EISE 4 — Compilation

Quentin Meunier

Janvier 2026
quentin.meunier@lip6.fr

Sorbonne Université
Laboratoire d'Informatique de Paris 6
4 Place Jussieu, 75252 Paris, France

SORBONNE
UNIVERSITE

Compilation
Introduction

Langage et grammaire
Spécifications du projet
Ressources du projet

Déroulement du module

Compilation

La compilation

e Objectif : transformer un code source en binaire
édition de liens

compilation assemblage
"l n
("link")
#include <s .data 01100101001
text 1100100110110
int main() { .globl main
int a = 3; main:
€0 B & W) addiu $29, $29, >
e o lui $8, 0x1001
' ‘ addiu $9, $0, 3
sw $9, 4($29)
00010101001
filel.c filel.s filel.o 0001001101110
#include <s .data 01010101001
text exec
int £(dnt n) € s 11101001101116
%

int b;

}

file2.c

addiu $29, $29,
addu $8, $0, 0x

file2.s

file2.0

La compilation

e Dans ce cours, focalisation sur la compilation a proprement parler, c’est-a-dire la transformation
du code source en code assembleur
e = But du module : écrire un compilateur

e Projet sur 5 ou 6 séances, en bindme (pas de trinéme)

e Langage source : sous-ensemble de C, appelé MiniC (avec quelques différences par rapport au C)

Langage cible : assembleur Mips

Présentation informelle de MiniC

e Syntaxe du C

2 types de variables : bool et int

Typage fort des expressions (pas de conversions implicite int — bool)

Evaluation non-paresseuse des expressions

e Pas de:

Fonctions (sauf le main)

Pointeurs, tableaux

switch, case, break, continue, goto, labels

typedef, struct, union

volatile, register, packed, inline, static, extern
unsigned, signed, long, long long, short, char, size_t
float, double

Opérateurs ++, ——, —=, +=, %= /= <<=, >>= &= |=, ...
Cast

Définition informelle d’un langage

Un langage est un ensemble de mots sur un alphabet

e Exemple, sur I'alphabet { 'a’, 'b’ }, I'ensemble des mots { a, abb, baa, bbaa, aaaba } constitue un

langage

Un langage peut contenir un nombre infini de mots

e = On ne peut pas décrire |'ensemble des mots de maniere explicite, il faut un moyen inductif,

comme une grammaire

Grammaire

e Une grammaire définit un langage

e Une grammaire contient les éléments suivants :
e Un ensemble de terminaux V7 (aussi appelés tokens) : ce sont les éléments atomiques des mots du
langage ; par exemple : { ’a’, ’b’, ¢’ }
e Un ensemble de non-terminaux Vy, par exemple { *I’, ’A’, ’B’ }
e Un axiome (élément initial), qui est un non-terminal, par exemple I
e Un ensemble de régles de dérivation qui permettent de “transformer” ce qu'il y a en partie gauche de
la régle en ce qu'il y a en partie droite

e Remarques :

e V7 et V) sont appelés des vocabulaires et sont disjoints
e Le vocabulaire de la grammaire est V = V3 U Vy
e L’alphabet du langage induit par une grammaire est le vocabulaire terminal de la grammaire

Grammaire : Exemple

e Soit une grammaire G =< {a, b, c},{l, A, B}, I, R > avec I'ensemble R de régles suivantes :

I — A
— BA
— aBc
— bB
— b

e o o o o
W W= H

e Les mots abc, abbc, bbabbc appartiennent au langage engendré
e Les mots bb, bac, abca, aabc n'y appartiennent pas

e Remarque : le terminal ¢ désigne un élément vide; par exemple, si on ajoute la regle A — ¢, le

mot bb appartient au langage

Arbre de dérivation

e Un arbre de dérivation représente les regles de dérivation qui sont prises a partir de |'axiome pour
construire un mot du langage (une branche représente une regle prise)
e Arbres pour les exemples précédents :

abc abbc bbabbc

I I I
I-A I-A l I-BA
A A
A-aBc A-aBc B:y \A_:aBC
aBc aBc aBc
B-b B-bB l B-b l B—bB
b bB b bB
B-b l B-b

b b 10

e Une grammaire est dite ambiglie quand un mot du langage peut étre obtenu par au moins deux
arbres de dérivations différents

e La grammaire précédente n'était pas ambiglie, tandis que la grammaire suivante |'est :

