b

Q SORBONNE
b UNIVERSITE

Sorbonne Université — Ecole Polytech’ Sorbonne

Projet Compilation

Année 2025-2026

|. Spécifications
Il. Ressources et environnement de développement
1. Annexes

Responsable d'UE : Quentin Meunier

l. Specifications

1 Introduction

Ce projet a pour but I’écriture d’un compilateur, c’est-a-dire I’écriture d’un programme qui transforme un
programme source en programme assembleur.

Le langage utilisé pour les programmes source est appelé MiniC : il s’agit d’un sous-ensemble du langage C
(avec quelques différences), ayant notamment les restrictions suivantes par rapport au C :

les expressions et variables n’ont que deux types : int et bool

il y a un typage fort des expressions (pas de conversions implicite int — bool)

I’évaluation des expressions est faite de maniére non-paresseuse

il n’y a pas de fonctions (hormis le main), pointeurs, tableaux

les mots-clés suivants et fonctionnalités associées ne sont pas supportés : switch, case, break,
continue, goto, typedef, struct, union, volatile, register, packed, inline, static, extern,
unsigned, signed, long, long long, short, char, size_t, float, double

e les opérateurs suivants ne sont pas supportés : ++, —— -=, += *= /= «= »= &= |= ..

e il n’y a pas de cast

Le langage cible est le langage assembleur Mips.

1.1 Analyse lexicale

L’analyse lexicale est la phase de transformation d’une suite de caractéres (d’un fichier) en une suite de
lexémes (ou tokens). Par exemple, la suite de lettres for, quand elle est entourée de caractéres autres
que des chiffres, des lettres, et du caractére _, est un mot réservé du langage : on lui associe donc un
token représentant le for. Comme la machine d’état qui fait cette transformation est tres pénible & écrire
manuellement, on utilise en général un outil pour décrire les tokens avec un plus haut niveau d’abstraction,
I’outil se chargeant de la génération du fichier C contenant la machine d’état correspondante. L’outil utilisé
dans ce projet est Lex.

1.2 Analyse syntaxique

L’analyse syntaxique est la phase au cours de laquelle on vérifie que la suite de tokens en sortie de I'analyse
lexicale est valide. Par exemple, une succession de deux tokens associés au mot-clé for n’est pas valide
syntaxiquement. Pour faire cette analyse, on décrit les langages valides & ’aide de régles de grammaire (en
général de type hors-contexte). C’est au cours de cette analyse qu’est construit arbre du programme : &
chaque fois, ou presque, qu’une régle de grammaire est reconnue (par exemple une suite de token en partie
droite d’une régle), on effectue la construction de la partie correspondante de ’arbre du programme ; dans la
suite de ’analyse syntaxique, le non-terminal en partie gauche de cette regle remplacera la suite des tokens
pour la reconnaissance de la prochaine partie droite de regle.

De la méme maniere que pour ’analyse lexicale, on utilise un outil dans lequel on a simplement a écrire les
regles de la grammaire, et qui génere le code C associé. L’outil utilisé pour ce projet est Yacc.

Dans ce projet, le totalité des regles de la grammaire hors-contexte du langage sont données. Il vous faut
compléter les actions associées pour construire ’arbre du programme.

Les analyses lexicales et syntaxiques sont effectuées conjointement. La figure 1 résume le processus de
compilation du compilateur.

1.3 Analyse sémantique (ou de vérifications contextuelles)

L’analyse sémantique est faite au cours de la premiére passe, ou “passe 1”. Une passe ici désigne une
exploration de 'arbre (en profondeur). Méme si un programme est syntaxiquement correct, il n’est pas
forcément correct : en effet, un nom de variable peut étre utilisé sans avoir été déclaré, ou une variable
booléenne additionnée avec une variable entiere. Ces vérifications sont faites lors de cette passe.

Spécifications -3

I Lex I

lexico.l

N
e] |

grammar.y

lex.yy.c

=

(blna1re)
ﬁ D fichier source manuel

Autres fichiers : fichier source généré

rce
(passe l.c, ...)

FI1GURE 1 — Processus de compilation utilisant lex et yacc

Les programmes sémantiquement corrects sont spécificiés dans ce document a ’aide d’une grammaire at-
tribuée. La passe 1 doit donc implémenter toutes ces vérifications. De plus, c’est au cours de cette passe
que l'on fait les liens entre les occurrences des variables et leur déclaration, de maniére a pouvoir avoir
directement la position en mémoire d’une variable lors de la génération de code.

1.4 Génération de code

La passe de génération de code, ou passe 2, effectue un parcours de I'arbre au cours duquel sont générées
les instructions assembleur du programme. Il n’y a plus de vérification a effectuer au cours de cette passe,

sauf éventuellement a ’aide d’asserts.

Spécifications

2 Exemple introductif illustrant les différentes étapes de la com-

pilation

Cette section illustre les résultats produits a I’issue de chaque analyse et passe, en considérant le programme

MiniC suivant :

1 // Un ezemple de programme MiniC
2 int start = 0;

3 int end = 100;

4

5 void main() {

6 int i, s = start, e = end;

7 int sum = 0;

8 for (i = s; i < e; i =1 + 1) {
9 sum = sum + i;

10 }

11 print (, sum,)

12 3}

2.1 Etape d’analyse lexicale

Au cours de l'analyse lexicale, le programme est transformé en une séquence des lexémes (ou tokens). La
séquence de lexémes pour le programme d’exemple est donnée ci-apres, avec les numéros de ligne, les noms
des identificateurs et les valeurs des littéraux.

TOK_INT TOK_IDENT TOK_AFFECT TOK_INTVAL TOK_SEMICOL TOK_INT TOK_IDENT TOK_AFFECT
2 2 ’start’ 2 2 0 2 3 3 ’end’ 3
TOK_INTVAL TOK_SEMICOL TOK_VOID TOK_IDENT TOK_LPAR TOK_RPAR TOK_LACC TOK_INT

3 ’100° 3 5 5 ’main’ 5 5 5 6

TOK_IDENT TOK_COMMA TOK_IDENT TOK_AFFECT TOK_IDENT TOK_COMMA TOK_IDENT TOK_AFFECT
6 i’ 6 6 ’s’ 6 6 ’start’ 6 6 e’ 6
TOK_IDENT TOK_SEMICOL TOK_INT TOK_IDENT TOK_AFFECT TOK_INTVAL TOK_SEMICOL

6 ’end’ 6 7 7 sum’ 7 7 °0° 7

TOK_FOR TOK_LPAR TOK_IDENT TOK_AFFECT TOK_IDENT TOK_SEMICOL TOK_IDENT TOK_LT

8 8 8 i’ 8 8 ’s’ 8 8 i’ 8

TOK_IDENT TOK_SEMICOL TOK_IDENT TOK_AFFECT TOK_IDENT TOK_PLUS TOK_INTVAL TOK_RPAR
8 e’ 8 8 i’ 8 8 i’ 8 8 1’ 8
TOK_LACC TOK_IDENT TOK_AFFECT TOK_IDENT TOK_PLUS TOK_IDENT TOK_SEMICOL

8 9 ’sum’ 9 9 ’sum’ 9 9 i’ 9

TOK_RACC TOK_PRINT TOK_LPAR TOK_STRING TOK_COMMA TOK_IDENT TOK_COMMA TOK_STRING
10 11 11 11 "sum :" 11 9 ’sum’ 11 11 "\n"
TOK_RPAR TOK_RACC

11 12

2.2 Etape d’analyse syntaxique

Lors de la phase d’analyse syntaxique, l'arbre correspondant au programme est construit a partir de la
séquence de lexemes. Les champs ident des noeuds de nature IDENT ainsi que les champs value des noeuds

Spécifications

-5

de nature INTVAL, BOOLVAL et STRINGVAL sont initialisés aux valeurs correspondantes. L’arbre du programme
d’exemple est représenté figure 2.

NODE_PROGRAM

\

NODE_LIST NODE_FUNC

NODE_DECLS NODE_DECLS NODE_TYPE NODE_IDENT NODE_BLOCK

VRN SN " [\
NODE_TYPE NODE_DECL NODE_TYPE NODE_DECL NODE_LIST *)
'int' / \ 'int' / \ / \

NODE_DECLS NODE_DECLS

NODE_IDENT ~ NODE_INTVAL NODE_IDENT ~ NODE_INTVAL

'start’ 0 ‘end’ 100
NODE_TYPE NODE_LIST NODE_TYPE NODE. DECL
NODE_LIST NODE_DECL NODE_IDENT ~ NODE_INTVAL
‘sum’ 0
NODE_DECL NODE_DECL NODE_IDENT ~ NODE_IDENT
b eng’
NODE_IDENT NULL NODE_IDENT ~ NODE_IDENT
7 P etart
(*)
NODE_LIST
I NODE_PRINT.
% EFOR\ N
NODE. AFFECT NODE_LT NODE_AFFECT NODE_BLOCK NODE_LIST NODE_STRINGVAL
NODE_IDENT NODE_IDENT ~ NODE_IDENT NODE_IDENT ~ NODE_IDENT ~ NODE_PLUS NULL NODE_STRINGVAL NODE_IDENT
0 Pt 7 0 o / \ um: " e

NODE_IDENT NODE_INTVAL NODE_AFFECT

- N

NODE_IDENT NODE_PLUS
'sum’

NODE_IDENT NODE_IDENT
‘'sum’ it

FIGURE 2 — Arbre du programme apres analyse syntaxique

2.3 Etape de vérifications contextuelles et décorations

Lors de I'analyse contextuelle, on vérifie que le programme écrit respecte la spécification du langage et que
I’on peut générer un code assembleur correspondant. De plus, les champs suivants sont mis a jour :
e Le champ type de tous les noeuds pouvant se trouver a la racine d’une expression (exemple : IDENT,
PLUS, BXOR). Ce champ est mis & jour au fur et & mesure de la vérification dans la passe 1 mais n’a
pas d’utilité dans la passe 2.
e Le champ global_decl des noeuds de nature IDENT correspondant a une déclaration, qui est mis a
jour pour indiquer si la variable est globale ou locale.
e Le champ decl_node des noeuds de nature IDENT (autres que les noeuds de déclaration), qui est
mis & jour avec I’adresse du noeud contenant la déclaration de la variable référencée.

-6 Spécifications

e Le champ offset des noeuds de nature IDENT correspondant a une déclaration, qui est mis a jour
pour refléter 'emplacement en mémoire de la variable :
e Pour les variables locales, il s’agit de l'offset de pile (en octets)
e Pour les variables globales, il s’agit de 'offset dans la section .data (en octets)
e Le champ offset du noeud de nature FUNC, qui est mis & jour avec la taille (en octets) en pile
réservée pour les variables locales; il s’agit également de Doffset de départ pour les temporaires

L’arbre du programme d’exemple a la fin de 'analyse contextuelle, avec les champs offset et decl_node
mis & jour, est représenté figure 3.

2.4 Programme assembleur

Declaration des variables globales

.data
start: .word O
end: .word 100

.asciiz "sum:
.asciiz "\n"

Programme
.text

Prologue : allocation en pile pour les variables locales
1 se trouve a l’emplacement 0($29)

s se trouve a l’emplacement 4($29)

e se trouve a l’emplacement 8($29)

sum se trouve a l’emplacement 12($29)

addiu $29, $29, -16

s = start
lui $8, 0x1001
1w $8, 0($8)
sW $8, 4($29)
e = end
lui $8, 0x1001
1w $8, 4($8)
sSW $8, 8($29)
sum = 0
ori $8, $0, O
sSwW $8, 12($29)
for (i = s; i < e; i =i + 1)
i = s
1w $8, 4($29)
sW $8, 0(%$29)
i < e 7?7

