . >

...

<i nst r . >
[ Exception ]
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Meltdown : Isolation des processus

• Mémoire virtuelle : tous les accès mémoire faits par un processeur sont traduits en adresse
physique

• Un processus ne peut donc pas lire/écrire une donné d’un autre processus
• Mais tout le kernel est en général mappé dans l’espace virtuel du processus...
• ...et toute la mémoire physique est mappée dans le kernel
• En cas d’accès à une adresse virtuelle du kernel : exception

• Les vérifications des droits et l’accès lui-même sont faits en parallèle...

Physical memory

0 max

User

0 247

Kernel

−247 −1
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Meltdown : Principe

• Faire un accès en lecture à une adresse kernel qui provoque une exception

• Modifier l’état du cache en fonction du résultat de la valeur lue avec une instruction exécutée
out-of-order

• Consulter l’état du cache pour savoir quelle valeur a été lue dans le kernel

; rcx = kernel address , rbx = probe_array
xor rax , rax
mov al, byte [rcx]
shl rax , 0xc
mov rbx , qword [rbx + rax]
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Meltdown : Problèmes

• Faire en sorte que l’exception ne termine pas le programme
• Forker un processus fils avant de faire l’accès et lire le résultat dans le processus père
• Capturer le signal SIGINT
• Utiliser la mémoire transactionnelle

• Prefetch ⇒ Utiliser des pages différentes
• Lecture fréquente de la valeur 0

• Inclure une boucle de retry (exécutée spéculativement)
• Refaire l’attaque si la valeur 0x0 est lue
• Compromis taux d’erreur ⇔ Vitesse de lecture de la mémoire
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Meltdown : Résumé et résultats

Exception Handling/
Suppression

Transient

Instructions
Secret

Microarchitectural

State Change

Section 4.1

Architectural
State

Transfer (Covert Channel)

Recovered

Secret

Recovery
L

eaked

Accessed

Section 4.2

• Permet de lire la mémoire kernel à une vitesse de 500 KB/s
• Avec un taux d’erreur de 0.003% (sur un Core i7)
• Attaque réussie sur tous les processeurs Intel testés, sur tous les OS
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Meltdown : Limites et contre-mesures

• Attaque réussie sur 1 seul processeur ARM, aucun AMD

• Des variantes de l’attaque possible sur ARM en utilisant une autre covert channel
• Contre-mesures logicielles :

• Ne pas mapper toute la mémoire physique dans le kernel (patch en cours de réalisation à l’époque
pour une autre raison, dont Meltdown a accéléré l’intégration)

• Contre-mesures matérielles :
• Séquentialiser la vérification de permission dans la TLB et le load de la valeur
• Segmenter l’espace virtuel en deux : Kernel vs. user ⇒ Vérification triviale (cf. Mips)

• Meltdown n’est que la première attaque d’une classe d’attaques appelées attaques
micro-architecturales ; la 2e plus connue est Spectre
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Spectre [Kocher et al., 2020]

• Principe de l’attaque :

if (x < array1_size) {
y = array2[array1[x] * 4096];

}

• Exploite le prédicteur de branchement (source : article Spectre)
• Supposons que :

• x est choisi de manière malicieuse (hors borne), et tel que array1[x] soit un octet secret k dans la
mémoire du processus victime

• array1_size et array2 sont non cachés, mais k est caché
• Les opérations précédentes ont reçues des valeurs de x valides, menant le prédicteur à supposer que le

branchement va échouer.

• ⇒ Fuite possible de l’octet secret k
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Autre attaques micro-architecturales

• Récemment, de nombreuses autres attaques exploitant des failles micro-architecturales

• Foreshadow [Van Bulck et al., 2018, Weisse et al., 2018] : variante de Meltdown, permet de lire
des données à l’intérieur d’une enclave SGX

• ZombieLoad [Schwarz et al., 2019] : variante de Meltdown qui exploite un Fill-Buffer

• RIDL [van Schaik et al., 2019] : variante de Meltdown qui exploite des Line-Fill buffers

• Fallout [Canella et al., 2019] : variante de Meltdown qui exploite le store buffer

• Pour plusieurs de ces attaques, les vols de données peuvent se faire avec des hypothèses
restreintes (ex : code javascript)
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Classification des attaques de type Meltdown et Spectre

• Classification sur le site https://transient.fail (TU Graaz)
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Autres attaques micro-architecturales

• Hertzbleed [Wang et al., 2022] : exploite la variation de fréquence induite par le changement de
consommation, permet de déduire des clés secrètes

• IChannels [Haj-Yahya et al., 2021] : exploite le temps pris par des instructions “couteuses” (SIMD)
pour que la fréquence et le voltage s’adaptent, permet de faire des covert channels

• Attaques exploitant la température, etc.

71



Merci !

Contact :
Email : quentin.meunier@lip6.fr
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