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La compilation

• Objectif : transformer un code source en binaire

file1.c file1.s

#include <st
 
int main() {
   int a = 3;
   int b = f(a);
   ...
   return 0;
}

.data

.text

.globl main

main:

addiu $29, $29,

lui $8, 0x1001

addiu $9, $0, 3

sw $9, 4($29)

file1.o

01100101001

11001001101110

...

file2.c file2.s

#include <st
 
int f(int n) {
   int b;
   ...
}

.data

.text

.globl f

f:

addiu $29, $29,

addu $8, $0, 0x

file2.o

01010101001

11101001101110

...

exec

00010101001

00001001101110

...

compilation assemblage édition de liens

("link")
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La compilation

• Dans ce cours, focalisation sur la compilation à proprement parler, c’est-à-dire la transformation

du code source en code assembleur

• ⇒ But du module : écrire un compilateur

• Projet sur 5 ou 6 séances, en binôme (pas de trinôme)

• Langage source : sous-ensemble de C, appelé MiniC (avec quelques différences par rapport au C)

• Langage cible : assembleur Mips
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Présentation informelle de MiniC

• Syntaxe du C

• 2 types de variables : bool et int

• Typage fort des expressions (pas de conversions implicite int → bool)

• Evaluation non-paresseuse des expressions

• Pas de :

• Fonctions (sauf le main)

• Pointeurs, tableaux

• switch, case, break, continue, goto, labels

• typedef, struct, union

• volatile, register, packed, inline, static, extern

• unsigned, signed, long, long long, short, char, size t

• float, double

• Opérateurs ++, --, -=, +=, *=, /=, <<=, >>=, &=, |=, ...

• Cast

• ...
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Définition informelle d’un langage

• Un langage est un ensemble de mots sur un alphabet

• Exemple, sur l’alphabet { ’a’, ’b’ }, l’ensemble des mots { a, abb, baa, bbaa, aaaba } constitue un

langage

• Un langage peut contenir un nombre infini de mots

• ⇒ On ne peut pas décrire l’ensemble des mots de manière explicite, il faut un moyen inductif,

comme une grammaire
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Grammaire

• Une grammaire définit un langage

• Une grammaire contient les éléments suivants :

• Un ensemble de terminaux VT (aussi appelés tokens) : ce sont les éléments atomiques des mots du

langage ; par exemple : { ’a’, ’b’, ’c’ }
• Un ensemble de non-terminaux VN , par exemple { ’I’, ’A’, ’B’ }
• Un axiome (élément initial), qui est un non-terminal, par exemple I

• Un ensemble de règles de dérivation qui permettent de “transformer” ce qu’il y a en partie gauche de

la règle en ce qu’il y a en partie droite

• Remarques :

• VT et VN sont appelés des vocabulaires et sont disjoints

• Le vocabulaire de la grammaire est V = VT ∪ VN

• L’alphabet du langage induit par une grammaire est le vocabulaire terminal de la grammaire
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Grammaire : Exemple

• Soit une grammaire G =< {a, b, c}, {I ,A,B}, I ,R > avec l’ensemble R de règles suivantes :

• I → A

• I → BA

• A → aBc

• B → bB

• B → b

• Les mots abc, abbc, bbabbc appartiennent au langage engendré

• Les mots bb, bac, abca, aabc n’y appartiennent pas

• Remarque : le terminal ε désigne un élément vide ; par exemple, si on ajoute la règle A → ε, le

mot bb appartient au langage
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Arbre de dérivation

• Un arbre de dérivation représente les règles de dérivation qui sont prises à partir de l’axiome pour

construire un mot du langage (une branche représente une règle prise)

• Arbres pour les exemples précédents :

I

A

aBc

b

I

A

aBc

b

bB

I

BA

bB

b

abc

aBc

b

bB

abbc bbabbc

I→A

A→aBc

B→b

I→A

A→aBc

B→bB

B→b

B→b B→bB

B→b

B→bB A→aBc

I→BA

10



Ambigüıté

• Une grammaire est dite ambigüe quand un mot du langage peut être obtenu par au moins deux

arbres de dérivations différents

• La grammaire précédente n’était pas ambigüe, tandis que la grammaire suivante l’est :