I — AC

— abA

— a

— baC
— b

e o o o o
aQ Q= >

Le mot abab peut étre obtenu de deux maniere différentes

e On cherche en général a éviter les grammaires ambigiies (la plupart des langages peuvent &tre
décrits par une grammaire non-ambigiie)

11

Types de grammaires et de langages

e Les grammaires sont catégorisées selon la forme de leur regles

e = Plus les régles sont contraintes, plus les analyses automatiques sont faciles, mais moins le
langage est expressif

e Soit Vi I'ensemble des non-terminaux d’une grammaire, V1 I'ensemble des terminaux, et

V=VruW

Dans les définitions suivantes, A,B € Vy, w € V5, v € V', a,B€ V*

[]
e Une grammaire est dite réguliere si toutes ses regles sont de |'une des formes suivantes :
e A— wB
e A— Bw
e A—w
e Une grammaire est dite hors-contexte si toutes ses regles sont de la forme :
e A— «
e Une grammaire est dite sous-contexte si toutes ses regles sont de la forme :
o aAB — ayf

e Une grammaire est dite générale si ses régles sont de la forme :
e a— f3

12

Types de grammaires et de langages

e Si I'on ne consideére pas les régles de la forme A — ¢, on a :
grammaires régulieres C grammaires hors-contexte C grammaires sous-contexte C grammaires
générales

e Les langages résultant des grammaires régulieres sont équivalents aux langages décrits par des
expressions régulieres, et aux langages décrits par les automates

e Exemple :

Grammaire Expression Réguliere Automate
A—-aA | B

B - baC a*(ba)*tb*c

C->baC | D

D-bD|c

13

Types de grammaires et de langages

e Les langages réguliers sont les plus faciles a analyser, mais on ne peut pas tout exprimer; par
exemple, le langage a"b" ne peut pas étre décrit par un langage régulier, mais s'écrit trivialement
avec une grammaire hors-contexte : A — aAb|e

e De méme, le langage des parentheses s'écrit facilement avec une grammaire hors-contexte mais ne
peut pas s'écrire avec un langage régulier

e Remarque : la syntaxe des langages de programmation est souvent décrite a I'aide d'une
grammaire hors-contexte

e Pour aller plus loin : polycopié de référence en théorie des langages :
http://lig-membres.imag.fr/mechenim/wp-content/uploads/sites/
219/2016/05/PolycopieTL1.pdf

14

Compilation

Spécifications du projet
Exemple introductif
Analyse lexicographique
Analyse syntaxique
Vérifications contextuelles
Génération de code

Autres
Ressources du projet

Déroulement du module

15

Spécifications du projet

16

Exemple introductif : programme

e Soit le programme MiniC suivant :

1 // Un exzemple de programme MiniC
2 int start = 0;

3 int end = 100;

4

5 void main() {

6 int i, s = start, e = end;

7 int sum = 0;

8 for (i = s; i < e; i =1 + 1) {
9 sum = sum + i;

10 }

11 print(, sum,) 8

12 }

17

Premiére phase : analyse lexicographique

Transformation du programme source en liste de tokens (terminaux du langage)

e Réalisé a partir de la lecture des caractéres un par un par une machine d'état

Pénible a faire = outils pour générer cette machine a partir d'une description de plus haut niveau
des tokens

Outil communément utilisé : lex

— C'est I'outil utilisé pour le projet

18

Lexicographie de MiniC

Mots-clés du langage : void, int, bool, true, false, if, else, while, for, do, print

e |dentificateurs (nom de variables) :

e LETTRE = {’a’, ..., ’z’, ’A’, ..., °Z’}
e CHIFFRE = {’0°, ..., ’9’}
e IDF = (LETTRE) (LETTRE | CHIFFRE | ’_’)*
e Littéraux entiers
e CHIFFRE_NON_NUL = {1, cee 9}
e ENTIERDEC = ’0’ | CHIFFRE_NON_NUL CHIFFREx*
e LETTRE_HEXA = {’a’, coop 239, YN o505 ’F’}
e ENTIER_HEXA = ’0x’ (CHIFFRE | LETTRE_HEXA)+
e ENTIER = ENTIERDEC | ENTIER_HEXA

e Chaines de caracteres littérales

e CHAINE = ’"’(CHAINECAR | *\"> | *\n?)x’">
e Dans laquelle CHAINE_CAR est I'ensemble de tous les caractéres imprimables, a I'exception de *"’ et

