
EISE 4 – Compilation

Quentin Meunier

Janvier 2026

quentin.meunier@lip6.fr

Sorbonne Université

Laboratoire d’Informatique de Paris 6

4 Place Jussieu, 75252 Paris, France

1

Outline

Compilation

Introduction

Langage et grammaire

Spécifications du projet

Ressources du projet

Déroulement du module

2

Outline

Compilation

Introduction

Langage et grammaire

Spécifications du projet

Ressources du projet

Déroulement du module

3

La compilation

• Objectif : transformer un code source en binaire

file1.c file1.s

#include <st

int main() {
 int a = 3;
 int b = f(a);
 ...
 return 0;
}

.data

.text

.globl main

main:

addiu $29, $29,

lui $8, 0x1001

addiu $9, $0, 3

sw $9, 4($29)

file1.o

01100101001

11001001101110

...

file2.c file2.s

#include <st

int f(int n) {
 int b;
 ...
}

.data

.text

.globl f

f:

addiu $29, $29,

addu $8, $0, 0x

file2.o

01010101001

11101001101110

...

exec

00010101001

00001001101110

...

compilation assemblage édition de liens

("link")

4

La compilation

• Dans ce cours, focalisation sur la compilation à proprement parler, c’est-à-dire la transformation

du code source en code assembleur

• ⇒ But du module : écrire un compilateur

• Projet sur 5 ou 6 séances, en binôme (pas de trinôme)

• Langage source : sous-ensemble de C, appelé MiniC (avec quelques différences par rapport au C)

• Langage cible : assembleur Mips

5

Présentation informelle de MiniC

• Syntaxe du C

• 2 types de variables : bool et int

• Typage fort des expressions (pas de conversions implicite int → bool)

• Evaluation non-paresseuse des expressions

• Pas de :

• Fonctions (sauf le main)

• Pointeurs, tableaux

• switch, case, break, continue, goto, labels

• typedef, struct, union

• volatile, register, packed, inline, static, extern

• unsigned, signed, long, long long, short, char, size t

• float, double

• Opérateurs ++, --, -=, +=, *=, /=, <<=, >>=, &=, |=, ...

• Cast

• ...

6

Définition informelle d’un langage

• Un langage est un ensemble de mots sur un alphabet

• Exemple, sur l’alphabet { ’a’, ’b’ }, l’ensemble des mots { a, abb, baa, bbaa, aaaba } constitue un

langage

• Un langage peut contenir un nombre infini de mots

• ⇒ On ne peut pas décrire l’ensemble des mots de manière explicite, il faut un moyen inductif,

comme une grammaire

7

Grammaire

• Une grammaire définit un langage

• Une grammaire contient les éléments suivants :

• Un ensemble de terminaux VT (aussi appelés tokens) : ce sont les éléments atomiques des mots du

langage ; par exemple : { ’a’, ’b’, ’c’ }
• Un ensemble de non-terminaux VN , par exemple { ’I’, ’A’, ’B’ }
• Un axiome (élément initial), qui est un non-terminal, par exemple I

• Un ensemble de règles de dérivation qui permettent de “transformer” ce qu’il y a en partie gauche de

la règle en ce qu’il y a en partie droite

• Remarques :

• VT et VN sont appelés des vocabulaires et sont disjoints

• Le vocabulaire de la grammaire est V = VT ∪ VN

• L’alphabet du langage induit par une grammaire est le vocabulaire terminal de la grammaire

8

Grammaire : Exemple

• Soit une grammaire G =< {a, b, c}, {I ,A,B}, I ,R > avec l’ensemble R de règles suivantes :

• I → A

• I → BA

• A → aBc

• B → bB

• B → b

• Les mots abc, abbc, bbabbc appartiennent au langage engendré

• Les mots bb, bac, abca, aabc n’y appartiennent pas

• Remarque : le terminal ε désigne un élément vide ; par exemple, si on ajoute la règle A → ε, le

mot bb appartient au langage

9

Arbre de dérivation

• Un arbre de dérivation représente les règles de dérivation qui sont prises à partir de l’axiome pour

construire un mot du langage (une branche représente une règle prise)

• Arbres pour les exemples précédents :