_L1:
1w $8, 0(%$29)
1w $9, 8($29)

slt $8, $8, $9
beq $8, $0, _L2

sum = sum + i
1w $8, 12($29)
1w $9, 0($29)

addu $8, $8, $9

Spécifications -7

swW
i
1w
ori
addu
swW

NODE_AFFECT

N

NODE _| IDENT

NODE_PROGRAM

/ \NODE FUNC
NODE_LIST offset: 16
NODE_DECLS NODE_DECLS NODE_TYPE NODE_IDENT NODE_BLOCK
/ \\ ‘void' ident: 'main’ l \
NODE_TYPE NODE_DECL NODE_TYPE NODE_DECL NODE_LIST *)
‘int! ‘int* /
NODE DECLS NODE_DECLS
NODE_IDENT NODE_INTVAL NODE_IDENT NODE_INTVAL
ident: 'start’ 0 ident: ‘end’ 100
offset: 0 v offset: 4 NODE -_TYPE NODE_LIST NODE_TYPE NODE_DECL
A P int! int!
\ -7
\ e
\ - \
‘\ . NODE_LIST NODE_DECL NODE_IDENT NODE_INTVAL
\ e ident: 'sum* 0
’, offset: 12,
N
N
N
NODE_DECL NODE_DECL NODE_IDENT NODE_IDENT AN
h ident: ‘e’ ident: ‘end" AN
K offset: 3 decl: / N
| \ / N
! \ !/ N
/.
1 Y NODE_IDENT NULL NODE_IDENT NODE_IDENT) N
\ \ ident: ' ident: 's* ident: 'start’ /’ ’ N
\ N offset: 0 4 offset: 4 decl: |, , ,/ AN
’ N
’ N
, N
. N
-7 N
-~ N
\
\
J K
, NODE_LIST
’ —_—
// // NODE_PRINT.
’ NODE_FOR NODE_LIST
/
) / \
//NODE LT N}jDE_AFFECT NODE_BLOCK NODE_LIST ~ NODE_STRINGVAL
’ "\n"
’
R
NODE _| IDENT NODE IDENT NODE_IDENT NODE IDENT NODE_PLUS NULL NODE_STRINGVAL NODE_IDENT
ident: , 7 ident ident: ‘e’ 7 ident: "' "sum: " ident: 'sum’
decl -— decl./ decl: = =7 decl: / decli— = - - - - - - -
’
, NODE_IDENT NODE_INTVAL NODE_AFFECT
s 7 ident: 'i' 1
- 4 decl:
,,,,,,,,,, < _____- s /
-~ /
---"7 NODE_IDENT NODE_PLUS ’
______________ R ident: 'sum')/
decl:, ’
’ ’
’ ’
+ NODE_IDENT NODE_IDENT ’
I ident: 'sum’ ident: i ,/
N ‘\ decl: decl: 7
S< \

FIGURE 3 — Arbre du programme apres vérifications contextuelles et décorations

$8, 12($29)
i+ 1

$8, 0(%29)
$9, $0, 1
$8, $8, $9
$8, 0(%$29)

Spécifications

Retour au test de boucle
j _L1

_L2:
print("sum :")
lui $4, 0x1001
ori $4, $4, 8
ori $2, $0, 4
syscall
print (sum)
1w $4, 12($29)
ori $2, $0, 1
syscall
print ("\n");
lui $4, 0x1001
ori $4, $4, 14
ori $2, $0, 4
syscall
Desallocation des variables locales en pile
addiu $29, $29, 16
exit
ori $2, $0, 10
syscall

Spécifications

3 Lexicographie de MiniC
3.1 Conventions de notations

e Les éléments entre simple quotes (comme ’0°, ?,’) désignent les caractéres ou séquences de carac-
teres correspondants ;
e Les mots notés en majuscules (comme LETTRE, CHIFFRE) désignent des langages.
e Les opérateurs sur les langages utilisés sont les notations habituelles d’expressions réguliéres.
e On appelle caractére de formatage :
e la tabulation horizontale
e la fin de ligne
e On appelle caractére imprimable tout caractére dont le code ASCII est dans 'intervalle [0x20-0x7E].
N.B. Les code des caracteres > * (espace), ’"’ et ’\’ sont respectivement 0x20, 0x22 et 0x5c. La
tabulation horizontale et la fin de ligne ne sont pas des caractéres imprimables.

Remarque : la spécification donnée ici utilise des notations usuelles. Il ne faut pas la recopier telle quelle
mais I'adapter a la syntaxe de lex.

3.2 Unités lexicales

Les unités lexicales de MiniC sont les mots réservés, les symboles spéciaux, ainsi que les langages ENTIER,
IDF, et CHAINE.

3.3 Mots réservés
Les séquences de lettres suivantes sont des mots réservés :

void int bool true false if
else while for do print

3.4 Identificateurs

LETTRE = {’a’, ..., ’z’, 'A’, ..., ’Z’}
CHIFFRE = {’0’, ..., ’9’}
IDF = (LETTRE) (LETTRE | CHIFFRE | ’_’)*

Exception : les mots réservés ne sont pas des identificateurs.

3.5 Symboles spéciaux

Les caracteéres suivants, ainsi que les associations suivantes de deux caractéres ont un sens particulier en
MiniC :

Y40)’)% 7/ 7%7 150 10 10 P ‘&
7|) =~)=> 7;; 7’; 7(; 7);){;)};
1SS S>> 1KLY I>=) K= == =) e Jll)

) :

3.6 Littéraux entiers

CHIFFRE_NON_NUL
ENTIER_DEC
LETTRE_HEXA
ENTIER_HEXA
ENTIER

{1, ..., ’9’}

>0’ | CHIFFRE_NON_NUL CHIFFRE*
{’a’, ..., £, °A, ..., ’F’}
’0x’ (CHIFFRE | LETTRE_HEXA)+

ENTIER_DEC | ENTIER_HEXA

[-10 Spécifications

3.7 Chaines de caracteres
CHAINE_CAR est I’ensemble de tous les caractéres imprimables, a ’exception des caracteres >"’ et >\’.

CHAINE = ’"> (CHAINE_CAR | °>\"’ | ’\n’)*x "’

3.8 Commentaires

Un commentaire est une suite de caractéres imprimables et de tabulations qui commence par ’//’ et s’étend
jusqu’a la fin de la ligne.

3.9 Séparateurs

Les séparateurs de MiniC sont > (caractére d’espace) et les caractéres de formatage (tabulation horizontale
et fin de ligne).

Spécifications [-11

4 Syntaxe

Ce document présente la syntaxe hors-contexte du langage MiniC. Les lexémes (ou tokens) sont les éléments
retournés a l'issue de 'analyse lexicale sous la forme d’une suite.

4.1 Définition des lexémes

%token TOK_VOID TOK_INT TOK_BOOL TOK_TRUE TOK_FALSE TOK_IF TOK_DO TOK_WHILE TOK_FOR
%token TOK_PRINT TOK_SEMICOL TOK_COMMA TOK_LPAR TOK_RPAR TOK_LACC TOK_RACC

Les lexemes suivants ont une associativité et une priorité donnée. Les opérateurs sont dans 'ordre de
priorité croissante. Le lexéme TOK_THEN n’est jamais retourné et est la pour résoudre le probleme classique
de positionnement du else dans le cas d’une expression if (a) if (b) c; else d;. De méme, le lexeme
TOK_UMINUS sert a changer la priorité du TOK_MINUS lorsque le ’~’ rencontré est un moins unaire.

%nonassoc TOK_THEN
%nonassoc TOK_ELSE

/*a=b=c+d<=>b=c+d; a=b; */
Yright TOK_AFFECT

%left TOK_OR

%left TOK_AND

%left TOK_BOR

%left TOK_BXOR

%left TOK_BAND

Y%nonassoc TOK_EQ TOK_NE

%nonassoc TOK_GT TOK_LT TOK_GE TOK_LE
Ynonassoc TOK_SRL TOK_SRA TOK_SLL

/*a/b/c=(a/b)/ceta-b-c=1(a-Db)-c*/
%left TOK_PLUS TOK_MINUS

%left TOK_MUL TOK_DIV TOK_MOD

%nonassoc TOK_UMINUS TOK_NOT TOK_BNOT

Pour les lexémes qui retournent une information en plus, on doit spécifier le type de cette information.

J%token <intval> TOK_INTVAL;
%token <strval> TOK_IDENT TOK_STRING;

%type <ptr> program listdecl listdeclnonnull vardecl ident type listtypedecl decl maindecl
%type <ptr> listinst listinstnonnull inst block expr listparamprint paramprint

4.2 Regles syntaxiques de MiniC

Certaines listes utilisent des non-terminaux différents pour le cas vide et non-vide, afin d’éviter des conflits
de type shift-reduce dans yacc.

program : listdeclnonnull maindecl
| maindecl
listdecl : listdeclnonnull

listdeclnonnull : vardecl

[-12 Spécifications

| listdeclnonnull vardecl

vardecl : type listtypedecl TOK_SEMICOL
type : TOK_INT

| TOK_BOOL

| TOK_VOID
listtypedecl : decl

| listtypedecl TOK_COMMA decl

decl : ident
| ident TOK_AFFECT expr

maindecl : type ident TOK_LPAR TOK_RPAR block

listinst : listinstnonnull

listinstnonnull : inst
| listinstnonnull inst

inst : expr TOK_SEMICOL

TOK_IF TOK_LPAR expr TOK_RPAR inst TOK_ELSE inst

TOK_IF TOK_LPAR expr TOK_RPAR inst %prec TOK_THEN

TOK_WHILE TOK_LPAR expr TOK_RPAR inst

TOK_FOR TOK_LPAR expr TOK_SEMICOL expr TOK_SEMICOL expr TOK_RPAR inst
TOK_DO inst TOK_WHILE TOK_LPAR expr TOK_RPAR TOK_SEMICOL

block

TOK_SEMICOL

TOK_PRINT TOK_LPAR listparamprint TOK_RPAR TOK_SEMICOL

block : TOK_LACC listdecl listinst TOK_RACC

expr : expr TOK_MUL expr
expr TOK_DIV expr
expr TOK_PLUS expr
expr TOK_MINUS expr
expr TOK_MOD expr
expr TOK_LT expr
expr TOK_GT expr
TOK_MINUS expr %prec TOK_UMINUS
expr TOK_GE expr
expr TOK_LE expr
expr TOK_EQ expr
expr TOK_NE expr
expr TOK_AND expr
expr TOK_OR expr
expr TOK_BAND expr

Spécifications -13

expr TOK_BOR expr
expr TOK_BXOR expr
expr TOK_SRL expr
expr TOK_SRA expr
expr TOK_SLL expr
TOK_NOT expr

TOK_BNOT expr
TOK_LPAR expr TOK_RPAR
ident TOK_AFFECT expr
TOK_INTVAL

TOK_TRUE

TOK_FALSE

ident

listparamprint : listparamprint TOK_COMMA paramprint

| paramprint
paramprint : ident

| TOK_STRING
ident : TOK_IDENT

[-14 Spécifications

5 Grammaire d’arbres

5.1 Généralités

Les arbres construits lors de I’analyse syntaxique sont décrits a ’aide d’une grammaire hors-contexte. Les non
terminaux sont en gras minuscule ; ils définissent des “classes d’arbres”, ensemble des arbres qui en dérivent.
L’axiome est le premier non terminal, ici program. La classe d’arbres program est donc I’ensemble des
arbres des programmes MiniC syntaxiquement corrects.

Les regles de la grammaire sont de la forme :
e G—-D1|D2]|..|Dn

(n > 1) ou G est le non terminal partie gauche (définissant une classe d’arbres), et les Di sont les alternatives
de partie droite. Un Di est :
e soit un non terminal A, auquel cas la classe d’arbres définie par A est incluse dans celle définie par
G;
e soit de la forme NODE_XXX ou NODE_YYY(F1, F2, ..., Fp), auquel cas NODE_XXX est un noeud sans
enfant (une feuille) de nature XXX, et NODE_YYY est un noeud interne de nature YYY ayant p enfants,
dans l'ordre F1, ..., Fp. Un Fi est un non terminal A, arbre de la classe définie par A.

5.2 Champs des noeuds de ’arbre du programme

Aux noeuds de l'arbre sont associées des informations supplémentaires (des “champs”) : tous les noeuds
de larbre possédent un champ lineno (numéro de ligne du texte correspondant, dans le fichier source, &
initialiser avec yylineno), un champ opr qui est un tableau de pointeurs vers les noeuds enfants, et un
champ nops (nombre d’enfants, i.e. taille du tableau opr). Certains noeuds ont aussi un champ spécifique
initialisé lors de la création du noeud. D’autres champs sont également définis et utilisés lors des étapes de
vérification contextuelle et de génération de code.

Les champs spécifiques aux noeuds de certaines natures sont les suivants :
e champ ident : identifiant, chaine de caracteres
e NODE_IDENT : initialisé & la création
e champ type : type de 'expression, type énuméré
e NODE_TYPE : initialisé & la création
e NODE_IDENT (occurrence de déclaration) : mis & jour au cours de la passe 1
e NODE_IDENT (occurrence d’utilisation) : mis & jour au cours de la passe 1, & partir du type
enregistré dans le NODE_IDENT correspondant & la déclaration
e Noeuds correspondant & des expressions : mis & jour au cours de la passe 1
e champ value : entier, valeur du littéral
e NODE_INTVAL, NODE_BOOLVAL : initialisé a la création
e champ str : chaine de caracteéres, valeur du littéral
e NODE_STRINGVAL : initialisé & la création
e champ global_decl : variable globale, booléen
e NODE_IDENT (occurrence de déclaration) : mis & jour au cours de la passe 1
e champ decl_node : pointeur vers un NODE_IDENT, correspondant a la déclaration de la variable
e NODE_IDENT (occurrence d’utilisation) : mis & jour au cours de la passe 1
e champ offset : entier, position de la variable en mémoire (en section .data ou en pile) pour les
NODE_IDENT et les NODE_STRINGVAL ; taille en pile correspondant a toutes les variables locales pour
les NODE_FUNC
e NODE_IDENT (occurrence de déclaration) : mis & jour au cours de la passe 1
e NODE_STRINGVAL : mis & jour au cours de la passe 1
e NODE_FUNC : mis a jour au cours de la passe 1, apres 'analyse de la fonction

Remarque : dans I'implémentation, il n’y a qu'une sorte de noeud, qui posséde donc tous les attributs.
La nature d’un noeud est définie par son champ nature. Il s’agira de n’utiliser que les attributs pertinents
d’un noeud en fonction de sa nature.