;\7

19

Lexicographie de MiniC

e Symboles spéciaux : il y a un certain nombre de symboles spéciaux qui ont chacun leur propre
token associé : +, -, {, ...

e — Voir la spécification compléte pour I'exhaustivité de ces symboles
e Commentaires : suite de caractéres imprimables et de tabulations qui commence par >//’ et
s'étend jusqu'a la fin de la ligne
e Pas de terminal associé : une fois que I'on a détecté cette séquence, rien a renvoyer
e Les séparateurs de MiniC sont ' ' (caractére d'espace), tabulation horizontale et fin de ligne

e Ce ne sont pas des tokens en eux-mémes : ils servent a séparer les tokens

20

Exemple introductif : aprés analyse lexicographique

TOK_INT TOK_IDENT TOK_AFFECT TOK_INTVAL TOK_SEMICOL TOK_INT

2 2 ’start’ 2 2 °0° 2 8

TOK_IDENT TOK_AFFECT TOK_INTVAL TOK_SEMICOL TOK_VOID TOK_IDENT

3 ’end’ 8 3 ’100° 8 B 5 ’main’
TOK_LPAR TOK_RPAR TOK_LACC TOK_INT TOK_IDENT TOK_COMMA TOK_IDENT
5) 5 5 6 6 i’ 6 6 ’s’
TOK_AFFECT TOK_IDENT TOK_COMMA TOK_IDENT TOK_AFFECT TOK_IDENT

6 6 ’start’ 6 6 ‘e’ 6 6 ’end’
TOK_SEMICOL TOK_INT TOK_IDENT TOK_AFFECT TOK_INTVAL TOK_SEMICOL
6 7 7 ’sum’ 7 7 °0° 7

TOK_FOR TOK_LPAR TOK_IDENT TOK_AFFECT TOK_IDENT TOK_SEMICOL

8 8 8 i’ 8 SIEER 8

TOK_IDENT TOK_LT TOK_IDENT TOK_SEMICOL TOK_IDENT TOK_AFFECT

8 i’ 8 8 ‘e’ 8 8 i’ 8

TOK_IDENT TOK_PLUS TOK_INTVAL TOK_RPAR TOK_LACC

8 i’ 8 8 1’ 8 8

21

Lexicographie de MiniC : utilisation de lex

e Un fichier lex a le format suivant :

W
Includes C et déclarations de fonctions
Copié tel quel dans le fichier produit par lex
n}
Définitions
Toth
Regles
T
Fonctions C (par exemple, main)
Copié tel quel dans le fichier produit par lex

22

Lexicographie de MiniC : utilisation de lex

Définitions : de la forme NOM expression
e Exemples :

e LETTRE [A-Za-z]
e IDF {LETTRE}({LETTRE}|{CHIFFRE}|_)*

Regles : de la forme Caractéres action
e Exemples :
e "void" return TOK_VOID;

e {IDF} {
yylval.strval = strdup(yytext);
return TOK_IDENT;

}

Squelette du fichier fourni, a compléter

23

Deuxieme phase : analyse syntaxique

e Transformation de la suite de tokens en arbre du programme
e Principe :
e Retrouver les régles prises dans la grammaire (hors-contexte) du langage a partir de la suite de tokens
e Les réduire dés que possible, i.e. “remonter” le non-terminal de la régle
e Créer la ou les branches correspondantes dans |'arbre du programme
e Remarque : I'arbre de dérivation correspondant au programme et |'arbre du programme sont
différents, i.e. toutes les regles de la grammaire ne se traduisent pas par une branche dans I'arbre
du programme

24

Deuxieme phase : analyse syntaxique

e Comme pour |'analyse lexicographique, le programme qui retrouve la regle a partir des tokens est
généré a partir d'une description de la grammaire
e Utilise une pile de tokens :

e Le token lu est mis au sommet de la pile
e Si les n premiers tokens au sommet de la pile se réduisent en une régle, remplacement de tous ces
tokens avec le non-terminal correspondant (au sommet de la pile) : reduce
e Sinon, lecture du token suivant : shift
e En réalité un petit peu plus compliqué car il faut considérer la priorité des opérateurs : il faut lire un token de
plus avant de décider

e On continue jusqu'a une réduction a I'axiome de la grammaire; si on n'y arrive pas, le programme est

syntaxiquement incorrect
e Outil communément utilisé : yacc (interface prévue avec lex)

e — C'est I'outil utilisé pour le projet

25

Syntaxe de MiniC

e Définie par une grammaire hors-contexte
e Priorité et associativité des opérateurs
e La grammaire du langage est entierement donnée dans le document de ressources

= |l faut coder I'automatisation de la construction de I'arbre du programme

26

Exemple introductif : aprés analyse syntaxique

e Arbre (partie) du programme obtenu aprés analyse syntaxique

NODE_PROGRAM

\.