I

A

aBc

b

I

A

aBc

b

bB

I

BA

bB

b

abc

aBc

b

bB

abbc bbabbc

I→A

A→aBc

B→b

I→A

A→aBc

B→bB

B→b

B→b B→bB

B→b

B→bB A→aBc

I→BA

10

Ambigüıté

• Une grammaire est dite ambigüe quand un mot du langage peut être obtenu par au moins deux

arbres de dérivations différents

• La grammaire précédente n’était pas ambigüe, tandis que la grammaire suivante l’est :

• I → AC

• A → abA

• A → a

• C → baC

• C → b

• Le mot abab peut être obtenu de deux manière différentes

• On cherche en général à éviter les grammaires ambigües (la plupart des langages peuvent être

décrits par une grammaire non-ambigüe)

11

Types de grammaires et de langages

• Les grammaires sont catégorisées selon la forme de leur règles

• ⇒ Plus les règles sont contraintes, plus les analyses automatiques sont faciles, mais moins le

langage est expressif

• Soit VN l’ensemble des non-terminaux d’une grammaire, VT l’ensemble des terminaux, et

V = VT ∪ VN

• Dans les définitions suivantes, A,B ∈ VN , ω ∈ V ∗
T , ψ ∈ V+, α, β ∈ V ∗

• Une grammaire est dite régulière si toutes ses règles sont de l’une des formes suivantes :

• A → ωB

• A → Bω

• A → ω

• Une grammaire est dite hors-contexte si toutes ses règles sont de la forme :

• A → α

• Une grammaire est dite sous-contexte si toutes ses règles sont de la forme :

• αAβ → αψβ

• Une grammaire est dite générale si ses règles sont de la forme :

• α→ β

12

Types de grammaires et de langages

• Si l’on ne considère pas les règles de la forme A → ε, on a :

grammaires régulières ⊂ grammaires hors-contexte ⊂ grammaires sous-contexte ⊂ grammaires

générales

• Les langages résultant des grammaires régulières sont équivalents aux langages décrits par des

expressions régulières, et aux langages décrits par les automates

• Exemple :

Expression RégulièreGrammaire Automate

a*(ba)+b*c

A → aA | B

B → baC

C → baC | D

D → bD | c

a

b a

ba

b

b

cc

13

Types de grammaires et de langages

• Les langages réguliers sont les plus faciles à analyser, mais on ne peut pas tout exprimer ; par

exemple, le langage anbn ne peut pas être décrit par un langage régulier, mais s’écrit trivialement

avec une grammaire hors-contexte : A → aAb|ε

• De même, le langage des parenthèses s’écrit facilement avec une grammaire hors-contexte mais ne

peut pas s’écrire avec un langage régulier

• Remarque : la syntaxe des langages de programmation est souvent décrite à l’aide d’une

grammaire hors-contexte

• Pour aller plus loin : polycopié de référence en théorie des langages :

http://lig-membres.imag.fr/mechenim/wp-content/uploads/sites/

219/2016/05/PolycopieTL1.pdf

14

Outline

Compilation

Spécifications du projet

Exemple introductif

Analyse lexicographique

Analyse syntaxique

Vérifications contextuelles

Génération de code

Autres

Ressources du projet

Déroulement du module

15

Outline

Compilation

Spécifications du projet

Exemple introductif

Analyse lexicographique

Analyse syntaxique

Vérifications contextuelles

Génération de code

Autres

Ressources du projet

Déroulement du module

16

Exemple introductif : programme

• Soit le programme MiniC suivant :

1 // Un exemple de programme MiniC

2 int start = 0;

3 int end = 100;

4

5 void main() {

6 int i, s = start , e = end;

7 int sum = 0;

8 for (i = s; i < e; i = i + 1) {

9 sum = sum + i;

10 }

11 print("sum: ", sum , "\n");

12 }

17

Première phase : analyse lexicographique

• Transformation du programme source en liste de tokens (terminaux du langage)

• Réalisé à partir de la lecture des caractères un par un par une machine d’état

• Pénible à faire ⇒ outils pour générer cette machine à partir d’une description de plus haut niveau

des tokens

• Outil communément utilisé : lex

• → C’est l’outil utilisé pour le projet

18

Lexicographie de MiniC

• Mots-clés du langage : void, int, bool, true, false, if, else, while, for, do, print

• Identificateurs (nom de variables) :