Spécifications [-15

5.3 Regles de la grammaire d’arbres

program

vardecls

decls_ list

decls

decl list

decl

main

type

ident

block

insts

inst_ list

inst

printparam__list

I-16

—

1

e 1

1

NODE_PROGRAM(vardecls, main)

decls_ list
NULL

NODE_LIST(decls_ list, decls)

decls

NODE_DECLS(type, decl__list)

NODE_LIST(decl_ list, decl)
decl

NODE_DECL(ident, expinit)
NODE_FUNC(type, ident, block)

NODE_TYPE

NODE_IDENT

NODE_BLOCK(vardecls, insts)

inst_ list

NULL

NODE_LIST(inst_ list, inst)

inst

block

exp

NODE_IF(exp, inst)
NODE_IF(exp, inst, inst)
NODE_WHILE(exp, inst)
NODE_DOWHILE(inst, exp)
NODE_FOR(exp, exp, exp, inst)
NODE_PRINT(printparams__list)
NULL

NODE_LIST(printparam__list, printparam)

(0.9)
(0.10)

(0.11)

(0.12)

Spécifications

printparam

expinit

exp

Spécifications

1

1

N A S A A S A

printparam

ident
NODE_STRINGVAL

exp

NULL

NODE_PLUS(exp, exp)
NODE_MINUS(exp, exp)
NODE_MUL(exp, exp)
NODE_DIV(exp, exp)
NODE_MOD(exp, exp)
NODE_UMINUS(exp)
NODE_LT(exp, exp

ex
NODE_GT(exp, exp
NODE_LE(exp, exp
ex
ex

NODE_GE(exp, exp

p
NODE_NE(exp, exp

)
()
()
()
NODE_EQ(exp,)
)
NODE_AND(exp, exp)
NODE_OR(exp, exp)
NODE_BAND(exp, exp)
NODE_BOR(exp, exp)
NODE_BXOR(exp, exp)
NODE_SLL(exp, exp)
NODE_SRL(exp, exp)
NODE_SRA(exp, exp)
NODE_NOT(exp)
NODE_BNOT(exp)
NODE_AFFECT(ident, exp)
NODE_INTVAL
NODE_BOOLVAL
ident

[-17

6 Sémantique de MiniC

6.1 Introduction

La sémantique de MiniC n’est pas formellement définie : on se référera a la sémantique des langages de
programmation usuels, en particulier du C, pour les constructions non évoquées dans les paragraphes qui
suivent.

Un programme sémantiquemnent correct (ou simplement correct) est un programme qui respecte les régles de
la grammaire attribuée, c’est-a-dire pour lequel la passe de vérification se déroule sans erreur. Un programme
non correct est dit incorrect.

Un programme correct est dit erroné si une erreur peut survenir lors de son exécution, par exemple en cas
de division par 0 ou d’acceés a une variable non initialisée. Le compilateur est tenu, en ’absence d’options
spécifiques, de produire du code assembleur d’un programme correct erroné, méme s’il arrive a déterminer
qu’une erreur va arriver a l’exécution.

6.2 Initialisation des variables

Une variable globale non initialisée doit étre initialisée a la valeur 0 pour un entier, et false pour un
booléen.

Une variable locale non initialisée ne doit pas étre initialisée. Avant qu’elle soit affectée, sa valeur est
indéterminée.

Les initialisations doivent avoir lieu dans 'ordre de déclaration des variables.

6.3 Terminaison d’un programme

Pour des raisons de limitation du simulateur, tous les programmes doivent se terminer par ’appel systéme
exit() (appel systéme numéro 10 en mips). Cet appel systéme doit étre effectué au niveau de I’accolade
fermante de la fonction main(), apres ’épilogue. La fonction main() doit toujours retourner le type void.

6.4 Ordre d’évaluation

Les opérandes des opérations arithmétiques binaires, de comparaison et d’affectation sont évalués de gauche
a droite.

Attention : cela est différent du C : il n’y a pas de point de séquence, ni de comportement indéfini, puisque
I'ordre d’évaluation est parfaitement défini. La sémantique des expressions est donc la méme que celle des
expressions en Java (hormis point suivant).

Les expressions booléennes sont évaluées non-paresseusement de gauche a droite. Cela signifie que lorsqu’on
évalue C1 && C2, on évalue C1, puis C2 méme si C1 est fausse. De méme, lorsque 'on évalue C1 || C2, on
évalue d’abord C1, puis C2 méme si C1 est vraie.

6.5 Taille des entiers et débordements lors de I’évaluation des expressions

Les entiers réprésentables du langage sont ceux codables sur 32 bits. Lors de I'analyse lexicale, seuls des
entiers positifs peuvent étre retournés. De ce fait, I'intervalle des entiers pouvant étre reconnus sans erreurs
lors de cette analyse est I'intervalle [0; 232 - 1 = 4294967295]. En principe, I’analyse lexicale ne permet pas
de discriminer entre un entier représentable et un entier non représentable. Cependant, comme la conversion
des caracteres en entier est faite lors de cette analyse, ’erreur correspondante — sémantique — sera malgré
tout levée durant cette phase.

[-18 Spécifications

Remarque : chaque mot ayant le bit de poids fort a 1 représente deux nombres; par exemple, le mot
0x80000000 représente les nombres -231 et 231, et le mot OxFFFFFFFF les valeurs -1 et 23! - 1. De plus,
comme toutes les comparaisons sont signées, on a par exemple que -2 > 3000000000.

Une division entiére par 0 ou un calcul modulo 0 doit provoquer une erreur. L’instruction mips div ne
générant pas d’exception, celle-ci doit étre testée logiciellement (“&4 la main”) a l’aide de l'instruction teq
(trap if equal).

Il n’y a pas de débordement pour les opérations d’addition, de soustraction et de décalage sur les entiers :
les calculs sont fait modulo 232 ; les décalages & droite sont arithmétiques avec 'opérateur >> (la valeur
des bits injectés est la valeur du bit de poids fort avant injection — instruction mips sra) et logiques avec
Popérateur >>> (la valeur des bits injectés est 0 — instruction mips srl).

6.6 Procédures d’affichage

Un appel a print(e); écrit sur la sortie standard :
e la valeur de la variable e si e est une variable ; pour les variables booléennes, la valeur affichée doit
étre 0 pour false et 1 pour true
e la chaine de caracteres e s’il s’agit d’une chaine de caracteres littérale
print(el, e2, ..., en); est équivalent & print(el); print(e2); ... ; print(en);.

6.7 Catégories des erreurs a ’exécution

A priori, les seules erreurs qui peuvent survenir & 'exécution (¢’est-a-dire lors de la simulation du programme
assembleur) sont les suivantes :
e Programmes corrects erronés dont le code est généré :
e Divison par 0 ou calcul modulo 0 : exception logicielle avec test dynamique (utiliser I'instruction
mips teq)
e Acces a des variables locales non initialisées : comportement indéfini
e Programmes corrects non erronés mais pour lesquels le code généré comporte une erreur (erreur
dans le code généré par le compilateur) :
e Lecture ou écriture non alignée
e Lecture ou écriture dans un segment non autorisé
e Format de l'instruction incorrect ou instruction inexistante (devrait étre limité avec 1'utilisation
de la bilbiothéque fournie)
o ...
e Programmes corrects non erronés qui dépassent les capacités de la machine :
e Débordement de pile (se traduit par un acces dans un segment non autorisé)

Spécifications -19

7 Grammaire attribuée de MiniC

7.1 Introduction

La vérification contextuelle d’un programme MiniC peut étre faite en une seule passe. En effet, ce langage
(tout comme le C) ne contient pas, & un endroit donné d’un programme, de référence & un identificateur
qui est défini plus loin dans le programme, ce qui nécéssiterait plusieurs passes. En C, si une fonction f()
appelle une fonction g() définie plus tard, la fonction g() doit étre pré-déclarée avant f().

Les vérifications a effectuer lors de la passe de vérification sont spécifiées formellement a I’aide d’une gram-
maire attribuée.

Remarque : certaines régles différent de celles de la grammaire hors-contexte du langage (régles récursives
notamment) car il s’agit uniquement d’une spécification, et non d’une grammaire qui doit étre implantée.

7.2 Domaines d’attributs

Dans cette partie sont définis les domaines d’attributs et les opérations sur les attributs.

7.2.1 Définition des domaines

Soit Nom le domaine des identificateurs, et Type le domaine des types du langage MiniC. Les types du
langage MiniC sont void, bool et int.

Type = {void,bool,int}

Dans le langage MiniC, les identificateurs sont tous des identificateurs de variables. Cela est une spécificité
du langage, car dans un langage comme Java, il y a des identificateurs de type (enum), de champ ou attribut
de classe, de parametre, de variable, de classe et de méthode.

Opérateur est I’ensemble des opérateurs du langage.

Opérateur = {plus, minus, mul, div, mod, eq, ne, lt, gt, le, ge, and, or, bxor, band, bor,
not, bnot, sll, srl, sra}

7.2.2 Opérations sur les domaines d’attributs

Compatibilité pour P’affectation

Contrairement au C, le langage MiniC fait une distinction nette entre le type entier et le type booléen. Ainsi,
il n’est pas possible d’affecter une expression de type booléenne dans une variable de type entier, et une
expression de type entiere dans une variable de type booléenne. De méme, les conditions doivent retourner
une expression de type booléenne.

Signature des opérateurs

On définit deux opérations : type_op_ unaire et type_op_ binaire, qui permettent de calculer respectivement
le type du résultat d’un opérateur unaire et d’un opérateur arithmétique binaire.

type_op_ unaire : Opérateur x Type — Type

type_op_ unaire(minus,int) = int
type_op_ unaire(bnot, int) = int
type_op_ unaire(not,bool) = bool

type_op_ binaire : Opérateur x Type x Type — Type

type_op__binaire(op, int, int) = int,
si op € {plus, minus, mul, div, mod, band, bor, bxor, sll, srl, sra}

[-20 Spécifications

type_op__binaire(op, int, int) = bool,
si op € {eq,ne, It, gt, le, ge}

type_op__binaire(op, bool, bool) = bool,
si op € {and, or, eq, ne}

7.2.3 Contextes et environnements

Un contexte associe & un identificateur la déclaration de la variable correspondante. Dans le cadre de la
vérification contextuelle, la seule information pertinente associée a une variable est son type, ¢’est pourquoi
un contexte associe a un nom de variable un type. Au sein d’un contexte, il ne peut donc pas y avoir deux
variables avec le méme nom. Un environnement correspond a ’ensemble des variables accessibles depuis un
endroit du programme. Un environnement est créé par un empilement de contextes, noté /, au sein duquel
la définition la plus récente d’une variable masque les définitions plus anciennes. L’empilement est défini
formellement de la fagon suivante :

e /: Contexte x Environnement — Environnement
Vx € Nom, (ctz/env)(z) = ctz(x), siz € dom(ctz),
= env(z), six ¢ dom(ctz) etz € dom(env).

L’environnement constitué d’un seul contexte ctx est noté Env(ctz).

7.3 Conventions d’écriture

On utilise les notations suivantes :
e les parties hors-contexte des régles sont en gras;
e les terminaux de la grammaire, autres que les symboles spéciaux, sont soulignés;
e les attributs synthétisés sont préfixés par 1;
o les attributs hérités sont préfixés par .

7.3.1 Affectation des attributs

Pour toute regle, les attributs synthétisés du non terminal en partie gauche et les attributs hérités des
non terminaux en partie droite doivent étre affectés. Ces affectations peuvent étre effectuées de deux ma-
nieres différentes : 1. explicitement en utilisant une clause ajffectation; 2. implicitement par une expression
fonctionnelle.

e Affectation explicite de la forme affectation v := exp. Par exemple, la régle (1.61)

ident |env Ttype — idf tnom
affectation type := env(nom)

signifie qu’a Dattribut synthétisé Ttype du non terminal ident est affecté la valeur env(nom).
e Affectation implicite par une expression fonctionnelle. Par exemple, dans la régle (1.5) :

main_ declaration |env
— type Ttype idf tnom > (* ’)’ bloc Jenv

L’attribut hérité du non terminal bloc est directement affecté avec la valeur de attribut hérité du
non terminal main__declaration : enwv.