NODE_LIST NODE_FUNC
NODE_DECLS NODE_DECLS NODE_TYPE NODE_IDENT NODE_BLOCK
/ \ / \ 'void' 'main’ l \
NODE_TYPE NODE_DECL NODE_TYPE NODE_DECL NODE_LIST
‘int" ‘int'
NODE_DECLS NODE_DECLS
NODE_IDENT NODE_INTVAL NODE_IDENT NODE_INTVAL
‘start’ 0 ‘end' 100
NODE_TYPE NODE_LIST NODE_TYPE NODE_DECL
NODE_LIST NODE_DECL NODE_IDENT NODE_INTVAL
/ \ ‘sum’ 0
NODE_DECL NODE_DECL NODE_IDENT NODE_IDENT
/ \ / \ ‘e’ ‘end"
NODE_IDENT NULL NODE_IDENT NODE_IDENT
i 's' 'start' 27

Syntaxe de MiniC : utilisation de yacc

e Un fichier yacc a le format suivant :

A
Includes C et déclarations de fonctions
Copié tel quel dans le fichier produit par lex
n}
Définitions
Toth
Regles
T
Fonctions C
Copié tel quel dans le fichier produit par yacc

28

Syntaxe de MiniC : utilisation de yacc

e La partie définitions contient principalement les déclarations des tokens, leur priorité et leur
associativité

e Jleft, %right ou %nonassoc
e Du moins prioritaire vers le plus prioritaire
o Exemple : left TOK_-OR
e Définit aussi le type retourné par les tokens ayant des informations supplémentaires (ex : littéral)
et par les non-terminaux (noeud de I'arbre)
e Exemples :

e Jtype <intval> TOK_INTVAL
e Jtype <ptr> program

29

Syntaxe de MiniC : utilisation de yacc

e La partie regles contient les régles de la grammaire du langage et les actions associées

e Les actions sont entre accolades

e 3 représente ce qui est retourné (un noeud de I'arbre)

e $i représente ce qui est retourné par le i-eme élement (terminal ou non) en partie droite de la regle

e Exemple :

e expr : expr TOKMUL expr { $$ = make node(NODEMUL, 2, $1, $3); }

e make node est une fonction a écrire dans la derniére partie du fichier, prenant un nombre variable de
parameétres ; elle construit un noeud simple de I'arbre (sans données supplémentaires comme un nom
d’identificateur) a partir de sa nature et de ses fils

30

Syntaxe de MiniC : cas des noeuds liste

e Dans certains cas, les régles sont récursives, pour traduire le fait que le programme contient une

succession d'éléments
e Exemple : instructions, déclaration des variables

e Au niveau de |'arbre, on implémente cela en utilisant des noeuds particuliers, appelés noeuds liste

(NODE_LIST)
e Exemple : int a, b, c produit |'arbre :

NODE_DECLS
NODE_TYPE NODE_LIST
int / \
NODE_LIST NODE_DECL
NODE_DECL NODE_DECL
e Regles correspondantes :
listtypedecl : decl {88 =815 }

| listtypedecl TOK_COMMA decl { $$ = make_node(NODE_LIST, 2, $1, $3); }

H

31

Syntaxe de MiniC : arbres corrects

e L’'ensemble des arbres de programme corrects est défini par une grammaire, appelée grammaire
d’arbres

e Cette grammaire définit le nombre et la nature des noeuds enfants que peuvent avoir les noeuds
d’une certaine nature

e Cette grammaire est entierement spécifiée dans le document de spécification

32

Vérifications contextuelles

e Un programme syntaxiquement correct n'est pas forcément correct

e Exemples : référence a une variable non déclarée, types des opérandes d'un opérateur
incompatibles (bool + bool)

e Vérifier que le programme est correct nécessite une passe spécifique : la passe de vérification
contextuelle

e Toutes les vérifications sont spécifiées formellement par une grammaire attribuée : elle vous est

donnée pour ce projet
e La passe doit implémenter ces vérifications

e La passe de vérifications permet aussi de rattacher les noeuds d'occurrence des variables a leur
définition