• LETTRE = {’a’, ..., ’z’, ’A’, ..., ’Z’}
• CHIFFRE = {’0’, ..., ’9’}
• IDF = (LETTRE)(LETTRE | CHIFFRE | ’ ’)*

• Littéraux entiers

• CHIFFRE NON NUL = {1, ..., 9}
• ENTIER DEC = ’0’ | CHIFFRE NON NUL CHIFFRE*

• LETTRE HEXA = {’a’, ..., ’f’, ’A’, ..., ’F’}
• ENTIER HEXA = ’0x’(CHIFFRE | LETTRE HEXA)+

• ENTIER = ENTIER DEC | ENTIER HEXA

• Chaines de caractères littérales

• CHAINE = ’"’(CHAINE CAR | ’\"’ | ’\n’)*’"’
• Dans laquelle CHAINE CAR est l’ensemble de tous les caractères imprimables, à l’exception de ’"’ et

’\’

19

Lexicographie de MiniC

• Symboles spéciaux : il y a un certain nombre de symboles spéciaux qui ont chacun leur propre
token associé : +, -, {, ...

• → Voir la spécification complète pour l’exhaustivité de ces symboles

• Commentaires : suite de caractères imprimables et de tabulations qui commence par ’//’ et
s’étend jusqu’à la fin de la ligne

• Pas de terminal associé : une fois que l’on a détecté cette séquence, rien à renvoyer

• Les séparateurs de MiniC sont ’ ’ (caractère d’espace), tabulation horizontale et fin de ligne

• Ce ne sont pas des tokens en eux-mêmes : ils servent à séparer les tokens

20

Exemple introductif : après analyse lexicographique

TOK_INT

2

TOK_IDENT

2 ’start’

TOK_AFFECT

2

TOK_INTVAL

2 ’0’

TOK_SEMICOL

2

TOK_INT

3

TOK_IDENT

3 ’end’

TOK_AFFECT

3

TOK_INTVAL

3 ’100’

TOK_SEMICOL

3

TOK_VOID

5

TOK_IDENT

5 ’main’

TOK_LPAR

5

TOK_RPAR

5

TOK_LACC

5

TOK_INT

6

TOK_IDENT

6 ’i’

TOK_COMMA

6

TOK_IDENT

6 ’s’

TOK_AFFECT

6

TOK_IDENT

6 ’start’

TOK_COMMA

6

TOK_IDENT

6 ’e’

TOK_AFFECT

6

TOK_IDENT

6 ’end’

TOK_SEMICOL

6

TOK_INT

7

TOK_IDENT

7 ’sum’

TOK_AFFECT

7

TOK_INTVAL

7 ’0’

TOK_SEMICOL

7

TOK_FOR

8

TOK_LPAR

8

TOK_IDENT

8 ’i’

TOK_AFFECT

8

TOK_IDENT

8 ’s’

TOK_SEMICOL

8

TOK_IDENT

8 ’i’

TOK_LT

8

TOK_IDENT

8 ’e’

TOK_SEMICOL

8

TOK_IDENT

8 ’i’

TOK_AFFECT

8

TOK_IDENT

8 ’i’

TOK_PLUS

8

TOK_INTVAL

8 ’1’

TOK_RPAR

8

TOK_LACC

8

21

Lexicographie de MiniC : utilisation de lex

• Un fichier lex a le format suivant :

%{
Includes C et déclarations de fonctions

Copié tel quel dans le fichier produit par lex

%}
Définitions

%%

Règles

%%

Fonctions C (par exemple, main)

Copié tel quel dans le fichier produit par lex

22

Lexicographie de MiniC : utilisation de lex

• Définitions : de la forme NOM expression

• Exemples :

• LETTRE [A-Za-z]

• IDF {LETTRE}({LETTRE}|{CHIFFRE}|)*

• Règles : de la forme Caractères action

• Exemples :

• "void" return TOK VOID;

• {IDF} {
yylval.strval = strdup(yytext);

return TOK IDENT;

}

• Squelette du fichier fourni, à compléter

23

Deuxième phase : analyse syntaxique

• Transformation de la suite de tokens en arbre du programme

• Principe :

• Retrouver les règles prises dans la grammaire (hors-contexte) du langage à partir de la suite de tokens

• Les réduire dès que possible, i.e. “remonter” le non-terminal de la règle

• Créer la ou les branches correspondantes dans l’arbre du programme

• Remarque : l’arbre de dérivation correspondant au programme et l’arbre du programme sont

différents, i.e. toutes les règles de la grammaire ne se traduisent pas par une branche dans l’arbre

du programme

24

Deuxième phase : analyse syntaxique

• Comme pour l’analyse lexicographique, le programme qui retrouve la règle à partir des tokens est

généré à partir d’une description de la grammaire

• Utilise une pile de tokens :