• I → AC

• A → abA

• A → a

• C → baC

• C → b

• Le mot abab peut être obtenu de deux manière différentes

• On cherche en général à éviter les grammaires ambigües (la plupart des langages peuvent être

décrits par une grammaire non-ambigüe)
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Types de grammaires et de langages

• Les grammaires sont catégorisées selon la forme de leur règles

• ⇒ Plus les règles sont contraintes, plus les analyses automatiques sont faciles, mais moins le

langage est expressif

• Soit VN l’ensemble des non-terminaux d’une grammaire, VT l’ensemble des terminaux, et

V = VT ∪ VN

• Dans les définitions suivantes, A,B ∈ VN , ω ∈ V ∗
T , ψ ∈ V+, α, β ∈ V ∗

• Une grammaire est dite régulière si toutes ses règles sont de l’une des formes suivantes :

• A → ωB

• A → Bω

• A → ω

• Une grammaire est dite hors-contexte si toutes ses règles sont de la forme :

• A → α

• Une grammaire est dite sous-contexte si toutes ses règles sont de la forme :

• αAβ → αψβ

• Une grammaire est dite générale si ses règles sont de la forme :

• α→ β
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Types de grammaires et de langages

• Si l’on ne considère pas les règles de la forme A → ε, on a :

grammaires régulières ⊂ grammaires hors-contexte ⊂ grammaires sous-contexte ⊂ grammaires

générales

• Les langages résultant des grammaires régulières sont équivalents aux langages décrits par des

expressions régulières, et aux langages décrits par les automates

• Exemple :

Expression RégulièreGrammaire Automate

a*(ba)+b*c

A → aA | B

B → baC

C → baC | D

D → bD | c

a

b a

ba

b

b

cc
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Types de grammaires et de langages

• Les langages réguliers sont les plus faciles à analyser, mais on ne peut pas tout exprimer ; par

exemple, le langage anbn ne peut pas être décrit par un langage régulier, mais s’écrit trivialement

avec une grammaire hors-contexte : A → aAb|ε

• De même, le langage des parenthèses s’écrit facilement avec une grammaire hors-contexte mais ne

peut pas s’écrire avec un langage régulier

• Remarque : la syntaxe des langages de programmation est souvent décrite à l’aide d’une

grammaire hors-contexte

• Pour aller plus loin : polycopié de référence en théorie des langages :

http://lig-membres.imag.fr/mechenim/wp-content/uploads/sites/

219/2016/05/PolycopieTL1.pdf
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Exemple introductif : programme

• Soit le programme MiniC suivant :

1 // Un exemple de programme MiniC

2 int start = 0;

3 int end = 100;

4

5 void main() {

6 int i, s = start , e = end;

7 int sum = 0;

8 for (i = s; i < e; i = i + 1) {

9 sum = sum + i;

10 }

11 print("sum: ", sum , "\n");

12 }
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Première phase : analyse lexicographique

• Transformation du programme source en liste de tokens (terminaux du langage)

• Réalisé à partir de la lecture des caractères un par un par une machine d’état

• Pénible à faire ⇒ outils pour générer cette machine à partir d’une description de plus haut niveau

des tokens

• Outil communément utilisé : lex

• → C’est l’outil utilisé pour le projet
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Lexicographie de MiniC

• Mots-clés du langage : void, int, bool, true, false, if, else, while, for, do, print

• Identificateurs (nom de variables) :

• LETTRE = {’a’, ..., ’z’, ’A’, ..., ’Z’}
• CHIFFRE = {’0’, ..., ’9’}
• IDF = (LETTRE)(LETTRE | CHIFFRE | ’ ’)*

• Littéraux entiers

• CHIFFRE NON NUL = {1, ..., 9}
• ENTIER DEC = ’0’ | CHIFFRE NON NUL CHIFFRE*

• LETTRE HEXA = {’a’, ..., ’f’, ’A’, ..., ’F’}
• ENTIER HEXA = ’0x’(CHIFFRE | LETTRE HEXA)+

• ENTIER = ENTIER DEC | ENTIER HEXA

• Chaines de caractères littérales

• CHAINE = ’"’(CHAINE CAR | ’\"’ | ’\n’)*’"’
• Dans laquelle CHAINE CAR est l’ensemble de tous les caractères imprimables, à l’exception de ’"’ et

’\’
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Lexicographie de MiniC

• Symboles spéciaux : il y a un certain nombre de symboles spéciaux qui ont chacun leur propre
token associé : +, -, {, ...