33]

Exemple introductif : aprés vérifications contextuelles

e Arbre (partie) du programme obtenu aprés vérifications (rattachement des noeuds d’occurrence a

leur définition)

NODE_PROGRAM

NODE_FUNC
NODE_LIST stack_size: 16
offset: 16
NODE_DECLS NODE_DECLS NODE_TYPE NODE_IDENT NODE_BLOCK
void" ident: 'main’ l \
NODE_TYPE NODE_DECL NODE_TYPE NODE_DECL NODE_LIST
int* it \
NODE_DECLS NODE_DECLS
NODE_IDENT NODE_INTVAL NODE_IDENT NODE_INTVAL
ident: 'start' 0 ident: ‘end" 100
offset: 0 7 offset: 4 NODE TYPE NODE_LIST NODE_TYPE NODE_DECL
s - it int'
' -7
' P
L P NODE_LIST NODE_DECL NODE_IDENT NODE_INTVAL
\ e ident: 'sum’ [}
V2 offset: 12
v,0
v
J “ NODE_DECL NODE_DECL NODE_IDENT NODE_IDENT
7 % ident: ‘' ident: ‘end"
o offset: 8 decl: |
o '
! \ ’
. '\ NODE_IDENT NULL NODE_IDENT NODE_IDENT /
1 \ ident: 'i* ident: 's' ident: 'start' ’
\ N offset: 0 offset: 4 decl: | ,
\ A ’ ’
\ N , .
\ N . .
\

2 34

Contexte et environnement

e Un contexte contient un ensemble d’associations : nom (de variable) — définition

e ~ Structure de données de type map en programmation (clé, valeur)
e = Un contexte ne peut contenir qu'une fois un nom donné
e Un environnement est un empilement (une pile) de contextes

e La définition associée a une variable est cherchée dans le contexte au sommet, puis (si définition
absente), dans le contexte suivant (contexte dessous le sommet de pile), etc.

e Une définition récente d'une variable (contexte en haut de la pile) masque une définition plus
ancienne (contexte en bas de la pile)

35)

Contexte et environnement

e Exemple : environnement d’'analyse des différents blocs d'un programme

a----ft---------- >
int a = 0; _—
int b = 0; 9 cocollocccoscosad » Références
. . vers les
v01d.ma1n() { T noeuds de
int a = 1; p .
int ¢ = 2; A----f---------- > declarapon
. Cmmooboe » desvariables
i (’_trge) { 5 dans l'arbre
int a = 5; N - ———————— >
int d = 6; :.——— ______ > du programme
a=a + + C + d; :,
1
______I -_-—— = |
else { d : d >
int d; d ____|l-_2 @ cooo|bs
int e;
e=d=TT1;
}

36

Grammaire attribuée

e Objectif : Pouvoir comprendre la grammaire attribuée ; décodage des regles et vérifications a faire
vous-mémes

e Grammaire attribuée : grammaire concréte du langage, enrichie d'attributs (donnée ou structure
de données : ensemble, type, etc.)

e Les attributs peuvent &tre soit hérités (|), soit synthétisés (1)

e Un attribut hérité “descend” I'arbre de dérivation :

e |l peut étre lu s'il apparait en partie gauche de la regle
e |l doit étre affecté s'il apparait dans la partie droite de la regle

e Un attribut synthétisé “remonte” |'arbre de dérivation :

e |l peut étre lu s'il apparait en partie droite de la regle
e |l doit étre affecté s'il apparait en partie gauche de la regle

37

Grammaire attribuée de MiniC : exemples

e Exemple : déclaration de variables
decl_vars |env |ctxp |global Tctx;
— type Ttype
liste_declarations_type |env |ctxo |type |global Tctx; ’;°
condition type # void

e Exemple : boucle for
inst |env — for > (° exp lenv T_ ;> exp lenv Thool ’;’ exp lenv 1_)’ inst
lenv

38

Grammaire attribuée : exemples

e Exemple : bloc
bloc |env — {’ liste_declarations |env |{} |false fctx liste_inst | ctx/env ’}’

e a/b dénote I'environnement obtenu par I'empilement du contexte a sur I'environnement b

39

Génération de code

e But de la passe : produire le programme assembleur Mips correspondant a un arbre vérifié
e Parcours de I'arbre en profondeur (récursif), génération des instructions dans I'ordre du programme

e — Exemples a la prochaine séance (TD)