• Le token lu est mis au sommet de la pile

• Si les n premiers tokens au sommet de la pile se réduisent en une règle, remplacement de tous ces

tokens avec le non-terminal correspondant (au sommet de la pile) : reduce
• Sinon, lecture du token suivant : shift

• En réalité un petit peu plus compliqué car il faut considérer la priorité des opérateurs : il faut lire un token de

plus avant de décider

• On continue jusqu’à une réduction à l’axiome de la grammaire ; si on n’y arrive pas, le programme est

syntaxiquement incorrect

• Outil communément utilisé : yacc (interface prévue avec lex)

• → C’est l’outil utilisé pour le projet

25

Syntaxe de MiniC

• Définie par une grammaire hors-contexte

• Priorité et associativité des opérateurs

• La grammaire du langage est entièrement donnée dans le document de ressources

• ⇒ Il faut coder l’automatisation de la construction de l’arbre du programme

26

Exemple introductif : après analyse syntaxique

• Arbre (partie) du programme obtenu après analyse syntaxique

NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
'start'

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC

NODE_BLOCKNODE_IDENT
'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

...
NODE_DECL

NODE_IDENT
'end'

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
'i'

NULL

NODE_DECL

NODE_IDENT
's'

NODE_IDENT
'start'

NODE_DECL

NODE_IDENT
'e'

NODE_IDENT
'end'

NODE_DECL

NODE_IDENT
'sum'

NODE_INTVAL
0

27

Syntaxe de MiniC : utilisation de yacc

• Un fichier yacc a le format suivant :

%{
Includes C et déclarations de fonctions

Copié tel quel dans le fichier produit par lex

%}
Définitions

%%

Règles

%%

Fonctions C

Copié tel quel dans le fichier produit par yacc

28

Syntaxe de MiniC : utilisation de yacc

• La partie définitions contient principalement les déclarations des tokens, leur priorité et leur
associativité

• %left, %right ou %nonassoc

• Du moins prioritaire vers le plus prioritaire

• Exemple : %left TOK OR

• Définit aussi le type retourné par les tokens ayant des informations supplémentaires (ex : littéral)

et par les non-terminaux (noeud de l’arbre)

• Exemples :

• %type <intval> TOK INTVAL

• %type <ptr> program

29

Syntaxe de MiniC : utilisation de yacc

• La partie règles contient les règles de la grammaire du langage et les actions associées

• Les actions sont entre accolades

• $$ représente ce qui est retourné (un noeud de l’arbre)

• $i représente ce qui est retourné par le i-ème élement (terminal ou non) en partie droite de la règle

• Exemple :

• expr : expr TOK MUL expr { $$ = make node(NODE MUL, 2, $1, $3); }
• make node est une fonction à écrire dans la dernière partie du fichier, prenant un nombre variable de

paramètres ; elle construit un noeud simple de l’arbre (sans données supplémentaires comme un nom

d’identificateur) à partir de sa nature et de ses fils

30

Syntaxe de MiniC : cas des noeuds liste

• Dans certains cas, les règles sont récursives, pour traduire le fait que le programme contient une
succession d’éléments

• Exemple : instructions, déclaration des variables

• Au niveau de l’arbre, on implémente cela en utilisant des noeuds particuliers, appelés noeuds liste

(NODE LIST)

• Exemple : int a, b, c produit l’arbre :

NODE_DECLS

NODE_DECL

NODE_TYPE
int

NODE_LIST

NODE_LIST

NODE_DECLNODE_DECL

• Règles correspondantes :

listtypedecl : decl { $$ = $1; }

| listtypedecl TOK_COMMA decl { $$ = make_node(NODE_LIST, 2, $1, $3); }

;

31

Syntaxe de MiniC : arbres corrects

• L’ensemble des arbres de programme corrects est défini par une grammaire, appelée grammaire

d’arbres

• Cette grammaire définit le nombre et la nature des noeuds enfants que peuvent avoir les noeuds

d’une certaine nature

• Cette grammaire est entièrement spécifiée dans le document de spécification

32

Vérifications contextuelles

• Un programme syntaxiquement correct n’est pas forcément correct

• Exemples : référence à une variable non déclarée, types des opérandes d’un opérateur

incompatibles (bool + bool)