• → Voir la spécification complète pour l’exhaustivité de ces symboles

• Commentaires : suite de caractères imprimables et de tabulations qui commence par ’//’ et
s’étend jusqu’à la fin de la ligne

• Pas de terminal associé : une fois que l’on a détecté cette séquence, rien à renvoyer

• Les séparateurs de MiniC sont ’ ’ (caractère d’espace), tabulation horizontale et fin de ligne

• Ce ne sont pas des tokens en eux-mêmes : ils servent à séparer les tokens
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Exemple introductif : après analyse lexicographique

TOK_INT

2

TOK_IDENT

2 ’start’

TOK_AFFECT

2

TOK_INTVAL

2 ’0’

TOK_SEMICOL

2

TOK_INT

3

TOK_IDENT

3 ’end’

TOK_AFFECT

3

TOK_INTVAL

3 ’100’

TOK_SEMICOL

3

TOK_VOID

5

TOK_IDENT

5 ’main’

TOK_LPAR

5

TOK_RPAR

5

TOK_LACC

5

TOK_INT

6

TOK_IDENT

6 ’i’

TOK_COMMA

6

TOK_IDENT

6 ’s’

TOK_AFFECT

6

TOK_IDENT

6 ’start’

TOK_COMMA

6

TOK_IDENT

6 ’e’

TOK_AFFECT

6

TOK_IDENT

6 ’end’

TOK_SEMICOL

6

TOK_INT

7

TOK_IDENT

7 ’sum’

TOK_AFFECT

7

TOK_INTVAL

7 ’0’

TOK_SEMICOL

7

TOK_FOR

8

TOK_LPAR

8

TOK_IDENT

8 ’i’

TOK_AFFECT

8

TOK_IDENT

8 ’s’

TOK_SEMICOL

8

TOK_IDENT

8 ’i’

TOK_LT

8

TOK_IDENT

8 ’e’

TOK_SEMICOL

8

TOK_IDENT

8 ’i’

TOK_AFFECT

8

TOK_IDENT

8 ’i’

TOK_PLUS

8

TOK_INTVAL

8 ’1’

TOK_RPAR

8

TOK_LACC

8
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Lexicographie de MiniC : utilisation de lex

• Un fichier lex a le format suivant :

%{
Includes C et déclarations de fonctions

Copié tel quel dans le fichier produit par lex

%}
Définitions

%%

Règles

%%

Fonctions C (par exemple, main)

Copié tel quel dans le fichier produit par lex
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Lexicographie de MiniC : utilisation de lex

• Définitions : de la forme NOM expression

• Exemples :

• LETTRE [A-Za-z]

• IDF {LETTRE}({LETTRE}|{CHIFFRE}| )*

• Règles : de la forme Caractères action

• Exemples :

• "void" return TOK VOID;

• {IDF} {
yylval.strval = strdup(yytext);

return TOK IDENT;

}

• Squelette du fichier fourni, à compléter
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Deuxième phase : analyse syntaxique

• Transformation de la suite de tokens en arbre du programme

• Principe :

• Retrouver les règles prises dans la grammaire (hors-contexte) du langage à partir de la suite de tokens

• Les réduire dès que possible, i.e. “remonter” le non-terminal de la règle

• Créer la ou les branches correspondantes dans l’arbre du programme

• Remarque : l’arbre de dérivation correspondant au programme et l’arbre du programme sont

différents, i.e. toutes les règles de la grammaire ne se traduisent pas par une branche dans l’arbre

du programme
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Deuxième phase : analyse syntaxique

• Comme pour l’analyse lexicographique, le programme qui retrouve la règle à partir des tokens est

généré à partir d’une description de la grammaire

• Utilise une pile de tokens :