40

Exemple introductif : aprés génération de code

e Code assembleur mips obtenu (1/2)

Declaration des
variables globales

.data
start: .word O
end: .word 100

.asciiz "sum: "

.asciiz "\n"

Programme
. text

main:
Prologue : allocation en pile
pour les variables locales
i se trouve a l’adresse 0($29)
s se trouve a 1’adresse 4($29)
e se trouve a l’adresse 8($29)
sum se trouve a 1’adresse 12($29)
addiu $29, $29, -16

s =

sum

ori

for

start

$8, 0x1001
$8, 0($8)
$8, 4($29)
end

$8, 0x1001
$8, 4($8)
$8, 8(%29)
=0

$8, $0, 0
$8, 12($29)
(i =s; i<e; i=1i+ 1)
s

$8, 4($29)
$8, 0(%29)

41

Exemple introductif : aprés génération de code

e Code assembleur mips obtenu (2/2)

b2 8
print ("sum :")
lui $4, 0x1001
ori $4, $4, 8
ori $2, $0, 4
syscall

1w $8, 0($29)
1w $9, 8($29)
slt $8, $8, $9

int
beq $8. $0. L2 print (sum)

- 1w $4, 12($29)

sum = sum + i ori $2, $0, 1

1w $8, 12($29) | ,
syscall

1w $9, 0($29)

addu $8. $8, $9 # print ("\n");

lui $4, 0x1001

sv 98, 12(829) R e
Basded i $2, $0, 4
1w $8, 0($29) ord A

syscall

ori $9, $0, 1 .
Desallocation des variables

addu $8, $8, $9

sw $8, 0(%$29)

Retour au test de boucle
j _L1

locales en pile
addiu $29, $29, 16
exit

ori $2, $0, 10
syscall

42

Ligne de commande du compilateur

e Le compilateur doit gérer un certain nombre d'options sur la ligne de commande, en particulier :

Une option pour limiter le nombre de registres utilisés

Une option pour stopper la compilation aprés I'analyse syntaxique

Une option pour stopper la compilation aprés la passe de vérifications

Une option pour définir le niveau de trace; par défaut (niveau 0), la compilation d'un code correct ne

doit rien afficher
e Ces options seront utilisées par les scripts d'évaluation automatique = Nécessité de les respecter

e Spécifications complétes et exemples dans le polycopié

43

Formattage des message d’erreur

e Les programmes source incorrects doivent lever une erreur lors de leur compilation : erreur de
compilation (différent des erreurs internes au compilateur)

e Les différents types d'erreur de compilation doivent étre formatés de la maniére suivante :
Error line <num_ligne>: <decription du probléme>
par exemple :
Error line 12: variable ‘‘foo’’ undeclared
e Respecter ce format est trés important : en particulier, la chaine 1ine <num> sera recherchée

automatiquement par les scripts d'évaluation, et le numéro de ligne vérifié

e S'arréter a la premiére erreur rencontrée dans le programme source

44

Compilation
Spécifications du projet

Ressources du projet
Vue d’ensemble des modules a écrire
Modules fournis
Code fourni

Organisation du travail

Déroulement du module

45

Ressources du projet

46

Philosophie

e Objectif Principal : écrire les analyses lexicales et syntaxiques, et les passes de vérification et
génération de code

e = Un certain nombre de modules annexes sont fournis sous forme d'implémentation binaire
(librairie + .h)

e Implémenter ces modules annexes vous-mémes vous apportera des points bonus

e Dans ce cas, vous étes libres de garder la méme interface (fonctions, paramétres, etc.) ou de la
changer

e Attention :

e Binaires fournis pour linux uniquement (si machine windows = se connecter aux machines de I'école)

47

Modules principaux et annexes

e Analyse lexicographique : fichier lex a compléter

e Analyse syntaxique : fichier yacc a compléter

e Analyse des arguments de la ligne de commande et options
e Module de contexte (A)

e Module d’environnement (A)

e Allocateur de registres (A)

e Premiére passe : vérifications contextuelles

e Deuxieme passe : génération de code

48

Définitions générales au projet : fichier defs.h

e Définition du type node_t : noeud de |'arbre du programme

Définition de I'enum node_nature : natures possibles pour un noeud

e Définition de I'enum node_type : type de |'expression associée au noeud

Ce fichier ne doit pas étre modifié

49

Création des programmes mips

e Fournit la représentation d'un programme assembleur

e Fonctions pour créer les différents types d'instructions et directives mips
e Création du fichier final

e Module documenté dans le polycopié

e Pas trés conseillé d'essayer de faire le votre...