7.3.2 Conditions sur les attributs

Les valeurs d’attributs, pour une régle de grammaire, peuvent étre contraintes. Ces contraintes peuvent étre
exprimées de 2 manieres différentes : 1. explicitement par une condition logique sur les valeurs d’attributs;
2. implicitement en contraignant par filtrage les valeurs possibles d’attributs.

e Utilisation d’une clause condition P, ou P est une condition logique. Si P est faux, la clause n’est
pas respectée. Par exemple, dans la régle (1.5)

Spécifications [-21

main__declaration | env
— type Ttype idf tnom > (° ’)° bloc Jenv
condition nom = “main”
condition type = void

les deux conditions imposent que le nom de l'identifiant de 'unique fonction soit main, et que le
type de retour de 'unique fonction soit void.

e Par filtrage : on impose une forme particuliere pour un attribut hérité dans une partie gauche de
régle, ou pour un attribut synthétisé pour une partie droite de régle. Par exemple, la régle (1.20)
inst |env — while ’ (° exp |env Thool ’)’ bloc |env

impose que la valeur de 'attribut synthétisé de exp soit le type boolean.

7.3.3 Abréviation pour les valeurs de domaines

Dans certaines regles, certaines valeurs de domaines ne sont pas contraintes et n’ont pas d’utilité pour la
régle (elles ne servent ni au calcul de valeur d’attribut hérité en partie droite ou synthétisé en partie gauche,
ni dans 'expression d’une affectation ou d’une contrainte portant sur une autre valeur). Dans ce cas, on
remplace ce nom par un “tiret bas” ’__’, de fagon a bien mettre en évidence que la valeur correspondante
n’est pas utilisée ni contrainte.

Par exemple, la régle (1.29) pourrait s’écrire :

param_ print |env
— ident Jenv Ttype

en introduisant un nom inutile (type).

7.4 Grammaire attribuée spécifiant la passe de vérification

7.4.1 Type

Le type void n’est utilisé que pour le type de retour de la fonction main().

type fint — int (1.1)
type Tbool — bool (1.2)
type Tvoid — void (1.3)

7.4.2 Programme

programme — liste__decl__vars | __ [{} |true Tctz (1.4)
main__declaration | Env(ctz)

Le premier attribut hérité de liste__decl__vars, ’environnement des variables pour ’analyse des expressions,
n’est pas affecté car les variables globales ne peuvent pas étre initialisées a partir d’expressions. Il y a
seulement besoin d’initialiser un contexte global vide.

main__declaration |env (1.5)
— type Ttype idf Tnom > (° ?)’ bloc Jenv
condition nom = “main”
condition type = void

7.4.3 Déclaration de variables

Les variables globales ne peuvent étre initialisées qu’avec des constantes littérales, tandis que les variables
locales aux blocs peuvent étre initialisées avec des expressions. L’attribut global dans les différentes regles
se réfere au fait qu’il s’agisse d’une déclaration de variable globale. Cet attribut est passé avec la valeur
true pour les déclarations de variables globales (régle (1.4)), et & false pour les variables locales aux blocs
(regle (1.14)). L’attribut env passé dans les différentes regles correspond a 'empilement des contextes &
Pentrée du contexte courant. Il est vide pour la déclaration des variables globales. L’attribut ctx correspond
quant a lui au contexte courant, créé a ’entrée du bloc.

[-22 Spécifications

liste_ decl_vars |env |ctzy |global 1 ctz (1.6)
— liste__decl__vars |env |ctzxy lglobal 1ctz;
decl__vars |env |ctz; lglobal Tctx

liste__decl__vars |env |ctx |global tctz (1.7)
— £
decl__vars |env |ctxy |global tctx (1.8)

— type Ttype
liste__decl__type lenv |ctxy |type Lglobal Tctx > ;°
condition type # void

liste_ decl__type |env |ctzy |type lglobal Tctx (1.9)
— liste__decl__type |env |ctxy ltype Lglobal Tctx; ,°
decl__var |env |ctx; |type |global Tctx

— decl__var |env |ctzy |type |global Tctx (1.10)

decl__var |env |ctzy Ltype lglobal tctx (1.11)
— idf Tnom
condition nom ¢ dom(ctxo)
affectation ctx := ctxg U {nom — type}

— idf Tnom ’=’ litteral Ttype; (1.12)
condition global = true et nom ¢ dom(ctzg) et type = typey
affectation ctx := ctxg U {nom — type}

— idf tnom =’ exp lctzy/env Ttype; (1.13)
condition global = false et nom ¢ dom(ctzg) et type = typey
affectation ctx := ctxg U {nom — type}

Pour analyser I'expression d’initialisation, I’environnement affecté a I’attribut est 'empilement du contexte
courant avec ’environnement englobant. En effet, I’expression d’initialisation peut référencer des variables
déclarées précédemment dans le méme bloc et des variables déclarées dans un bloc englobant.

7.4.4 Bloc

bloc |env — {’ liste__decl__vars |env [{} |false fctz liste__inst |ctz/env °}’ (1.14)
L’environnement considéré pour analyser les expressions du bloc est 'empilement du contexte du bloc sur
I’environnement englobant.

7.4.5 Instructions

liste_inst lenv — liste__inst |env inst |env (1.15)

- ¢ (1.16)

Toutes les expressions apparaissant dans des conditions doivent avoir le type bool.

inst lenv — explenv?t ;7 (1.17)
— if ? (° exp lenv Tthool ?)’ inst |env (1.18)
— if (° exp lenv Tthool ?)’ inst |env else inst |env (1.19)
— while ’> (° exp Jenv Tbool ’)’ inst |env (1.20)
— for *(’ exp lenv T ’;’ exp lenv thool ’;’ exp lenv 1)’ (1.21)
inst Jenv
— do inst |env while ’ (° exp Jenv thool)’ 73’ (1.22)

Spécifications -23

%

%

—

—

_>

param_ print |env

_>

_>

7.4.6 Expressions

exp lenv Ttype —

affectation

%
affectation

%
condition
affectation

%
affectation

_>

affectation

—

affectation

op__bin fplus
op_ bin fminus

op__bin Tmul

op__bin tdiv

op__bin Tmod

op__bin 1sll
op__bin fsrl
op__bin fsra
op__bin 1gt
op__bin 1lt
op__bin fge
op__bin 1le

op__bin Tband
op__bin Tbor
op__bin fbxor

op__bin Teq
op__bin Tne

[-24

S e

bloc |env
print ’ (° liste_ param_ print |env ’)’

) .
>

liste_ param_ print |env
liste__param_ print [env ’,’ param_ print |env

param__print |env

chaine

ident |env T__

exp lenv Ttypey op__bin Top exp lenv Ttype;
type := type_op_ binaire(op, typeo, type1)
op__un top exp lenv Ttype

type := type_op_ unaire(op, type)

ident |env Ttypey >=’ exp lenv Ttype;
typeo = types

type := typeg

ident |env Ttypey

type = typeg

> (2 exp lenv Ttypey *)’

type = typeg

litteral 1typey

type := typeg

(1.23)
(1.24)
(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
(1.31)

(1.32)

(1.33)

(1.34)

Spécifications

op__bin fand — &’
op__bin for - |
op_un Tuminus — ’-=’
op__un Thnot - 7
op__un tnot — P
litteral Tint — entier
litteral Tbool — true
litteral Thool — false

7.4.7 Identificateur

ident |env Ttype — idf tnom
condition nom € dom(env)
affectation type := env(nom)

On doit trouver une définition associée au nom nom dans ’environnement env.

7.5 Profils d’attributs des symboles non terminaux et terminaux

7.5.1 Type

type 1Type

7.5.2 Programme

liste__decl__vars |Environnement |Contexte |Bool 1Contexte
main__declaration |Environnement

7.5.3 Déclaration de variables

liste_ decl_vars |Environnement |Contexte |Bool 1Contexte
decl__vars |Environnement |Contexte |Bool TContexte

liste_ decl_type |Environnement |Contexte | Type [Bool tContexte
decl__var |Environnement |Contexte |Type |Bool 1Contexte

7.5.4 Instructions

bloc |Environnement

7.5.5 Instructions

liste__inst |Environnement

inst |Environnement

liste_ param_ print |Environnement
param__print |Environnement

7.5.6 Expressions

exp |Environnement 1 Type
op__bin 1Opérateur
op__un TOpérateur
litteral TType

Spécifications

(1.61)

[-25

7.5.7 Identificateur

ident |Environnement 1 Type
idf tNom

7.6 Implémentation de ’environnement
Dans cette partie, on montre sur un exemple comment les environnements peuvent étre implémentés.
Un environnement est une liste chainée de contextes, qui sont des tables d’associations identificateur —

définition. La définition correspond au noeud de nature NODE_IDENT associé a la déclaration dans ’arbre du
programme. Considérons le programme MiniC suivant :

1 int a = 0;

2 int b = 0;

3

4 void main() {

5 int a = 1;

6 int ¢ = 2;

7

8 if (true) {
9 int a = 5;
10 int d = 6;
11 a =a+ b + c + d;
12 }

13 else {

14 int d;

15 int e;

16 e =d = 1;
17 }

18 }

La figure 4 montre I’environnement d’analyse de différentes parties du programme.

(a) Le contexte global CO est empilé dans ’environnement. Les variables a et b y sont ajoutées lorsque 'on
rencontre leur déclaration durant le parcours de 'arbre du programme : les définitions associées aux noms
enregistrées dans le contexte sont les noeuds de ’arbre de nature IDENT correspondant a la déclaration de
ces variables.

(b) Au début de I’analyse du main() le contexte C1 est empilé dans I’environnement au dessus de CO. Les
définitions des variables locales a et ¢ y sont ajoutées. On remarque que la définition de la variable locale a
masque la définition de la variable globale a.

(c) Au début de l'analyse du bloc then, le contexte C2 est empilé dans 'environnement au dessus de C1.
Les définitions des variables locales a et d y sont ajoutées. Lors de l'analyse de ’expression a = a + b +
c + d;, on commence par chercher dans I’environnement la définition de 'occurrence de a a droite du =.
Une définition pour a est trouvée dans I’environnement C2, et permet de générer I'instruction de lecture de
a a partir de loffset enregistré dans le noeud. On cherche ensuite la définition de b dans I’environnement.
Puisqu’une aucune définition de b n’est trouvée dans C2, on en recherche une dans C1. Puisqu’aucune
définition de b n’est trouvée dans C1, on la recherche dans CO, ou elle est trouvée. De méme, les variables c
et d sont trouvées respectivement dans C1 et C2, puis la définition de I'occurrence de a a gauche du = est
trouvée dans C2. A la fin du bloc, le contexte C2 est dépilé de environnement.

(d) Au début de 'analyse du bloc else, le contexte C3 est empilé dans l'environnement au dessus de C1.

Les définitions des variables locales d et e y sont ajoutées. Lors de 'analyse de 'expression e = d = 1; les
définitions de d et e sont trouvées dans C3.

[-26 Spécifications

Noeuds IDENT de I'arbre
liés a des déclarations

co

- ﬂ -

int a
int b
void main() {

1;

int ¢
if (true) {

5;
6;
b

o
u
o
+n

+c+d;

Noeuds IDENT de I'arbre
liés a des déclarations

int
int i
void main

int a=1;

int ¢ = 2; €l

IDENT
P

if (true) { a
int a Env ‘

5;
ntd=6;
=a+b+c+d;

+un

i
a

}

else {
int d;

int e;
e=d=1;

y ! (a) y ! (b)

Noeuds IDENT de l'arbre
liés a des déclarations

Noeuds IDENT de I'arbre

liés & des déclarations ID‘E"\‘T

—

if (true) {
int a

a=a+

5;
6;
b

+c+d;

d;‘ +4 !

(d)

FIGURE 4 — Environnement d’analyse des différents blocs du programme

8 MiniCC : Spécification du compilateur

8.1 Ligne de commande

Le programme principal, minicc, est un compilateur MiniC complet. Cette section décrit les arguments de
la ligne de commande qui doivent étre supportés par minicc. Les arguments de la ligne de commande feront
I'objet de tests spécifiques pour I’évaluation.

On permettra de désigner le fichier d’entrée par des chemins de la forme <répertoires/nom.c>. Le nom
du fichier & compiler doit étre compris comme le premier argument de la ligne de commande qui ne soit ni
une option, ni une valeur d’option. Cet argument ne doit étre défini qu’une seule fois. Sauf erreur dans le
programme d’entrée, le résultat doit étre par défaut dans un fichier <out.s> situé dans le répertoire courant
(et non pas dans le répertoire du fichier source).

La commande minicc, sans argument, affichera les options disponibles. On définira les options suivantes a
la commande minicc!.
e -b : Affiche une banniére indiquant le nom du compilateur et des membres du binéme

e —o <filename> : Définit le nom du fichier assembleur produit (défaut : out.s).