• Le token lu est mis au sommet de la pile

• Si les n premiers tokens au sommet de la pile se réduisent en une règle, remplacement de tous ces

tokens avec le non-terminal correspondant (au sommet de la pile) : reduce
• Sinon, lecture du token suivant : shift

• En réalité un petit peu plus compliqué car il faut considérer la priorité des opérateurs : il faut lire un token de

plus avant de décider

• On continue jusqu’à une réduction à l’axiome de la grammaire ; si on n’y arrive pas, le programme est

syntaxiquement incorrect

• Outil communément utilisé : yacc (interface prévue avec lex)

• → C’est l’outil utilisé pour le projet
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Syntaxe de MiniC

• Définie par une grammaire hors-contexte

• Priorité et associativité des opérateurs

• La grammaire du langage est entièrement donnée dans le document de ressources

• ⇒ Il faut coder l’automatisation de la construction de l’arbre du programme
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Exemple introductif : après analyse syntaxique

• Arbre (partie) du programme obtenu après analyse syntaxique

NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
'start'

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC

NODE_BLOCKNODE_IDENT
'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

...
NODE_DECL

NODE_IDENT
'end'

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
'i'

NULL

NODE_DECL

NODE_IDENT
's'

NODE_IDENT
'start'

NODE_DECL

NODE_IDENT
'e'

NODE_IDENT
'end'

NODE_DECL

NODE_IDENT
'sum'

NODE_INTVAL
0

27



Syntaxe de MiniC : utilisation de yacc

• Un fichier yacc a le format suivant :

%{
Includes C et déclarations de fonctions

Copié tel quel dans le fichier produit par lex

%}
Définitions

%%

Règles

%%

Fonctions C

Copié tel quel dans le fichier produit par yacc
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Syntaxe de MiniC : utilisation de yacc

• La partie définitions contient principalement les déclarations des tokens, leur priorité et leur
associativité

• %left, %right ou %nonassoc

• Du moins prioritaire vers le plus prioritaire

• Exemple : %left TOK OR

• Définit aussi le type retourné par les tokens ayant des informations supplémentaires (ex : littéral)

et par les non-terminaux (noeud de l’arbre)

• Exemples :

• %type <intval> TOK INTVAL

• %type <ptr> program
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Syntaxe de MiniC : utilisation de yacc

• La partie règles contient les règles de la grammaire du langage et les actions associées

• Les actions sont entre accolades

• $$ représente ce qui est retourné (un noeud de l’arbre)

• $i représente ce qui est retourné par le i-ème élement (terminal ou non) en partie droite de la règle

• Exemple :

• expr : expr TOK MUL expr { $$ = make node(NODE MUL, 2, $1, $3); }
• make node est une fonction à écrire dans la dernière partie du fichier, prenant un nombre variable de

paramètres ; elle construit un noeud simple de l’arbre (sans données supplémentaires comme un nom

d’identificateur) à partir de sa nature et de ses fils
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Syntaxe de MiniC : cas des noeuds liste

• Dans certains cas, les règles sont récursives, pour traduire le fait que le programme contient une
succession d’éléments

• Exemple : instructions, déclaration des variables

• Au niveau de l’arbre, on implémente cela en utilisant des noeuds particuliers, appelés noeuds liste

(NODE LIST)

• Exemple : int a, b, c produit l’arbre :

NODE_DECLS

NODE_DECL

NODE_TYPE
int

NODE_LIST

NODE_LIST

NODE_DECLNODE_DECL

• Règles correspondantes :

listtypedecl : decl { $$ = $1; }

| listtypedecl TOK_COMMA decl { $$ = make_node(NODE_LIST, 2, $1, $3); }

;
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Syntaxe de MiniC : arbres corrects

• L’ensemble des arbres de programme corrects est défini par une grammaire, appelée grammaire

d’arbres

• Cette grammaire définit le nombre et la nature des noeuds enfants que peuvent avoir les noeuds

d’une certaine nature

• Cette grammaire est entièrement spécifiée dans le document de spécification
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Vérifications contextuelles

• Un programme syntaxiquement correct n’est pas forcément correct

• Exemples : référence à une variable non déclarée, types des opérandes d’un opérateur

incompatibles (bool + bool)