• Vérifier que le programme est correct nécessite une passe spécifique : la passe de vérification

contextuelle

• Toutes les vérifications sont spécifiées formellement par une grammaire attribuée : elle vous est

donnée pour ce projet

• La passe doit implémenter ces vérifications

• La passe de vérifications permet aussi de rattacher les noeuds d’occurrence des variables à leur

définition

33

Exemple introductif : après vérifications contextuelles

• Arbre (partie) du programme obtenu après vérifications (rattachement des noeuds d’occurrence à

leur définition)

NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
ident: 'start'

offset: 0

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC
stack_size: 16

offset: 16

NODE_BLOCKNODE_IDENT
ident: 'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

...
NODE_DECL

NODE_IDENT
ident: 'end'

offset: 4

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
ident: 'i'
offset: 0

NULL

NODE_DECL

NODE_IDENT
ident: 's'
offset: 4

NODE_IDENT
ident: 'start'

decl:

NODE_DECL

NODE_IDENT
ident: 'e'
offset: 8

NODE_IDENT
ident: 'end'

decl:

NODE_DECL

NODE_IDENT
ident: 'sum'
offset: 12

NODE_INTVAL
0

34

Contexte et environnement

• Un contexte contient un ensemble d’associations : nom (de variable) → définition

• ∼ Structure de données de type map en programmation (clé, valeur)

• ⇒ Un contexte ne peut contenir qu’une fois un nom donné

• Un environnement est un empilement (une pile) de contextes

• La définition associée à une variable est cherchée dans le contexte au sommet, puis (si définition

absente), dans le contexte suivant (contexte dessous le sommet de pile), etc.

• Une définition récente d’une variable (contexte en haut de la pile) masque une définition plus

ancienne (contexte en bas de la pile)

35

Contexte et environnement

• Exemple : environnement d’analyse des différents blocs d’un programme

int a = 0;
int b = 0;

void main() {
 int a = 1;
 int c = 2;

 if (true) {
 int a = 5;
 int d = 6;
 a = a + b + c + d;
 }
 else {
 int d;
 int e;
 e = d = 1;
 }
}

a

b

a

c

a

d

d

e

Références
vers les
noeuds de
déclaration
des variables
dans l'arbre
du programme

36

Grammaire attribuée

• Objectif : Pouvoir comprendre la grammaire attribuée ; décodage des règles et vérifications à faire

vous-mêmes

• Grammaire attribuée : grammaire concrète du langage, enrichie d’attributs (donnée ou structure

de données : ensemble, type, etc.)

• Les attributs peuvent être soit hérités (↓), soit synthétisés (↑)
• Un attribut hérité “descend” l’arbre de dérivation :

• Il peut être lu s’il apparait en partie gauche de la règle

• Il doit être affecté s’il apparait dans la partie droite de la règle

• Un attribut synthétisé “remonte” l’arbre de dérivation :

• Il peut être lu s’il apparait en partie droite de la règle

• Il doit être affecté s’il apparait en partie gauche de la règle

37

Grammaire attribuée de MiniC : exemples

• Exemple : déclaration de variables
decl vars ↓env ↓ctx0 ↓global ↑ctx1

→ type ↑type
liste declarations type ↓env ↓ctx0 ↓type ↓global ↑ctx1 ’;’

condition type ̸= void

• Exemple : boucle for

inst ↓env → for ’(’ exp ↓env ↑ ’;’ exp ↓env ↑bool ’;’ exp ↓env ↑ ’)’ inst

↓env

38

Grammaire attribuée : exemples

• Exemple : bloc

bloc ↓env → ’{’ liste declarations ↓env ↓{} ↓false ↑ctx liste inst ↓ctx/env ’}’

• a/b dénote l’environnement obtenu par l’empilement du contexte a sur l’environnement b

39

Génération de code

• But de la passe : produire le programme assembleur Mips correspondant à un arbre vérifié

• Parcours de l’arbre en profondeur (récursif), génération des instructions dans l’ordre du programme

• → Exemples à la prochaine séance (TD)

40

Exemple introductif : après génération de code

• Code assembleur mips obtenu (1/2)

Declaration des

variables globales

.data

start: .word 0

end: .word 100

.asciiz "sum: "

.asciiz "\n"

Programme

.text

main:

Prologue : allocation en pile

pour les variables locales

i se trouve a l’adresse 0($29)
s se trouve a l’adresse 4($29)
e se trouve a l’adresse 8($29)
sum se trouve a l’adresse 12($29)
addiu $29 , $29 , -16

s = start

lui $8, 0x1001

lw $8, 0($8)
sw $8, 4($29)
e = end

lui $8, 0x1001

lw $8, 4($8)
sw $8, 8($29)
sum = 0

ori $8, $0, 0

sw $8, 12($29)
for (i = s; i < e; i = i + 1)

i = s

lw $8, 4($29)
sw $8, 0($29)

41

Exemple introductif : après génération de code

• Code assembleur mips obtenu (2/2)

i < e ?