1. Pour I'implémentation des options, il est conseillé de ne pas utiliser la fonction getopt(), qui n’est pas tres
adaptée a cette spécification

Spécifications [-27

e -t <int>: Définit le niveau de trace & utiliser entre 0 et 5 (0 = pas de trace; 5 = toutes les traces.
defaut = 0).

-r <int> : Définit le nombre maximum de registres a utiliser, entre 4 et 8 (défaut : 8).

: Arréter la compilation apres Ianalyse syntaxique (défaut = non).

-v : Arréter la compilation apres la passe de vérifications (défaut = non).

-h : Afficher la liste des options (fonction d’usage) et arréter le parsing des arguments.

e o o o
|
]

Remarque : les options ’-s’ et >-v’ sont incompatibles.

En I’absence des options ’-b’, ’~h’, et ’~t <n>’ avec n # 0, une exécution de minicc ne doit produire
aucun affichage si la compilation réussit. Il est impératif de respecter les conventions sur les arguments de
la ligne de commande, car les compilateurs rendus seront testés automatiquement a ’aide de scripts a la fin
du projet.

L’option -b ne peut étre utilisée que sans autre option, et sans fichier source. Dans ce cas, minicc termine
apres avoir affiché la banniére.

En cas d’erreur dans la ligne de commande, le programme devra retourner un code d’erreur (valeur de
retour ou du parametre de exit () différente de 0), sauf si 'option -h est rencontrée avant que l'erreur ne
soit détectée. Si la ligne de commande est correcte, la valeur de retour de minicc devra étre 0. En bash, la
valeur de retour du dernier programme lancé est stockée dans la variable $7.

Exemples de lignes de commandes correctes :

./minicc -h

./minicc -b

./minicc fichier.c

./minicc fichier.c -o fichier.s

./minicc -o fichier.s fichier.c

./minicc -o fichier.s -t O fichier.c -r 6
./minicc -o fichier.s -v test.c

./minicc -s test.c

Exemples de lignes de commandes incorrectes :

./minicc -b fichier.c

./minicc fichier_1.c fichier_2.c

./minicc -s -v fichier.c

./minicc -t -r 4 fichier.c

./minicc fichier_1.c -o fichier.s fichier_2.c
./minicc -r 2 fichier.c

./minicc -t 6 fichier.c

./minicc -t 0 -r 8 -o fichier.s

8.2 Formattage des messages d’erreur

Les messages d’erreur (lexicales, syntaxiques, contextuelles, et éventuelles limitations du compilateur) doivent
étre formatées de la maniére suivante (cette regle est également indispensable pour 1’évaluation automatique
de votre compilateur par les enseignants) :

Error line <numéro de ligne>: <description informelle du probléme>

Comme par exemple :

Error line 12: variable "foobar" undeclared (rule 1.4)

ou bien :

[-28 Spécifications

Error line 3: Syntax error

Il est indispensable d’afficher un numéro de ligne correct et selon ce format car les scripts d’évaluation
vérifieront ce numéro.

Spécifications -29

Il. Ressources et environnement de développement

I Philosophie générale et vue globale du travail a réaliser

L’objectif de ce projet est de toucher a tous les aspects d’un compilateur. En ce sens, il vous
est demandé de réaliser la quasi-totalité du code. Néanmoins, suite & des retours faisant état d’une
longueur trop importante pour ce projet, un certain nombre de taches sont annexes. Pour ces
taches, une interface ainsi qu’une version compilée de son implémentation vous seront fournies et
pourront étre utilisées sans pénalité. Néanmoins, toute tdche annexe correctement réalisée sera
prise en compte au niveau de la notation. Dans ce dernier cas, notez que les interfaces fournies ne
sont qu’'une facon possible de faire et que vous n’étes obligés de conserver le méme découpage en
fonctions. Enfin, les binaires fournis seront compilés pour Linux.

Le travail a réaliser peut se décomposer grossierement selon les taches/modules suivants :

e Compléter ’écriture du fichier lexico.1l décrivant la lexicographie du langage

e Compléter Iécriture du fichier grammar.y réalisant l’analyse syntaxique du langage et la
construction de I'arbre du programme

e Module implémentant ’analyse des arguments de la ligne de commande

e Module implémentant un contexte, c’est-a-dire I’association entre un nom de symbole et un
noeud de 'arbre (annexe)

e Module implémentant un environnement, réalisant I’empilement et le dépilement des contextes
en fonction des blocs du programme (annexe)

e Module implémentant un allocateur de registres, définissant les registres source et destina-
tion & utiliser pour une instruction (annexe)

e Premiere passe réalisant les vérifications contextuelles

e Deuxiéme passe réalisant la génération du code assembleur

Note : il n’est normalement pas nécessaire de faire plus de 2 passes sur le programme (c’est-a-
dire 2 parcours de 'arbre). Si vous souhaitez en faire plus, il conviendra alors de justifier chaque
passe.

La librairie fournie, nommée miniccutils (fichiers libminiccutils.a et miniccutils.h)
regroupe toutes les fonctions pour les modules de contexte, d’environnement, et d’allocation de
registre. Elle contient également les fonctions relatives a la création des instruction mips et du
programme assembleur, qui ne sont pas a refaire. Enfin, pour vous aider, elle contient une fonction
permettant de vérifier qu'un arbre de programme construit au cours de l'analyse syntaxique est
valide.

II Ressources et code fourni
1 Fichier defs.h

Le fichier defs.h contient la définition du type node_t, ainsi que les enums node_nature et
node_type. Le type node_t est expliqué dans le document de spécifications, dans la partie décrivant
la grammaire d’arbre.

Les enums node_nature et node_type définissent respectivement les différentes nature possibles
pour un noeud, et le type des expressions possibles pour un programme.

2 Fichiers arch.h et arch.c

Les fichiers arch. [ch] contiennent des fonctions implémentant des constantes de I'architecture
Mips concernant certains registres ou adresses. Les registres disponibles dans ’architecture sont
considérés étre les registres $8 & $15, de maniére & ne pas avoir a gérer la sauvegarde et la restaura-
tion des registres persistants. Cela laisse donc 8 registres au maximum (num_arch_registers). La
fonction get_num_registers() retourne le nombre de registres disponibles pour le code a générer,

Ressources et environnement de développement -3

qui peut étre différent si 'option -r a été utilisée sur la ligne de commande (dans ce cas, c’est a
vous d’appeler la fonction set_max_registers() lors de 'analyse des arguments).

3 Bibliothéque de création des programmes mips

Les fonctions de la librairie miniccutils servent a la création des différents type d’instruction
mips, mais aussi des directives utiles pour ce projet. Chaque instruction ou directive créée est
automatiquement ajoutée a la fin du programme courant.

Voici la liste de toutes les fonctions fournies pour la création de directives et d’instructions :

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

create_data_sec_inst();

create_text_sec_inst();

create_word_inst(char * label, int32_t init_value);
create_asciiz_inst(char * label_str, char * str);
create_label_inst(int32_t label);

create_comment_inst(char * comment) ;

create_lui_inst(int32_t r_dest, int32_t imm);
create_addu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_subu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_slt_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_sltu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_and_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_or_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_xor_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_nor_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_mult_inst(int32_t r_src_1, int32_t r_src_2);
create_div_inst(int32_t r_src_1, int32_t r_src_2);
create_sllv_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_srlv_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_srav_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
create_addiu_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_andi_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_ori_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_xori_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_slti_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_sltiu_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
create_lw_inst(int32_t r_dest, int32_t imm, int32_t r_src_1);
create_sw_inst(int32_t r_src_1, int32_t imm, int32_t r_src_2);
create_beq_inst(int32_t r_src_1, int32_t r_src_2, int32_t label);
create_bne_inst(int32_t r_src_1, int32_t r_src_2, int32_t label);
create_mflo_inst(int32_t r_dest);

create_mfhi_inst(int32_t r_dest);

create_j_inst(int32_t label);

create_teq_inst(int32_t r_src_1, int32_t r_src_2);
create_syscall_inst();

create_stack_allocation_inst();
create_stack_deallocation_inst(int32_t val);

Remarques :

e Pour toutes ces fonctions, les parametres sont les opérandes de l'instruction dans l'ordre.
Quand l'opérande est un registre, le parametre est le numéro entier du registre (exemple :
8 pour r8).

e Pour les labels correspondant a un point du programme, un entier identifiant le label de
maniere unique doit étre passé (c’est a vous de gérer les numéros de ces labels). Un nom

-4

Ressources et environnement de développement

de label générique est généré a partir du numéro (> _L<num>’), et ne peut pas entrer en
conflit avec des noms de variables ou de fonctions (car celles-ci ne peuvent pas commencer
par ’_’.

e Pour les labels correspondant a des directives de déclaration de variables (.word) et des
chaines de caracteres (.asciiz), une valeur non nulle du parameétre label géneére le label
correspondant suivi de ’:’ avant la directive. A titre d’exemple :

e 'appel create_word_inst("a", 5); génere le code a: .word 5

e ’'appel create_word_inst(null, 5); génere le code .word 5

e ’'appel create_asciiz_inst("chaine", "hello"); génere le code chaine: .asciiz

"hello"

e l'appel create_asciiz_inst(null, "hello"); génere le code .asciiz "hello"
Néanmoins, le parametre de nom (premier parameétre) ne peut étre utilisé qu’a des fins
de débug, car la simulation du code sur mars doit étre faite avec les macros instructions
désactivées, et il n’est pas possible d’autoriser seulement certaines macros comme la. Il
faut donc stocker l'offset de la variable dans la section (dans le champ offset du noeud de
Parbre correspondant) afin de pouvoir calculer 'adresse a chaque lecture.

e La fonction void create_stack_allocation_inst() crée une instruction d’allocation en
pile, qui sera mise a jour par la suite : en effet, au début de ’analyse d’une fonction MiniC
lors de la passe 2, on ne sait pas encore de combien de temporaires on aura besoin en pile.
Cette valeur sera connue a la fin de I’analyse de la fonction MiniC, et mise a jour a partir de la
valeur passée en parametre a la fonction void create_stack_deallocation_inst(int32_t
val), qui doit donc étre appelée pour désallouer la place en pile nécessaire.

Il y a enfin les 3 fonctions suivantes :

e void create_program() : a appeler au début pour créer un programme

e void dump_mips_program(char * filename) : pour écrire le programme au format texte
dans le fichier filename

e void free_program() : a appeler a la fin de la passe 2 pour libérer les structures allouées
a la création

4 Implémentation du module de Contexte

Le module de contexte définit le type context_t qui fait I'association entre un nom d’identifi-
cateur et la définition de la variable correspondante.

Les fonctions de l'interface fournie sont les suivantes :

e context_t create_context() : alloue un objet de type context_t et le retourne

e bool context_add_element(context_t context, char * idf, void * data) : ajoute
I’association entre le nom idf et le noeud data dans le contexte context. Ce noeud doit
étre le NODE_IDENT associé a la déclaration de la variable. Si le nom idf est déja présent,
I’ajout échoue et la fonction retourne false. Sinon, la fonction retourne true.

e void * get_data(context_t context, char * idf) : retourne le noeud précédemment
associé a idf dans context, ou null si idf n’existe pas dans context.

e void free_context(context_t context) : libére la mémoire allouée pour context.

Remarque : Ce module n’est utilisé que par le module d’environnement. Cette interface n’est
donc utile que dans le cas ou vous implémentez votre propre module d’environnement mais pas
votre module de contexte.

Ressources et environnement de développement [1-5

5 Implémentation du module d’Environnement

Le module d’environnement réalise la gestion de ’empilement et du dépilement des contextes,
et permet d’associer un nom de variable a sa définition dans le contexte le plus proche (du bloc le
plus interne vers le bloc le plus externe puis variable globale). Pour cela, le module chaine entre
eux des contextes a ’aide de plusieurs variables statiques en interne, et en particulier une variable
statique contenant I’environnement courant.

La difficulté de ce module est de gérer les offsets des différentes variables (globales, chaines de
caractere, locales). En effet, le module gere un offset de contexte, réinitialisé au début de chaque
fonction, qui est incrémenté & chaque déclaration de variable. A la fin de I’analyse d’une fonction,
I'offset courant correspond & la place a allouer en pile pour les variables locales de la fonction. De
plus, si 'environnement global est optionnel, les cas les chaines de caractére doivent dans tous les
cas étre placées en section .data apres la déclaration de la derniére variable globale. Il faut donc
pouvoir se souvenir de la valeur de l'offset courant a la fin de 'analyse des variables globales.

Dans 'absolu, il est possible d’utiliser le méme emplacement en pile pour les variables locales
de deux blocs consécutifs (non imbriqués). Néanmoins, il est conseillé d’utiliser des emplacements
distincts pour toutes les variables locales de la fonction. C’est ’approche adoptée par I'implémen-
tation fournie; c’est aussi ’approche utilisée par gcc.