• Vérifier que le programme est correct nécessite une passe spécifique : la passe de vérification

contextuelle

• Toutes les vérifications sont spécifiées formellement par une grammaire attribuée : elle vous est

donnée pour ce projet

• La passe doit implémenter ces vérifications

• La passe de vérifications permet aussi de rattacher les noeuds d’occurrence des variables à leur

définition
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Exemple introductif : après vérifications contextuelles

• Arbre (partie) du programme obtenu après vérifications (rattachement des noeuds d’occurrence à

leur définition)

NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
ident: 'start'

offset: 0

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC
stack_size: 16

offset: 16

NODE_BLOCKNODE_IDENT
ident: 'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

...
NODE_DECL

NODE_IDENT
ident: 'end'

offset: 4

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
ident: 'i'
offset: 0

NULL

NODE_DECL

NODE_IDENT
ident: 's'
offset: 4

NODE_IDENT
ident: 'start'

decl: 

NODE_DECL

NODE_IDENT
ident: 'e'
offset: 8

NODE_IDENT
ident: 'end'

decl: 

NODE_DECL

NODE_IDENT
ident: 'sum'
offset: 12

NODE_INTVAL
0
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Contexte et environnement

• Un contexte contient un ensemble d’associations : nom (de variable) → définition

• ∼ Structure de données de type map en programmation (clé, valeur)

• ⇒ Un contexte ne peut contenir qu’une fois un nom donné

• Un environnement est un empilement (une pile) de contextes

• La définition associée à une variable est cherchée dans le contexte au sommet, puis (si définition

absente), dans le contexte suivant (contexte dessous le sommet de pile), etc.

• Une définition récente d’une variable (contexte en haut de la pile) masque une définition plus

ancienne (contexte en bas de la pile)
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Contexte et environnement

• Exemple : environnement d’analyse des différents blocs d’un programme

int a = 0;
int b = 0;

void main() {
   int a = 1;
   int c = 2;

   if (true) {
       int a = 5;
       int d = 6;
       a = a + b + c + d;
   }
   else {
       int d;
       int e;
       e = d = 1;
   }
}

a

b

a

c

a

d

d

e

Références
vers les
noeuds de
déclaration
des variables
dans l'arbre
du programme
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Grammaire attribuée

• Objectif : Pouvoir comprendre la grammaire attribuée ; décodage des règles et vérifications à faire

vous-mêmes

• Grammaire attribuée : grammaire concrète du langage, enrichie d’attributs (donnée ou structure

de données : ensemble, type, etc.)

• Les attributs peuvent être soit hérités (↓), soit synthétisés (↑)
• Un attribut hérité “descend” l’arbre de dérivation :

• Il peut être lu s’il apparait en partie gauche de la règle

• Il doit être affecté s’il apparait dans la partie droite de la règle

• Un attribut synthétisé “remonte” l’arbre de dérivation :

• Il peut être lu s’il apparait en partie droite de la règle

• Il doit être affecté s’il apparait en partie gauche de la règle
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Grammaire attribuée de MiniC : exemples

• Exemple : déclaration de variables
decl vars ↓env ↓ctx0 ↓global ↑ctx1

→ type ↑type
liste declarations type ↓env ↓ctx0 ↓type ↓global ↑ctx1 ’;’

condition type ̸= void

• Exemple : boucle for

inst ↓env → for ’(’ exp ↓env ↑ ’;’ exp ↓env ↑bool ’;’ exp ↓env ↑ ’)’ inst

↓env
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Grammaire attribuée : exemples

• Exemple : bloc

bloc ↓env → ’{’ liste declarations ↓env ↓{} ↓false ↑ctx liste inst ↓ctx/env ’}’

• a/b dénote l’environnement obtenu par l’empilement du contexte a sur l’environnement b
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Génération de code

• But de la passe : produire le programme assembleur Mips correspondant à un arbre vérifié

• Parcours de l’arbre en profondeur (récursif), génération des instructions dans l’ordre du programme

• → Exemples à la prochaine séance (TD)
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Exemple introductif : après génération de code

• Code assembleur mips obtenu (1/2)

# Declaration des

# variables globales

.data

start: .word 0

end: .word 100

.asciiz "sum: "