_L1:

lw $8, 0($29)
lw $9, 8($29)
slt $8, $8, $9
beq $8, $0, _L2

sum = sum + i

lw $8, 12($29)
lw $9, 0($29)
addu $8, $8, $9
sw $8, 12($29)
i = i + 1

lw $8, 0($29)
ori $9, $0, 1

addu $8, $8, $9
sw $8, 0($29)
Retour au test de boucle

j _L1

_L2:

print ("sum :")

lui $4, 0x1001

ori $4, $4, 8

ori $2, $0, 4

syscall

print(sum)

lw $4, 12($29)
ori $2, $0, 1

syscall

print ("\n");

lui $4, 0x1001

ori $4, $4, 14

ori $2, $0, 4

syscall

Desallocation des variables

locales en pile

addiu $29 , $29 , 16

exit

ori $2, $0, 10

syscall

42

Ligne de commande du compilateur

• Le compilateur doit gérer un certain nombre d’options sur la ligne de commande, en particulier :

• Une option pour limiter le nombre de registres utilisés

• Une option pour stopper la compilation après l’analyse syntaxique

• Une option pour stopper la compilation après la passe de vérifications

• Une option pour définir le niveau de trace ; par défaut (niveau 0), la compilation d’un code correct ne

doit rien afficher

• Ces options seront utilisées par les scripts d’évaluation automatique ⇒ Nécessité de les respecter

• Spécifications complètes et exemples dans le polycopié

43

Formattage des message d’erreur

• Les programmes source incorrects doivent lever une erreur lors de leur compilation : erreur de

compilation (différent des erreurs internes au compilateur)

• Les différents types d’erreur de compilation doivent être formatés de la manière suivante :

Error line <num ligne>: <decription du problème>

par exemple :

Error line 12: variable ‘‘foo’’ undeclared

• Respecter ce format est très important : en particulier, la chaine line <num> sera recherchée

automatiquement par les scripts d’évaluation, et le numéro de ligne vérifié

• S’arrêter à la première erreur rencontrée dans le programme source

44

Outline

Compilation

Spécifications du projet

Ressources du projet

Vue d’ensemble des modules à écrire

Modules fournis

Code fourni

Organisation du travail

Déroulement du module

45

Outline

Compilation

Spécifications du projet

Ressources du projet

Vue d’ensemble des modules à écrire

Modules fournis

Code fourni

Organisation du travail

Déroulement du module

46

Philosophie

• Objectif Principal : écrire les analyses lexicales et syntaxiques, et les passes de vérification et

génération de code

• ⇒ Un certain nombre de modules annexes sont fournis sous forme d’implémentation binaire

(librairie + .h)

• Implémenter ces modules annexes vous-mêmes vous apportera des points bonus

• Dans ce cas, vous êtes libres de garder la même interface (fonctions, paramètres, etc.) ou de la

changer

• Attention :

• Binaires fournis pour linux uniquement (si machine windows ⇒ se connecter aux machines de l’école)

47

Modules principaux et annexes

• Analyse lexicographique : fichier lex à compléter

• Analyse syntaxique : fichier yacc à compléter

• Analyse des arguments de la ligne de commande et options

• Module de contexte (A)

• Module d’environnement (A)

• Allocateur de registres (A)

• Première passe : vérifications contextuelles

• Deuxième passe : génération de code

48

Définitions générales au projet : fichier defs.h

• Définition du type node t : noeud de l’arbre du programme

• Définition de l’enum node nature : natures possibles pour un noeud

• Définition de l’enum node type : type de l’expression associée au noeud

• Ce fichier ne doit pas être modifié

49

Création des programmes mips

• Fournit la représentation d’un programme assembleur

• Fonctions pour créer les différents types d’instructions et directives mips

• Création du fichier final

• Module documenté dans le polycopié

• Pas très conseillé d’essayer de faire le vôtre...