Pour des raisons de simplicité, on pourra considérer que toutes les variables se voient réservés
4 octets en mémoire quelque soit leur type et I’endroit de leur allocation (pile ou section .data).
Les chaines de caracteres doivent faire I’objet d’un traitement particulier.

L’interface fournie est décrite ci-aprées. Les fonctions push_global_context (), push_context (),
pop_context (), get_decl_node(), env_add_element (), reset_env_current_offset(),
get_env_current_offset() et add_string() sont a appeler lors de la passe 1, tandis que les fonc-
tions get_global_strings_number () et get_global_string() sont a appeler lors de la passe 2.
La fonction free_global_strings() est a appeler a la fin de la passe 2.

e void push_global_context() : est a appeler avant I’analyse de la déclaration des variables
globales. Elle initialise un contexte pour les variables globales et en fait le contexte courant.

e void push_context() : est a appeler avant ’analyse de la déclaration des variables d’un
bloc. Elle initialise un contexte pour les variables locales et en fait le contexte courant.

e void pop_context() : est a appeler a la fin de 'analyse d’un bloc déclarant des variables.
Cette fonction dépile et libére le contexte courant.

e int32_t env_add_element(char * ident, void * node) : ajoute dans le contexte cou-
rant I’association entre le nom ident et le noeud node. Si la valeur retournée est positive ou
nulle, il s’agit de l'offset de la variable dans I’environnement et 1'offset courant du contexte
courant est mis & jour; si la valeur retournée est négative, cela signifie qu’une variable du
méme nom existe déja dans le contexte courant.

e void * get_decl_node(char * ident) : retourne la définition de la variable ident ren-
contrée en premier dans ’empilement des contextes, en commengant par le contexte courant.

e void reset_env_current_offset() : réinitialise l'offset courant du contexte & 0; cette
fonction doit étre appelée au début de ’analyse d’une fonction dans la passe 1.

e int32_t get_env_current_offset() : retourne l'offset courant du contexte; cette fonc-
tion est & appeler a la fin de ’analyse d’une fonction lors la passe 1 pour connaitre la place
en pile qu’il est nécessaire d’allouer pour les variables locales de cette fonction. Cette valeur
est a sauvegarder dans le champ offset du noeud de nature NODE_FUNC de la fonction
analysée.

e int32_t add_string(char * str) : ajoute la déclaration en section .data d’une chaine
de caracteres littérale et retourne l'offset correspondant

e int32_t get_global_strings_number() : retourne le nombre de chaines de caracteres
littérales. Cette fonction devrait étre utilisée pour la déclaration des chaines littérales en
section .data.

e char * get_global_string(int32_t index) : retourne la chaine de caracteres littérale

[1-6 Ressources et environnement de développement

d’index index, qui doit étre strictement inférieur a la valeur retournée par
get_global_strings_number (). Cette fonction devrait étre utilisée pour la déclaration des
chaines littérales en section .data.
e free_global_strings() : libere la mémoire allouée pour les chaines littérales.
La valeur de retour des fonctions env_add_element () et add_string() devrait étre stockée
dans le champ offset des noeuds adéquats.

6 Implémentation de ’allocateur de registres

Le but de ce module est de fournir les numéros des registres pour les instructions du programme
assembleur, et de gérer correctement le cas ou il n’y a plus de registre disponible. Dans ce dernier
cas, une expression dite temporaire, dans le sens ou il ne s’agit pas d’une expression correspondant
a la valeur d’une variable, doit étre stockée en pile pour libérer un registre et restaurée plus tard.

Exemple

Par exemple, pour traduire en assembleur ’expression suivante :

a=1+ @2+ (3 + (4 +05))

La sémantique de MiniC oblige I’évaluation dans 'ordre des expressions 1, puis 2, puis 3, puis
4 et enfin 5, mais aussi de respecter 'ordre des opérations spécifié par les parenthéses. L’arbre
obtenu pour cette expression est représenté figure 1.

NODE AFFECT

— ~—
NODE IDENT NODE PLUS
'‘a' — ~—
NODE INTVAL NODE PLUS
NODE INTVAL NODE PLUS
NODE INTVAL NODE PLUS
3 -— T~
NODE iNTVAL NODE %NTVAL

FIGURE 1 — Arbre de l'expressiona =1+ (2 + (3 4+ (4 + 5)))

Un code assembleur correct serait donc (en supposant que a se trouve a l’adresse 4(r29)) :

addiu r8, r0, 1
addiu r9, r0, 2
addiu r10, r0, 3
addiu r11, r0, 4
addiu r12, r0, 5
addu ri11, ri11, ri12
addu r10, r10, ri1
addu r9, r9, ri1o0
addu r8, r8, r9

sw r8, 4(r29)

Cette implémentation utilise 5 registres. Si on suppose que 'on ne dispose maintenant que
de 4 registres pour implémenter cette expression, il faut utiliser la pile pour stocker des résultats
intermédiaires du calcul. Un code assembleur est le suivant :

addiu r8, r0, 1
addiu r9, r0, 2

Ressources et environnement de développement -7

addiu r10, r0, 3
sw r10, 8(r29)
addiu r10, r0, 4
sw r10, 12(r29)
addiu r10, r0, 5
lw ri1l, 12(r29)
addu r10, ri11, ri1o0
1w r11, 8(r29)
addu r10, ri11, ri1o0
addu r9, r9, ri1o0
addu r8, r8, r9

sw r8, 4(r29)

On observe ici que 'on a besoin de deux mots en pile pour stocker des valeurs temporaires.
Ces deux mots en pile utilisée doivent étre alloués au début de la fonction en méme temps que la
place pour les variables locales.

Remarque : Si une passe d’optimisation basée sur la propagation des constantes permettrait de
résoudre ce cas précis (charger directement la valeur 15 dans un registre), le probléme se pose
dans tous les cas avec des variables et des expressions plus complétes, en particulier dans le cas
des expressions qui ont des effets de bord. Par ailleurs, il ne vous est pas demandé de réaliser des
passes d’optimisation.

Si maintenant on enleve les parentheses de 'expression, l'arbre construit est illustré figure 2,
et seuls deux registres suffisent :

NODE AFFECT

-— T~

NODE IDENT NODE PLUS

‘a' — ~—
NODE PLUS NODE INTVAL
- ~— 5

NODE PLUS NODE INTVAL

— ~— 4

NODE PLUS NODE INTVAL
- ~— 3
NODE {NTVAL NODE %NTVAL

FIGURE 2 — Arbre de l'expression 1 + 2 +3 +4 4+ 5

addiu r8, r0, 1
addiu r9, r0, 2
addu r8, r8, r9
addiu r9, r0, 3
addu r8, r8, r9
addiu r9, r0, 4
addu r8, r8, r9
addiu r9, r0, 5
addu r8, r8, r9
sw r8, 4(r29)

Remarque : Dans le code précédent, il s’agit de I'implémentation la plus naive et la plus auto-
matique (celle qui vous est demandée). Il est bien siir possible d’utiliser un seul registre et moins
d’instructions en utilisant directement des instructions addiu r8, r8, x (pour x de 2 & 5).

-8 Ressources et environnement de développement

Implémentation fournie

Toutes les fonctions de ce module sont & appeler au cours de la passe 2. Ainsi, au cours de cette
passe, les instructions correspondant a la sauvegarde et a la restauration en pile des expressions
temporaires doivent étre générées, via les fonctions push_temporary() et pop_temporary(). De
plus, la taille maximale allouée a un instant donné pour la sauvegarde des temporaires est utilisée
a la fin de I’analyse d’une fonction pour connaitre la quantité de mémoire qu’il faut allouer en pile
au début de la fonction.

e bool reg_available() : teste s’il reste un registre disponible pour stocker un résultat
d’expression. Si la fonction retourne false, cela signifie qu’il faudra stocker un résultat
intermédiaire en pile.

e void push_temporary(int32_t reg) : génere une instruction de sauvegarde du registre
reg en pile (contenant une expression temporaire) et met a jour l'offset de sauvegarde des
temporaires.

e void pop_temporary(int32_t reg) : géneére une instruction de restauration du registre
reg a partir de la pile, et met a jour l'offset de sauvegarde des temporaires.

e int32_t get_current_reg() : retourne le numéro du registre courant, c’est-a-dire du der-
nier registre alloué.

e int32_t get_restore_reg() : retourne le numéro du registre réservé pour la restauration
des valeurs en pile. Ce numéro est dépendant du nombre de registres utilisables (option -r).

e void allocate_reg() : alloue un registre pour y stocker le résultat d’une expression; il
faut pour cela qu’il y ait au moins un registre disponible. L’effet de cette fonction sera
visible lors du prochain appel a get_current_reg(), qui retournera un nouveau numéro.

e void release_reg() : libere le registre courant.

e int32_t get_new_label() : retourne un numéro unique de label

e void set_temporary_start_offset(int32_t offset) : définit 'offset de début pour les
temporaires. Cet offset de début correspond a la place en pile réservée pour les variables
locales. Cette fonction doit étre appelée au début de I'analyse d’une fonction, pour que les
offsets générés dans les instruction de sauvegarde et restauration des temporaires soient
corrects.

e void reset_temporary_max_offset() : réinitialise I'offset maximum pour les temporaires.
Cette fonction doit étre appelée au début de I’analyse d’une fonction.

e int32_t get_temporary_max_offset() : retourne l'offset maximum atteint pour les tem-
poraires lors de I'analyse de la fonction courante. Cette fonction doit étre appelée a la fin
de ’analyse d’une fonction, pour calculer la place requise en pile par cette fonction : il faut
pour cela ajouter a cette valeur la place occupée par les variables locales.

e int32_t get_temporary_curr_offset() : retourne 'offset courant pour les temporaires.
Cette fonction n’est utile qu’a des fins de débug.

Lien entre variables locales et temporaires

Les variables locales, comme les expressions temporaires, utilisent toutes les deux la pile. Ce
sont néanmoins deux choses différentes : les variables locales sont rencontrées au cours de la passe 1,
et a la fin de celle-ci, on est donc en mesure de dire le nombre de variables locales que comporte une
fonction. Comme les offsets des variables locales retournés par I’environnement servent directement
a adresser la pile depuis son sommet (si 'appel env_add_element(...) retourne 4 pour 'ajout
d’une variable locale, alors il faudra accéder a la variable par 4($29)), ces offsets ne peuvent pas
étre modifiés. Pour cette raison et pour ne pas introduire davantage de complexité, les temporaires
sont alloués en pile “sous” les variables locales, contrairement & ce qui est normalement fait. Ala
fin de la passe 2, quand on connait le nombre de mots a allouer en pile pour les temporaires, on
ajoute cette valeur a la place a allouer en pile pour les variables locales pour obtenir la place totale
en pile a allouer pour la fonction.

Ceci est illustré sur ’exemple suivant, qui reprend l’expression de l'exemple précédent, en

Ressources et environnement de développement [1-9

supposant que l'on n’ait que 4 registres disponibles :

T O UL W N

void main() {
int a = 0;
{
int b = 1;
a =1+ (2 + (3 + (4 + 5)));

Lors de la passe 1, on analyse les déclarations de a et b, et on les ajoute dans ’environ-
nement courant avec la fonction env_add_element (). Ces variables obtiennent respective-
ment les offsets 0 et 4, valeurs qui sont écrites dans le champ offset des noeuds de nature
NODE_IDENT correspondant & la déclaration de ces variables.

A la fin de I’analyse de la fonction main, toujours dans la passe 1, le champ offset
du noeud de nature NODE_FUNC est mis & jour avec la valeur renvoyée par la fonction
get_env_current_offset (), ici 8 car ces 2 variables occupent 8 octets en pile.

Au début de la passe 2, il faut informer le module de gestion des registres que les temporaires
doivent commencer a l'offset 8 avec la fonction set_temporary_start_offset (). Cela est
nécessaire car la passe 2 va générer des instructions sw et lw pour les temporaires, sans
écraser les variables locales a et b.

L’appel a la fonction create_stack_allocation_inst() au début du main crée une ins-
truction addiu $29, $29, 0 dont 'immédiat sera modifié plus tard.

Lors de la passe 2, lors de ’analyse de 'expression 1 + (2 + (3 + (4 + 5))), 2 mots en
pile pour stocker des expressions temporaires sont requis. Lors du stockage du 2e temporaire,
l'offset courant des temporaires atteint la valeur 8. On ne sait néanmoins toujours pas la
valeur qu’il faudra allouer en pile car une expression qui suit pourrait avoir besoin de plus
de temporaires.