50

Module de contexte

e Réalise |I'association entre un nom de variable et sa définition (noeud associé a la déclaration dans
I'arbre du programme)

e Plusieurs implémentations possibles, celle fournie utilise un arbre indexé par les caractéres du
nom® (temps de recherche indépendant du nombre d'éléments)

e Type context_t

51

Module d’environnement

Réalise la gestion de I'empilement et du dépilement des contextes

e Permet d’associer un nom de variable a sa définition dans le contexte le plus proche (interne)

Chainage des contextes entre eux, type env_t

Difficulté : calcul des offsets (en pile ou dans la section .data) des variables du programme

52

Module de I'allocateur de registres

e Objectif : déterminer le numéro des registres utilisés pour le calcul des expressions

Difficulté : gérer le cas quand il n'y a plus de registres disponibles

e Exemple:a =1+ (2+ (3+ (4 +5)));

e Expressions évaluées de gauche a droite, mais priorité liée aux parenthéses

addiu
addiu
addiu
addiu
addiu
addu
addu
addu
addu
sw

r8,
r9,
ri0,
ri1,
ri2,
ri1,
rio0,
r9,
r8,
r8,

Code assembleur possible (utilise 5 registres) :

r0, 1
r0, 2
r0, 3
r0, 4
r0, 5
ril1, ri2
ri0, ri1
r9, ri1o0
r8, r9
4(r29) # adresse de a

53]

Module de I'allocateur de registres

e Si I'on ne dispose maintenant que de 4 registres = Nécessaire de stocker des valeurs
intermédiaires en pile

addiu r8, r0, 1 1w ri1, 12(r29)
addiu r9, r0, 2 addu r10, ri11, ri10
addiu r10, r0, 3 1w ri1, 8(r29)
sw r10, 8(r29) addu ri10, ri1, rio0
addiu r10, r0, 4 addu r9, r9, rio0
sw ri0, 12(r29) addu r8, r8, r9
addiu r10, r0, 5 sw r8, 4(r29)

e = |l faut allouer deux mots de plus en pile au début de la fonction (en méme temps que les
variables locales)

e Remarque : Ici, une optimisation basée sur la propagation des constantes permettrait de charger
directement la valeur 15 dans un registre, mais ce probleme se pose plus sérieusement dés qu'il y a
des expressions plus complexes contenant des effets de bord (exemple : appels de fonctions)

54

Module de I'allocateur de registres

e Exemple : si I'on enléve les parenthéses de |'expression précédente :

a=1+2+3+4+5;

e Besoin uniquement de deux registres :

addiu r8, r0, 1
addiu r9, r0, 2
addu r8, r8, r9
addiu r9, r0, 3
addu r8, r8, r9

addiu r9, r0o, 4
addu r8, r8, r9
addiu r9, r0, 5
addu r8, r8, r9
sw r8, 4(r29)

e Remarque : il s’agit d'une implémentation naive, qui peut s'optimiser en utilisant directement des

instructions addiu r8, r8, x (pas demandé pour le projet)

55

Module de I'allocateur de registres : interface fournie

e L'interface fournie comporte beaucoup de fonctions

e = A vous de voir si vous voulez investir du temps pour maitriser I'interface (peut aussi vous aider
pour votre propre implémentation)

e Module complexe

e Conseil : dans un premier temps, faire un allocateur simple qui leve une erreur quand il n'y a plus
de registre disponible, et ne s’attaquer au stockage des valeurs temporaires en pile que si vous étes
a I'aise avec le reste

56

Affichage de I'arbre du programme

e Fonction dump_tree() fournie dans le fichier common.c

Produit un graphe de I'arbre au format graphviz, visualisable avec dot (ou xdot)

Utilisation libre, pratique pour le débug

e Customizable

57

Allocations et désallocations mémoire

e Votre compilateur devra désallouer toutes les structures allouées et ne contenir aucune fuite
mémoire lorsqu'il n'y a pas d’erreur de compilation

e Vérifié lors de |'évaluation
e Pensez a utiliser valgrind
e De plus :

e |l faut appeler la fonction yylex_destroy() a la fin de votre main()
o |l faut compiler le fichier produit par yacc avec I'option -DYY_NO_LEAKS
e Déja fait dans le code fourni...