50

Module de contexte

• Réalise l’association entre un nom de variable et sa définition (noeud associé à la déclaration dans

l’arbre du programme)

• Plusieurs implémentations possibles, celle fournie utilise un arbre indexé par les caractères du

nom 1 (temps de recherche indépendant du nombre d’éléments)

• Type context t

51

Module d’environnement

• Réalise la gestion de l’empilement et du dépilement des contextes

• Permet d’associer un nom de variable à sa définition dans le contexte le plus proche (interne)

• Chainage des contextes entre eux, type env t

• Difficulté : calcul des offsets (en pile ou dans la section .data) des variables du programme

52

Module de l’allocateur de registres

• Objectif : déterminer le numéro des registres utilisés pour le calcul des expressions

• Difficulté : gérer le cas quand il n’y a plus de registres disponibles

• Exemple : a = 1 + (2 + (3 + (4 + 5)));

• Expressions évaluées de gauche à droite, mais priorité liée aux parenthèses

• Code assembleur possible (utilise 5 registres) :

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addiu r10 , r0, 3

addiu r11 , r0, 4

addiu r12 , r0, 5

addu r11 , r11 , r12

addu r10 , r10 , r11

addu r9, r9 , r10

addu r8, r8 , r9

sw r8, 4(r29) # adresse de a

53

Module de l’allocateur de registres

• Si l’on ne dispose maintenant que de 4 registres ⇒ Nécessaire de stocker des valeurs

intermédiaires en pile

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addiu r10 , r0, 3

sw r10 , 8(r29)

addiu r10 , r0, 4

sw r10 , 12(r29)

addiu r10 , r0, 5

lw r11 , 12(r29)

addu r10 , r11 , r10

lw r11 , 8(r29)

addu r10 , r11 , r10

addu r9, r9 , r10

addu r8, r8 , r9

sw r8, 4(r29)

• ⇒ Il faut allouer deux mots de plus en pile au début de la fonction (en même temps que les

variables locales)

• Remarque : Ici, une optimisation basée sur la propagation des constantes permettrait de charger

directement la valeur 15 dans un registre, mais ce problème se pose plus sérieusement dès qu’il y a

des expressions plus complexes contenant des effets de bord (exemple : appels de fonctions)

54

Module de l’allocateur de registres

• Exemple : si l’on enlève les parenthèses de l’expression précédente :

a = 1 + 2 + 3 + 4 + 5;

• Besoin uniquement de deux registres :

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addu r8, r8, r9

addiu r9 , r0 , 3

addu r8, r8, r9

addiu r9 , r0 , 4

addu r8, r8, r9

addiu r9 , r0 , 5

addu r8, r8, r9

sw r8 , 4(r29)

• Remarque : il s’agit d’une implémentation näıve, qui peut s’optimiser en utilisant directement des

instructions addiu r8, r8, x (pas demandé pour le projet)

55

Module de l’allocateur de registres : interface fournie

• L’interface fournie comporte beaucoup de fonctions

• ⇒ À vous de voir si vous voulez investir du temps pour maitriser l’interface (peut aussi vous aider

pour votre propre implémentation)

• Module complexe

• Conseil : dans un premier temps, faire un allocateur simple qui lève une erreur quand il n’y a plus

de registre disponible, et ne s’attaquer au stockage des valeurs temporaires en pile que si vous êtes

à l’aise avec le reste

56

Affichage de l’arbre du programme

• Fonction dump tree() fournie dans le fichier common.c

• Produit un graphe de l’arbre au format graphviz, visualisable avec dot (ou xdot)

• Utilisation libre, pratique pour le débug

• Customizable

57

Allocations et désallocations mémoire

• Votre compilateur devra désallouer toutes les structures allouées et ne contenir aucune fuite

mémoire lorsqu’il n’y a pas d’erreur de compilation

• Vérifié lors de l’évaluation

• Pensez à utiliser valgrind

• De plus :

• Il faut appeler la fonction yylex destroy() à la fin de votre main()

• Il faut compiler le fichier produit par yacc avec l’option -DYY NO LEAKS

• Déjà fait dans le code fourni...