A la fin de I’analyse du main dans la passe 2, on connait enfin la place a allouer en
pile : il s’agit de la somme entre le champ offset du noeud NODE_FUNC mis a jour a la
fin de la passe 1 et contenant la valeur 8 (pour les variables locales), et la valeur 8 ren-
voyée par la fonction get_temporary_max_offset(). Cette valeur est passée a la fonction
create_stack_deallocation_inst () qui va créer I'instruction addiu pour désallouer cette
place en pile, et mettre a jour le champ immédiat de l'instruction addiu utilisée pour l'al-
location.

La pile peut étre représentée comme sur la figure 3.

[1-10

/ /S S s . . / VAV AV v aVy
Adresses décroissantes
/Non allcy (allocation) Non alloué
/// -« Sommet de pile /// / -« Sommet de pile
a (offset 0) [adresse 0($29) a (offset 0) | adresse 0($29)
b (offset 4) adresse 4($29) b (offset 4) adresse 4($29)
temporaire 0 adresse 8($29)
inconnu
temporaire 1 12($2
< Fond de pile - adresse ($29)
A 1la fin de la passe 1 A la fin de la passe 2

FIGURE 3 — Vue de la pile a la fin des passes 1 et 2

Ressources et environnement de développement

7 Vérification de ’arbre du programme

La fonction check_program_tree(node_t n) fournie dans la librairie prend en parametre le
noeud racine de ’arbre d’un programme et vérifie que I’arbre est conforme a la grammaire d’arbre.
Si c’est le cas, cette fonction n’affiche rien et retourne true. Si une erreur est rencontrée, la fonction
affiche un message décrivant le probléme et retourne false (remarque : il est possible que cette
fonction ne soit pas exempte de bug, notamment pour les arbres incorrects).

8 Affichage de ’arbre du programme

La fonction dump_tree qui vous est fournie dans le fichier common.c permet de générer un
graphe de l'arbre du programme au format dot. Ce graphe peut étre visualisé a 1’aide de 'outil
xdot ou graphviz. On peut par exemple faire appel a cette fonction a la fin de la construction
de ’arbre pour vérifier que I’arbre construit respecte bien la grammaire d’arbre, ou a la fin de la
passe 1 pour vérifier que les décorations ajoutées lors de la passe 1 sont correctes.

Sur les distributions récentes de linux, installer cet outil se fait de la maniére suivante :

sudo apt install python3-pip # pour installer pip3, le gestionnaire de packages
de python3

pip3 install xdot # pour installer le module xdot de python3
sudo apt install xdot # pour installer 1’utilitaire xdot
xdot apres_syntaxe.dot & # Pour visualiser un arbre

Attention : l'ordre affiché entre les différents fils d’un noeud ne correspond pas forcément a
I’ordre des fils dans le tableau opr.

9 Allocations et désallocations mémoire

Dans ce projet, un certain nombre d’allocations mémoire sont & réaliser. Dans un esprit de
programmation durable, il est attendu (et il sera vérifié) que votre programme ne comporte pas
de fuite mémoire. Vous pouvez bien slir utiliser valgrind pour traquer de telles fuites, et il est
fortement recommandé de le faire (valgrind est également utile pour le débug, pour voir par
exemple les accés aux variables non initialisées). Pour ne pas avoir de fuites mémoire avec I'uti-
lisation de lex et yacc, il faut appeler la fonction yylex_destroy() a la fin de votre main(), et
compiler le fichier produit par yacc avec 'option -DYY_NO_LEAKS. Une exception a ceci est lorsque
le programme d’entrée comporte une erreur détectée dans la passe 1. Dans ce cas, on ne cherchera
pas a désallouer toutes les structures.

10 Code de référence, simulateur et fichiers fournis

Les différentes ressources numériques se trouvent dans une archive projet_compilation_src.tar
dont 'emplacement vous sera communiqué ultérieurement. Elle contient notamment les fichiers
source fournis, ainsi que les implémentations des différentes fonctions fournies dans la librairie
libminiccutils.a. L’arborescence de I’archive est la suivante :

arch.c
arch.h
common. C
common.h
defs.h
grammar.y
lexico.1l

Ressources et environnement de développement -11

Makefile
minicc_ref
passe_1l.c
passe_1.h
passe_2.c
passe_2.h
Tests/
Syntaxe/
K0/
0K/
Verif/
K0/
0K/
Gencode/
K0/
0K/
utils/
libminiccutils.a
miniccutils.h

Remarques

e minicc_ref est un binaire du compilateur de référence

e Le projet est a faire sous linux, car les binaires ne seront pas portés sur windows.

e Il est conseillé d’utiliser le simulateur mars pour simuler le code assembleur produit. L’ar-
chive java de ce simulateur, Mars_4_2. jar est disponible sur mooodle. Elle est utilisable en
ligne de commande ou avec une interface graphique (utile pour débugger les codes assem-
bleur générés). Cette archive est exécutable et se lance de la maniére suivante : java -jar
Mars_4_2.jar (il est conseillé de créer un alias).

e Vos noms de fichiers et répertoires, si vous en créez, ne doivent pas comporter d’espace.

IIT Organisation du travail
1 Gestion du projet

Le travail est & réaliser par bindme, et c’est a vous de vous répartir le travail au sein du binéme.
Néanmoins, a 'issue du projet, les deux membres du binéme devraient avoir une connaissance
précise du projet, y compris sur le code qu’ils n’ont pas écrit.

La partie concernant lex et yacc est a réaliser en priorité, puisqu’elle conditionne tout le reste
du projet. Ensuite, il vous est conseillé de faire marcher au plus vite 'affichage des chaines de
caractere, afin de pouvoir tester vos programmes. A ce sujet, il est généralement observé que les
programmes sont largement sous-testés. L’écriture des tests devrait étre faite en paralleéle, sinon
avant, I’écriture du programme a tester. Il vous est par ailleurs fortement recommandé d’écrire des
scripts de test qui permettent de lancer tous vos tests en d’en vérifier le résultat (& titre personnel,
je recommande python pour cela, mais d’autres langages sont possibles). Cela permet d’avoir des
tests dits de "non régression", et de s’assurer ainsi qu’un ajout ou une modification dans une passe
ne “casse” pas une fonctionnalité qui marchait.

Concernant les optimisations (par exemple : propagation des constantes, mises de certaines
variables locales en registres, etc.), cet aspect ne sera pas pris en compte pour la notation, aussi il
vous est déconseillé d’essayer d’optimiser le code assembleur produit. Seule la fonctionnalité et le
respect de la spécification seront évalués. Bien siir, il n’y aura pas de pénalité pour la génération
d’un code optimisé mais le temps devrait plutot étre passé sur les tests.

[1-12 Ressources et environnement de développement

Enfin, les types fournis, tels que le type node_t ne doivent pas étre modifiés, car la librairie
libminiccutils.a ne serait pllus compatible.

2 Livrables

Il vous est demandé de fournir a la fin du projet votre code, vos tests, vos scripts de tests et
un rapport d’une dizaine de pages au format pdf décrivant tous les éléments qui vous semblent
pertinents, comme par exemple :

e Les choix de conception réalisés
e Les modules et fonctionnalités implémentés et non implémentés, les fonctionnalités qui ne
marchent pas, les bugs connus
e Une description concernant 1'utilisation de vos scripts de test
e L[’architecture logicielle de votre compilateur ou de vos scripts
L’archive contenant votre code et le rapport devra étre de type .tar.gz et ne devra contenir aucun
fichier binaire (autre que le rapport).

Si cela est possible, une soutenance sera organisée a la fin du projet, au cours de laquelle des
questions vous seront posées sur des aspects d’implémentation aussi bien que sur des aspects plus
généraux.

Concernant les tests, ceux-ci comptent pour une part conséquente de la note (20%) et seront
évalués de maniere automatique a la fin du projet. Ils peuvent étre écrits en parallele ou méme
avant le compilateur, et il est conseillé de les démarrer au plus tot. La structure donnée pour
I’arborescence des tests devrait étre respectée, a savoir :

o Les tests présents dans le dossier Tests/Syntaxe/0K ne doivent pas provoquer d’erreur —
et donc ne rien afficher — quand ils sont compilés avec I'option -s.

o Les tests présents dans le dossier Tests/Syntaxe/K0 doivent provoquer une erreur — et donc
afficher un message avec le numéro de ligne correct — quand ils sont compilés avec 1'option
-s.

e Les tests présents dans le dossier Tests/Verif/0K ne doivent pas provoquer d’erreur — et
donc ne rien afficher — quand ils sont compilés avec 'option -v.

e Les tests présents dans le dossier Tests/Verif /KO doivent provoquer une erreur — et donc
afficher un message avec le numéro de ligne correct — quand ils sont compilés avec 1'option
-v.

e Les tests présents dans le dossier Tests/Gencode/0K ne doivent pas provoquer d’erreur —
et donc ne rien afficher et produire un fichier assembleur — quand ils sont compilés.

o Les tests présents dans le dossier Tests/Gencode/KO ne doivent pas provoquer d’erreur —
et donc ne rien afficher et produire un fichier assembleur — quand ils sont compilés, mais
provoquer une erreur a l’exécution.

Remarques :

o Les tests présents dans les deux sous-dossiers de Syntaxe ne seront appelés qu’avec ’option
-8, et ceux dans les deux sous-dossiers de Verif ne seront appelés qu’avec 'option -v

e Les tests de Gencode devraient effectuer des affichages avec print; en effet, le code as-
sembleur ne peut pas étre testé autrement que par le résultat de son exécution, donc les
résultats des conditions et calculs faits dans le programme de test devraient étre affichés
pour permettre de discriminer entre un compilateur buggé et un compilateur sain.

e Certains tests peuvent étre réutilisés entre deux parties. Par exemple, tous les tests dans
Verif /0K produisent un fichier assembleur s’ils sont compilés sans -v, et peuvent donc étre
copiés dans Gencode, modulo I’ajout d’une trace pertinente (cf. point du dessus).

e Concernant les scripts de tests, ceux-ci ne doivent pas reposer sur I'utilisation de minicc_ref :
par exemple, il ne faut pas faire un diff entre la sortie de votre compilateur et celle de
minicc_ref. En effet, dans un vrai projet, vous n’aurez pas de programme de référence.

Ressources et environnement de développement [1-13

Vous pouvez bien siir vous servir de minicc_ref pour savoir le résultat attendu de la com-
pilation d’un fichier (par exemple, voir qu’il y a une erreur ligne 24), mais pas de maniére
automatique dans un script (c’est a vous de stocker quelque part I'information que l'erreur
doit se produire ligne 24).

3 Evaluation

Votre projet sera évalué sur les aspects suivants :

40% : Le passage de votre compilateur sur un ensemble de tests de maniére automatique.
Le score obtenu constituera la note.

20% : Le passage de l’ensemble de vos tests sur des compilateurs buggés (“mutants”) de
maniere automatique. Le score obtenu constituera la note.

e 10% : L’automatisation de vos tests.
e 10% : La qualité d’écriture de votre code (indentation, respect d'un style, découpage en

fonctions pertinent, etc.). Cette note sera aussi abaissée si la quantité de code écrite est
faible (par exemple, rendre 50 lignes parfaitement indentées ne permet pas d’avoir 20 a ce
critere).

10% : Le rapport décrivant I’architecture logicielle.

e 5% : Fuites mémoire, si nombre d’allocation suffisamment conséquent.
e 5% : Erreurs visibles ou non a l'exécution (typiquement, erreurs détectées par valgrind), si

le code écrit est suffisamment conséquent.

Les coefficients données sont indicatifs et sont susceptibles d’étre modifiés. En cas de soute-

nance

, ces coefficients seront réajustés. Les notes seront a priori les mémes pour les deux membres

d’un binéme. Néanmoins, en cas de déséquilibre significatif pergu entre les membres, les notes
seront dissociées.

Remarques :
e Le non respect des consignes (telles que la gestion des arguments de la ligne de commande,

la modification de ’arborescence des tests, ou l'affichage de messages ou traces pour un
test correct) entrainera un malus sur la note. De méme, un code qui ne compile pas sera
sanctionné.

Une grande partie des tests qui seront utilisés pour évaluer votre compilateur comportent
I’affichage de chaines de caracteres pour déterminer si le résultat est correct. Il est donc
indispensable que votre compilateur gére correctement I’affichage d’une chaine de caracteres
littérale simple.

Les pseudos-instructions (macros) mips ne sont pas autorisées ; I’évaluation avec Mars uti-
lisera I'option np qui les désactive, et vous étes encouragés a faire de méme.

4 Fraude

Tous les projets seront analysés de maniere automatique pour y détecter les cas de fraude. Voici
ci-apres un extrait du reglement de ’école au regard de la fraude et des sanctions associées.

[I-14

7.3 Infraction, plagiat, fraude

Toute infraction aux instructions énoncées au §7.2 ou tentative de fraude diment
constatée entraine l'application des articles R.712-9 a R 712-46 et R811-10 et R 811-
11 du code de l’éducation relatifs a la procédure disciplinaire dans les établissements
publics d’enseignement supérieur.