58

Code fourni

e Fichiers : lexico.l (a compléter), grammar.y (2 compléter), common.c, common.h,
libminiccutils.a
e Binaire minicc de référence et simulateur mips Mars (Mars_4.2. jar)

e Dans une archive, a voir comment cette archive est distribuée

e Remarque : un groupe qui trouve un bug dans le compilateur de référence (ce que je considere
&tre un bug) gagne 1 point de bonus sur sa note finale

59

Gestion de projet

Travail en binéme (pas de trinéme)

e Répartition des taches libre (entre les bindmes et dans le temps), mais les deux binémes doivent avoir
une bonne connaissance du code

e Commencer par la partie lex et yacc

Affichage des chaines de caractere : devrait étre fait assez tot

e Utile pour votre propre débug et pour |'évaluation

Scripts de test, tests de non-régression

60

Rapport et livrables

e Rendre une archive au format .tar.gz contenant :

Le code (fichiers .c et .h)
Le ou les makefile(s)

Les scripts de tests

Les fichiers de test

Pas de binaire

e Ecriture d’un petit rapport qui décrit I'architecture logicielle, les algorithmes utilisés, les modules
annexes réalisés, |'infrastructure de test ainsi que les limitations et le bugs connus

e Normalement, pas de soutenance

61

Evaluation

e 20% : Syntaxe et passe de vérification

e 20% : Passe de génération de code

e 5% : Fuites mémoire

e 5% : Erreurs dynamiques (exemple : accés a des zones mémoires non initialisées ou non allouées)
e 10% : Tests de la passe de vérification

e 10% : Tests de la passe de génération de code

e 10% : Automatisation et scripts de tests

e 10% : Qualité d’'écriture de votre code (style, indentation, nommage des variables, découpage en

fonctions pertinent)

e 10% : Rapport

Remarque : Vos tests seront évalués de maniére automatique

62

Fraude

e Expérience personnelle passée : nombreux cas et sanctions (plus d'une centaine en 14 ans, 10 '0’
en 2020 en Compilation, 4 '0" en 2022)

e Extrait du réglement :
En cas de fraude, I'éléve est susceptible d'étre déféré en section disciplinaire de I'établissement et
s’expose aux sanctions suivantes :

I'avertissement

le blame

I'exclusion de I'établissement pour une durée maximum de 5 ans - cette sanction peut étre prononcée
avec sursis si I'exclusion n’excéde pas 2 ans

I'exclusion définitive de I'établissement

I'exclusion de tout établissement public d’enseignement supérieur pour une durée maximum de 5 ans
I'exclusion définitive de tout établissement public d’enseignement supérieur.

e Tout échange de code, y compris de fichiers de tests, entre deux bindmes différents constitue une

fraude et entrainera la note de 0 pour les deux membres des deux bindmes et/ou la constitution

d’un dossier aupres de I'instance compétente de I'université.

e Valable aussi pour les codes de I'année derniére : analyse automatique par des outils de recherche

de plagiat

e Conséquence : protégez vos comptes et vos données

63

Compilation
Spécifications du projet
Ressources du projet

Déroulement du module

64

Déroulement du module

65

Déroulement du module

e Conseil : développement “transversal’ aux passes : commencer par avoir la chaine complete

(exception :

lexicographie et syntaxe) pour des programmes simples, puis prendre en compte de

plus en plus d’aspects du langages (expressions, chaines de caractere, variables globales, variables
locales, structures de contrdle, etc.)

e = Spécification par le test

e Avancement indicatif par séance :

Séance 1 :
Séance 2 :
Séance 3 :
Séance 4 :
Séance 5 :
Séance 6 :
Séance 7 :

TD

Fichiers lex et yacc

Ligne de commande, chaines de caracteres

Variables globales, expressions

Expressions (suite)

Variables locales et structures de contréle

Structures de contrdle (suite), finalisation des modules

e Tests et scripts de test en parallele

e Travailler en dehors des séances de TP

66

Derniers conseils

Lisez et re-lisez le polycopié

Faites des tests

Utilisez valgrind

Rendre un code que vous n'avez pas écrit est rarement un bon pari

67

	Compilation
	Introduction
	Langage et grammaire

	Spécifications du projet
	Exemple introductif
	Analyse lexicographique
	Analyse syntaxique
	Vérifications contextuelles
	Génération de code
	Autres

	Ressources du projet
	Vue d'ensemble des modules à écrire
	Modules fournis
	Code fourni
	Organisation du travail

	Déroulement du module