.asciiz "\n"

# Programme

.text

main:

# Prologue : allocation en pile

# pour les variables locales

# i se trouve a l’adresse 0($29)
# s se trouve a l’adresse 4($29)
# e se trouve a l’adresse 8($29)
# sum se trouve a l’adresse 12($29)
addiu $29 , $29 , -16

# s = start

lui $8, 0x1001

lw $8, 0($8)
sw $8, 4($29)
# e = end

lui $8, 0x1001

lw $8, 4($8)
sw $8, 8($29)
# sum = 0

ori $8, $0, 0

sw $8, 12( $29)
# for (i = s; i < e; i = i + 1)

# i = s

lw $8, 4($29)
sw $8, 0($29)
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Exemple introductif : après génération de code

• Code assembleur mips obtenu (2/2)

# i < e ?

_L1:

lw $8, 0($29)
lw $9, 8($29)
slt $8, $8, $9
beq $8, $0, _L2

# sum = sum + i

lw $8, 12( $29)
lw $9, 0($29)
addu $8, $8, $9
sw $8, 12( $29)
# i = i + 1

lw $8, 0($29)
ori $9, $0, 1

addu $8, $8, $9
sw $8, 0($29)
# Retour au test de boucle

j _L1

_L2:

# print ("sum :")

lui $4, 0x1001

ori $4, $4, 8

ori $2, $0, 4

syscall

# print(sum)

lw $4, 12( $29)
ori $2, $0, 1

syscall

# print ("\n");

lui $4, 0x1001

ori $4, $4, 14

ori $2, $0, 4

syscall

# Desallocation des variables

# locales en pile

addiu $29 , $29 , 16

# exit

ori $2, $0, 10

syscall
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Ligne de commande du compilateur

• Le compilateur doit gérer un certain nombre d’options sur la ligne de commande, en particulier :

• Une option pour limiter le nombre de registres utilisés

• Une option pour stopper la compilation après l’analyse syntaxique

• Une option pour stopper la compilation après la passe de vérifications

• Une option pour définir le niveau de trace ; par défaut (niveau 0), la compilation d’un code correct ne

doit rien afficher

• Ces options seront utilisées par les scripts d’évaluation automatique ⇒ Nécessité de les respecter

• Spécifications complètes et exemples dans le polycopié

43



Formattage des message d’erreur

• Les programmes source incorrects doivent lever une erreur lors de leur compilation : erreur de

compilation (différent des erreurs internes au compilateur)

• Les différents types d’erreur de compilation doivent être formatés de la manière suivante :

Error line <num ligne>: <decription du problème>

par exemple :

Error line 12: variable ‘‘foo’’ undeclared

• Respecter ce format est très important : en particulier, la chaine line <num> sera recherchée

automatiquement par les scripts d’évaluation, et le numéro de ligne vérifié

• S’arrêter à la première erreur rencontrée dans le programme source
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Philosophie

• Objectif Principal : écrire les analyses lexicales et syntaxiques, et les passes de vérification et

génération de code

• ⇒ Un certain nombre de modules annexes sont fournis sous forme d’implémentation binaire

(librairie + .h)

• Implémenter ces modules annexes vous-mêmes vous apportera des points bonus

• Dans ce cas, vous êtes libres de garder la même interface (fonctions, paramètres, etc.) ou de la

changer

• Attention :

• Binaires fournis pour linux uniquement (si machine windows ⇒ se connecter aux machines de l’école)
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Modules principaux et annexes

• Analyse lexicographique : fichier lex à compléter

• Analyse syntaxique : fichier yacc à compléter

• Analyse des arguments de la ligne de commande et options

• Module de contexte (A)

• Module d’environnement (A)

• Allocateur de registres (A)

• Première passe : vérifications contextuelles

• Deuxième passe : génération de code
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Définitions générales au projet : fichier defs.h

• Définition du type node t : noeud de l’arbre du programme

• Définition de l’enum node nature : natures possibles pour un noeud

• Définition de l’enum node type : type de l’expression associée au noeud

• Ce fichier ne doit pas être modifié
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Création des programmes mips