Le plagiat consiste a présenter comme sien ce qui a €té produit par un autre, quelle
qu’en soit la source (ouvrage, documents sur internet, travail d’un autre éléve...). Le
plagiat est une fraude.

Ressources et environnement de développement

En cas de fraude, [’éléve est susceptible d’étre déféré en section disciplinaire de
[’établissement et s’expose aux sanctions suivantes :
e [avertissement ;
e le blame;
o ['exclusion de l’établissement pour une durée mazrimum de 5 ans - cette sanction
peut étre prononcée avec sursis si l’exclusion n’excéde pas 2 ans;
e ['exclusion définitive de l’établissement ;
Uexclusion de tout établissement public d’enseignement supérieur pour une durée
maximum de 5 ans;
e ['exclusion définitive de tout établissement public d’enseignement supérieur.
Toute sanction prévue ci-dessus et prononcée dans le cas d’une fraude ou d’une tentative
de fraude commise a l’occasion d’une épreuve de contréle continu, d’un examen ou d’un
concours entraine, pour l'intéressé, la nullité de I’épreuve correspondante ou du groupe
d’épreuves ou de la session d’examen ou du concours.

En particulier, tout échange de code, y compris de tests ou de scripts, entre deux bindémes
différents constitue une fraude et entrainera la note de 0 pour les deux membres des deux binémes
et/ou une procédure disciplinaire & ’encontre des personnes concernées.

Pour protéger vos données de toute tentative de copie de la part d’autres étudiants, vous devrez
exécuter la commande suivante :

chmod -R go-rwx compilation/
sur le dossier contenant tous vos fichiers de projet (compilation/ dans cet exemple). Enfin, si
vous utilisez un dépot git sur internet, pensez a empécher les acces extérieurs.

IV Crédits

La présentation de ce projet s’inspire, en version réduite, du projet de génie logiciel de Grenoble INP
- Ensimag. Avec l’aimable autorisation de Roland Groz et Catherine Oriat (Prenom.Nom@imag.fr)

Ressources et environnement de développement [1-15

I1l. Annexes

Instructions MIPS

Assembleur Opération Effet For
mat
A| Add Rd, Rs, Rt Add Overflow detection Rd<-Rs+Rt R
: Sub Rd, Rs, Rt Substract Overflow detection Rd<-Rs-Rt R
t Addu Rd, Rs, Rt Add No Overflow Rd<-Rs+Rt R
h
m Subu Rd, Rs, Rt Substract No Overflow Rd<-Rs-Rt R
é Addi Rt, Rs, I Add Immediate Overflow detection Rt<-Rs+I I
t
i Addiu Rt, Rs, I Add Immediate No Overflow Rt<-Rs+I I
q| Or Rd, Rs, Rt Logical Or Rd<-Rs or Rt R
u
e And Rd, Rs, Rt Logical And Rd<-Rs and Rt R
Sl Xor Rd, Rs, Rt Logical Exclusive-Or Rd<-Rs xor Rt R
/
0 Nor Rd, Rs, Rt Logical Not Or Rd<-Rs nor Rt R
fé' Ori Rt, Rs, I Or Immediate Unsigned immediate Rt<-Rsorl I
i
q Andi Rt, Rs, I And Immediate Unsigned immediate Rt<-Rs and I I
:: Xori Rt, Rs, I Exclusive-Or Immediate Unsigned immediate Rt<-Rs xor I I
S Sllv Rd, Rt, Rs Shitf Left Logical Variable [5 Isb of Rs is significant Rd<-Rt<<Rs
Srlv Rd, Rt, Rs Shitf Right Logical 5 Isb of Rs is significant Rd<-Rt>>Rs
Variable
Srav Rd, Rt, Rs Shitf Right Arithmetical 5 Isb of Rs is significant Rd<-Rt>>*Rs R
Variable *with sign extension
Sll Rd, Rt, sh Shitf Left Logical Rd<-Rt<<sh R
Srl Rd, Rt, sh Shitf Right Logical Rd<-Rt>>sh R
Sra Rd, Rt, sh Shitf Right Arithmetical *with sign extension Rd<-Rt>>*sh R
Lui Rt I Load Upper Immediate 16 lowers bits of Rt are set to zero Rt<-I0 O "0000" I
Slt Rd, Rs, Rt Set if Less Than Rd<-1 if Rs<Rtelse 0
Sltu Rd, Rs, Rt Set if Less Than Rd<-1 if Rs<Rtelse 0
Unsigned
Slti Rt, Rs, I Set if Less Than Sign extended Immediate Rt<-1 if Rs<Ielse O I
Immediate
Sltiu Rt, Rs, I Set if Less Than Unsigned Immediate Rt<-1 if Rs<Ielse 0 I
Immediate
Mult Rs, Rt Multiply LO<-32 low significant bits Rs*Rt R
HI<-32 high significant bits
Multu Rs, Rt Multiply Unsigned LO<-32 low significant bits Rs*Rt R
HI<-32 high significant bits
Div Rs, Rt Divide LO<-Quotient Rs/Rt R
HI<-Remainder
Divu Rs, Rt Divide Unsigned LO<-Quotient Rs/Rt R
HI<-Remainder
H| Mfhi Rd Move From HI Rd<-HI R
[Mflo Rd Move From LO Rd<-LO R
L Mthi Rs Move To HI HI<-Rs R
0 Mtlo Rs Move To LO LO<-Rs R

PC<-Rs

LI Lw Rt, I(Rs) Load Word Sign extended immediate Rt<-M(Rs+I) I
e
C
t Sw Rt, I(Rs) Store Word Sign extended immediate M(Rs+I)<-Rt 1
u Lh Rt, I(Rs) Load Half Word Sign extended immediate. Two bytes Rt<-M(Rs+I) I
from storage are located into the 2 less
r significant bytes of Rt. The sign of
e these 2 bytes is extended on the 2 most
/ significant bytes.
é Lhu Rt, I(Rs) Load Half Word Sign extended immediate. Two bytes Rt<-M(Rs+I) I
Unsigned from storage are located into the 2 less
¢ significant bytes of Rt, others bytes are
r set to zero.
i Sh Rt, I(Rs) Store Half Word Sign extended immediate/. The two less M(Rs+I)<-Rt I
t significant bytes of Rt are stored into
u the storage.
r| Lb Rt, I(Rs) Load Byte Sign extended immediate. One byte Rt<-M(Rs+I) I
e from storage is located into the less
m significant bytes of Rt. The sign of this
. byte is extended on the 3 most
€ significant bytes.
m Lbu Rt, I(Rs) Load Byte Unsigned Sign extended immediate. One byte Rt<-M(Rs+I) I
0 from storage is located into the less
i significant bytes of Rt, others bytes are
set to zero.
r Sb Rt, I(Rs) Store Byte Sign extended immediate. The less M(Rs+I)<-Rt I
€ significant byte of Rt is stored into the
storage.
B| Beq Rs, Rt, label Branch if EQual PC<-PC+4+(1*4) if Rs=Rt |I
r PC<-PC+4 if Rs!=Rt
[|
n Bne Rs, Rt, label Branch if Not Equal PC<-PC+4+(I*4) if Rs!=Rt |I
c PC<-PC+4 if Rs=Rt
h| Bgez Rs, label Branch if Greater or Equal PC<-PC+4+(1*4) if Rs>=0 |[I
e Zero PC<-PC+4 if Rs<0
m Bgtz Rs, label Branch if Greater Than PC<-PC+4+(1*4) ifRs>0 |[I
e Zero PC<-PC+4 if Rs<=0
N Blez Rs, label Branch if Less or Equal PC<-PC+4+(1*4) if Rs<=0 |I
t Zero PC<-PC+4 if Rs>0
S
Bltz Rs, label Branch if Less Than Zero PC<-PC+4+(1*4) if Rs<0 |[I
PC<-PC+4 if Rs>=0
Bgezal | Rs, label Branch if Greater or Equal PC<-PC+4+(I*4) if Rs>=0 |I
Zero And Link PC<-PC+4 if Rs<0
R31<-PC+4 in both cases
Bltzal Rs, label Branch if Greater Than PC<-PC+4+(1*4) if Rs<O0 |I
Zero And Link PC<-PC+4 if Rs>=0
R31<-PC+4 in both cases
J Label Jump PC<-PC 31:2800 [0 T*4 J
Jal Label Jump and Link R31<-PC+4 J
PC<-PC 31:280 0 1*4
Jr Rs Jump Register PC<-Rs R
Jalr Rs Jump and Link Register R31<-PC+4 R
PC<-Rs
Jalr Rd, Rs Jump and Link Register Rd<-PC+4 R

Appels systéme

Avant de réaliser un appel systéme (avec syscall), il faut placer dans le registre $2 le numéro de 1'appel systéme
demandé. Il faut aussi donner les parametres de 1'appel quand il y en a. Le passage se fait par les registres, les registres
$4 et/ou $5 sont utilisés. La valeur de retour (s'il y en a une) se trouve aprés I'appel dans le registre $2.

Ecrire un entier en décimal sur la console :
@ Appel systéme numéro 1.
@ Un parameétre : I'entier a écrire sur la console qui doit étre placé dans le registre $4.
Lire un entier sur la console :
@ Appel systéme numéro 5.
® Valeur de retour (dans $2 aprés I'appel) : I'entier lu.
Ecrire une chaine de caractéres sur la console :
@ Appel systéme numéro 4.
® Un parametre : I'adresse de la chalne de caractéres a écrire doit étre placée dans le registre $4.
Lire une chaine de caractéres sur la console :
@ Appel systéme numéro 8.
@ 2 parameétres :
1. l'adresse mémoire a partir de laquelle la chaine de caractéres lue sera sauvegardée doit étre placée
dans le registre $4.
2. la taille maximale de la chaine de caractéres attendue doit étre placée dans le registre $5 (en octet).
Attention, avec le simulateur MARS, la chaine de caracteres lue se termine par "\n' puis par "0'.
Terminer un programme :
@ Appel systéme numéro 10.

Table des codes ASCII
Hxk/ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO Sl
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS us
2 SP ! " #F %S % & () * + - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = >
‘ 4 @ A B C D E F G H |] K L M N O
5 P/Q R S T U V W X Y Z [\ 1 ~ _
6 |a b ¢ d e f g h i j k I m n o
7p 9 r s t u v w x 'y z { | }y ~ ™
*
Format de codage des instructions
31 25 20 15 10 5 0

| orcoo | RS | RT | RD | SH | Func | FormatR

| orcon | rs | rr | IMD16 | Format |

| opcop | IMD26 | Format J

Directives assembleur

.align n : aligne le compteur d'adresse de la section concernée sur une adresse telle que les n bits de poids faible soient a
zéro (c'est-a-dire une adresse multiple de 2/n).

.ascii chaine [, autrechaine, ...] : place a partir de 1'adresse du compteur d'adresse de la section concernée la suite de
caractéres entre guillemets. S'il y a plusieurs chaines, elles sont placées a la suite. Cette chaine peut contenir des

séquences d'échappement du langage.

.asciiz chaine [, autrechaine, ...] : identique a la précédente, la seule différence étant qu'elle ajoute un zéro binaire a la
fin de chaque chaine.

.byte n [, m, ...] : les valeurs de n [et m,...] représentées sur loctet (tronquées sur 8 bits) sont placées a des adresses
successives de la section, a partir de 'adresse du compteur d'adresse de cette section.

Jhalf n [, m, ...] : les valeurs de n [et m,...] représentées sur 2 octets (tronquées sur 16 bits) sont placées a des adresses
successives de la section, a partir de 1'adresse du compteur d'adresse de la section.

.word n [, m, ...] : les valeurs de n [et m, ...] représentées sur 4 octets sont placées dans des adresses successives de la
section, a partir de 1'adresse du compteur d'adresse de la section.

.space n : un espace de n octets est réservé a partir du compteur d'adresse de la section concernée.

Codage des codes opération des instructions

DECODAGE OPCOD

INS 28:26
N 000 001 010 011 100 101 110 111
31 000 | SPECIAL| BCOND J JAL BEQ BNE | BLEZ | BGTZ
29 001 | ADDI | ADDIU| SLTI SLTIU | ANDI ORI XORI LUI
010 | COPRO
011
100 LB LH LW LBU LHU
101 SB SH SW
110
11
OPCOD = SPECIAL
INS 2:0
000 001 010 011 100 101 110 111
INS0B 1 3 SLL SRL SRA | SLLV SRLV | SRAV
oo1| JR | JALR SYSCALL BREAK

010| MFHI | MTHI | MFLO | MTLO

011 | MULT |MULTU | DIV DIVU

1700| ADD | ADDU | SUB | SUBU | AND OR XOR NOR

101 SLT SLTU

110