58

Code fourni

• Fichiers : lexico.l (à compléter), grammar.y (à compléter), common.c, common.h,

libminiccutils.a

• Binaire minicc de référence et simulateur mips Mars (Mars 4 2.jar)

• Dans une archive, à voir comment cette archive est distribuée

• Remarque : un groupe qui trouve un bug dans le compilateur de référence (ce que je considère

être un bug) gagne 1 point de bonus sur sa note finale

59

Gestion de projet

• Travail en binôme (pas de trinôme)

• Répartition des tâches libre (entre les binômes et dans le temps), mais les deux binômes doivent avoir

une bonne connaissance du code

• Commencer par la partie lex et yacc

• Affichage des chaines de caractère : devrait être fait assez tôt

• Utile pour votre propre débug et pour l’évaluation

• Scripts de test, tests de non-régression

60

Rapport et livrables

• Rendre une archive au format .tar.gz contenant :

• Le code (fichiers .c et .h)

• Le ou les makefile(s)

• Les scripts de tests

• Les fichiers de test

• Pas de binaire

• Écriture d’un petit rapport qui décrit l’architecture logicielle, les algorithmes utilisés, les modules

annexes réalisés, l’infrastructure de test ainsi que les limitations et le bugs connus

• Normalement, pas de soutenance

61

Évaluation

• 20% : Syntaxe et passe de vérification

• 20% : Passe de génération de code

• 5% : Fuites mémoire

• 5% : Erreurs dynamiques (exemple : accès à des zones mémoires non initialisées ou non allouées)

• 10% : Tests de la passe de vérification

• 10% : Tests de la passe de génération de code

• 10% : Automatisation et scripts de tests

• 10% : Qualité d’écriture de votre code (style, indentation, nommage des variables, découpage en

fonctions pertinent)

• 10% : Rapport

Remarque : Vos tests seront évalués de manière automatique

62

Fraude

• Expérience personnelle passée : nombreux cas et sanctions (plus d’une centaine en 14 ans, 10 ’0’

en 2020 en Compilation, 4 ’0’ en 2022)

• Extrait du règlement :
En cas de fraude, l’élève est susceptible d’être déféré en section disciplinaire de l’établissement et
s’expose aux sanctions suivantes :

• l’avertissement

• le blâme

• l’exclusion de l’établissement pour une durée maximum de 5 ans - cette sanction peut être prononcée

avec sursis si l’exclusion n’excède pas 2 ans

• l’exclusion définitive de l’établissement

• l’exclusion de tout établissement public d’enseignement supérieur pour une durée maximum de 5 ans

• l’exclusion définitive de tout établissement public d’enseignement supérieur.

• Tout échange de code, y compris de fichiers de tests, entre deux binômes différents constitue une

fraude et entrainera la note de 0 pour les deux membres des deux binômes et/ou la constitution

d’un dossier auprès de l’instance compétente de l’université.

• Valable aussi pour les codes de l’année dernière : analyse automatique par des outils de recherche

de plagiat

• Conséquence : protégez vos comptes et vos données

63

Outline

Compilation

Spécifications du projet

Ressources du projet

Déroulement du module

64

Outline

Compilation

Spécifications du projet

Ressources du projet

Déroulement du module

65

Déroulement du module

• Conseil : développement “transversal” aux passes : commencer par avoir la chaine complète

(exception : lexicographie et syntaxe) pour des programmes simples, puis prendre en compte de

plus en plus d’aspects du langages (expressions, chaines de caractère, variables globales, variables

locales, structures de contrôle, etc.)

• ⇒ Spécification par le test

• Avancement indicatif par séance :

• Séance 1 : TD

• Séance 2 : Fichiers lex et yacc

• Séance 3 : Ligne de commande, chaines de caractères

• Séance 4 : Variables globales, expressions

• Séance 5 : Expressions (suite)

• Séance 6 : Variables locales et structures de contrôle

• Séance 7 : Structures de contrôle (suite), finalisation des modules

• Tests et scripts de test en parallèle

• Travailler en dehors des séances de TP

66

Derniers conseils

• Lisez et re-lisez le polycopié

• Faites des tests

• Utilisez valgrind

• Rendre un code que vous n’avez pas écrit est rarement un bon pari

67

	Compilation
	Introduction
	Langage et grammaire

	Spécifications du projet
	Exemple introductif
	Analyse lexicographique
	Analyse syntaxique
	Vérifications contextuelles
	Génération de code
	Autres

	Ressources du projet
	Vue d'ensemble des modules à écrire
	Modules fournis
	Code fourni
	Organisation du travail

	Déroulement du module