• Fournit la représentation d’un programme assembleur

• Fonctions pour créer les différents types d’instructions et directives mips

• Création du fichier final

• Module documenté dans le polycopié

• Pas très conseillé d’essayer de faire le vôtre...
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Module de contexte

• Réalise l’association entre un nom de variable et sa définition (noeud associé à la déclaration dans

l’arbre du programme)

• Plusieurs implémentations possibles, celle fournie utilise un arbre indexé par les caractères du

nom 1 (temps de recherche indépendant du nombre d’éléments)

• Type context t
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Module d’environnement

• Réalise la gestion de l’empilement et du dépilement des contextes

• Permet d’associer un nom de variable à sa définition dans le contexte le plus proche (interne)

• Chainage des contextes entre eux, type env t

• Difficulté : calcul des offsets (en pile ou dans la section .data) des variables du programme
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Module de l’allocateur de registres

• Objectif : déterminer le numéro des registres utilisés pour le calcul des expressions

• Difficulté : gérer le cas quand il n’y a plus de registres disponibles

• Exemple : a = 1 + (2 + (3 + (4 + 5)));

• Expressions évaluées de gauche à droite, mais priorité liée aux parenthèses

• Code assembleur possible (utilise 5 registres) :

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addiu r10 , r0, 3

addiu r11 , r0, 4

addiu r12 , r0, 5

addu r11 , r11 , r12

addu r10 , r10 , r11

addu r9, r9 , r10

addu r8, r8 , r9

sw r8, 4(r29) # adresse de a
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Module de l’allocateur de registres

• Si l’on ne dispose maintenant que de 4 registres ⇒ Nécessaire de stocker des valeurs

intermédiaires en pile

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addiu r10 , r0, 3

sw r10 , 8(r29)

addiu r10 , r0, 4

sw r10 , 12(r29)

addiu r10 , r0, 5

lw r11 , 12(r29)

addu r10 , r11 , r10

lw r11 , 8(r29)

addu r10 , r11 , r10

addu r9, r9 , r10

addu r8, r8 , r9

sw r8, 4(r29)

• ⇒ Il faut allouer deux mots de plus en pile au début de la fonction (en même temps que les

variables locales)

• Remarque : Ici, une optimisation basée sur la propagation des constantes permettrait de charger

directement la valeur 15 dans un registre, mais ce problème se pose plus sérieusement dès qu’il y a

des expressions plus complexes contenant des effets de bord (exemple : appels de fonctions)
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Module de l’allocateur de registres

• Exemple : si l’on enlève les parenthèses de l’expression précédente :

a = 1 + 2 + 3 + 4 + 5;

• Besoin uniquement de deux registres :

addiu r8 , r0 , 1

addiu r9 , r0 , 2

addu r8, r8, r9

addiu r9 , r0 , 3

addu r8, r8, r9

addiu r9 , r0 , 4

addu r8, r8, r9

addiu r9 , r0 , 5

addu r8, r8, r9

sw r8 , 4(r29)

• Remarque : il s’agit d’une implémentation näıve, qui peut s’optimiser en utilisant directement des

instructions addiu r8, r8, x (pas demandé pour le projet)
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Module de l’allocateur de registres : interface fournie

• L’interface fournie comporte beaucoup de fonctions

• ⇒ À vous de voir si vous voulez investir du temps pour maitriser l’interface (peut aussi vous aider

pour votre propre implémentation)

• Module complexe

• Conseil : dans un premier temps, faire un allocateur simple qui lève une erreur quand il n’y a plus

de registre disponible, et ne s’attaquer au stockage des valeurs temporaires en pile que si vous êtes

à l’aise avec le reste
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Affichage de l’arbre du programme

• Fonction dump tree() fournie dans le fichier common.c

• Produit un graphe de l’arbre au format graphviz, visualisable avec dot (ou xdot)

• Utilisation libre, pratique pour le débug

• Customizable
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Allocations et désallocations mémoire

• Votre compilateur devra désallouer toutes les structures allouées et ne contenir aucune fuite

mémoire lorsqu’il n’y a pas d’erreur de compilation

• Vérifié lors de l’évaluation

• Pensez à utiliser valgrind

• De plus :

• Il faut appeler la fonction yylex destroy() à la fin de votre main()

• Il faut compiler le fichier produit par yacc avec l’option -DYY NO LEAKS

• Déjà fait dans le code fourni...
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Code fourni

• Fichiers : lexico.l (à compléter), grammar.y (à compléter), common.c, common.h,

libminiccutils.a

• Binaire minicc de référence et simulateur mips Mars (Mars 4 2.jar)

• Dans une archive, à voir comment cette archive est distribuée

• Remarque : un groupe qui trouve un bug dans le compilateur de référence (ce que je considère

être un bug) gagne 1 point de bonus sur sa note finale
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Gestion de projet

• Travail en binôme (pas de trinôme)

• Répartition des tâches libre (entre les binômes et dans le temps), mais les deux binômes doivent avoir

une bonne connaissance du code

• Commencer par la partie lex et yacc

• Affichage des chaines de caractère : devrait être fait assez tôt

• Utile pour votre propre débug et pour l’évaluation

• Scripts de test, tests de non-régression

60



Rapport et livrables

• Rendre une archive au format .tar.gz contenant :

• Le code (fichiers .c et .h)

• Le ou les makefile(s)

• Les scripts de tests

• Les fichiers de test

• Pas de binaire

• Écriture d’un petit rapport qui décrit l’architecture logicielle, les algorithmes utilisés, les modules

annexes réalisés, l’infrastructure de test ainsi que les limitations et le bugs connus

• Normalement, pas de soutenance
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Évaluation

• 20% : Syntaxe et passe de vérification

• 20% : Passe de génération de code

• 5% : Fuites mémoire

• 5% : Erreurs dynamiques (exemple : accès à des zones mémoires non initialisées ou non allouées)

• 10% : Tests de la passe de vérification

• 10% : Tests de la passe de génération de code

• 10% : Automatisation et scripts de tests

• 10% : Qualité d’écriture de votre code (style, indentation, nommage des variables, découpage en

fonctions pertinent)

• 10% : Rapport

Remarque : Vos tests seront évalués de manière automatique
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Fraude

• Expérience personnelle passée : nombreux cas et sanctions (plus d’une centaine en 14 ans, 10 ’0’

en 2020 en Compilation, 4 ’0’ en 2022)

• Extrait du règlement :
En cas de fraude, l’élève est susceptible d’être déféré en section disciplinaire de l’établissement et
s’expose aux sanctions suivantes :

• l’avertissement

• le blâme

• l’exclusion de l’établissement pour une durée maximum de 5 ans - cette sanction peut être prononcée

avec sursis si l’exclusion n’excède pas 2 ans

• l’exclusion définitive de l’établissement

• l’exclusion de tout établissement public d’enseignement supérieur pour une durée maximum de 5 ans

• l’exclusion définitive de tout établissement public d’enseignement supérieur.

• Tout échange de code, y compris de fichiers de tests, entre deux binômes différents constitue une

fraude et entrainera la note de 0 pour les deux membres des deux binômes et/ou la constitution

d’un dossier auprès de l’instance compétente de l’université.

• Valable aussi pour les codes de l’année dernière : analyse automatique par des outils de recherche

de plagiat

• Conséquence : protégez vos comptes et vos données
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Déroulement du module

• Conseil : développement “transversal” aux passes : commencer par avoir la chaine complète

(exception : lexicographie et syntaxe) pour des programmes simples, puis prendre en compte de

plus en plus d’aspects du langages (expressions, chaines de caractère, variables globales, variables

locales, structures de contrôle, etc.)

• ⇒ Spécification par le test

• Avancement indicatif par séance :

• Séance 1 : TD

• Séance 2 : Fichiers lex et yacc

• Séance 3 : Ligne de commande, chaines de caractères

• Séance 4 : Variables globales, expressions

• Séance 5 : Expressions (suite)

• Séance 6 : Variables locales et structures de contrôle

• Séance 7 : Structures de contrôle (suite), finalisation des modules

• Tests et scripts de test en parallèle

• Travailler en dehors des séances de TP
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Derniers conseils

• Lisez et re-lisez le polycopié

• Faites des tests

• Utilisez valgrind

• Rendre un code que vous n’avez pas écrit est rarement un bon pari
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