
Sorbonne Université – École Polytech’ Sorbonne

Projet Compilation

Année 2025-2026

I. Spécifications
II. Ressources et environnement de développement

III. Annexes

Responsable d’UE : Quentin Meunier





I. Specifications





1 Introduction

Ce projet a pour but l’écriture d’un compilateur, c’est-à-dire l’écriture d’un programme qui transforme un
programme source en programme assembleur.

Le langage utilisé pour les programmes source est appelé MiniC : il s’agit d’un sous-ensemble du langage C
(avec quelques différences), ayant notamment les restrictions suivantes par rapport au C :

• les expressions et variables n’ont que deux types : int et bool
• il y a un typage fort des expressions (pas de conversions implicite int → bool)
• l’évaluation des expressions est faite de manière non-paresseuse
• il n’y a pas de fonctions (hormis le main), pointeurs, tableaux
• les mots-clés suivants et fonctionnalités associées ne sont pas supportés : switch, case, break,

continue, goto, typedef, struct, union, volatile, register, packed, inline, static, extern,
unsigned, signed, long, long long, short, char, size_t, float, double

• les opérateurs suivants ne sont pas supportés : ++, --, -=, +=, *=, /=, «=, »=, &=, |=, ...
• il n’y a pas de cast

Le langage cible est le langage assembleur Mips.

1.1 Analyse lexicale

L’analyse lexicale est la phase de transformation d’une suite de caractères (d’un fichier) en une suite de
lexèmes (ou tokens). Par exemple, la suite de lettres for, quand elle est entourée de caractères autres
que des chiffres, des lettres, et du caractère _, est un mot réservé du langage : on lui associe donc un
token représentant le for. Comme la machine d’état qui fait cette transformation est très pénible à écrire
manuellement, on utilise en général un outil pour décrire les tokens avec un plus haut niveau d’abstraction,
l’outil se chargeant de la génération du fichier C contenant la machine d’état correspondante. L’outil utilisé
dans ce projet est Lex.

1.2 Analyse syntaxique

L’analyse syntaxique est la phase au cours de laquelle on vérifie que la suite de tokens en sortie de l’analyse
lexicale est valide. Par exemple, une succession de deux tokens associés au mot-clé for n’est pas valide
syntaxiquement. Pour faire cette analyse, on décrit les langages valides à l’aide de règles de grammaire (en
général de type hors-contexte). C’est au cours de cette analyse qu’est construit l’arbre du programme : à
chaque fois, ou presque, qu’une règle de grammaire est reconnue (par exemple une suite de token en partie
droite d’une règle), on effectue la construction de la partie correspondante de l’arbre du programme ; dans la
suite de l’analyse syntaxique, le non-terminal en partie gauche de cette règle remplacera la suite des tokens
pour la reconnaissance de la prochaine partie droite de règle.

De la même manière que pour l’analyse lexicale, on utilise un outil dans lequel on a simplement à écrire les
règles de la grammaire, et qui génère le code C associé. L’outil utilisé pour ce projet est Yacc.

Dans ce projet, le totalité des règles de la grammaire hors-contexte du langage sont données. Il vous faut
compléter les actions associées pour construire l’arbre du programme.

Les analyses lexicales et syntaxiques sont effectuées conjointement. La figure 1 résume le processus de
compilation du compilateur.

1.3 Analyse sémantique (ou de vérifications contextuelles)

L’analyse sémantique est faite au cours de la première passe, ou “passe 1”. Une passe ici désigne une
exploration de l’arbre (en profondeur). Même si un programme est syntaxiquement correct, il n’est pas
forcément correct : en effet, un nom de variable peut être utilisé sans avoir été déclaré, ou une variable
booléenne additionnée avec une variable entière. Ces vérifications sont faites lors de cette passe.

Spécifications I–3



lexico.l

grammar.y

Yacc

Lex

lex.yy.c

y.tab.c
y.tab.h

Autres fichiers
source
(passe_1.c, ...)

gcc

minicc
(binaire)

: fichier source manuel

: fichier source généré

Figure 1 – Processus de compilation utilisant lex et yacc

Les programmes sémantiquement corrects sont spécificiés dans ce document à l’aide d’une grammaire at-
tribuée. La passe 1 doit donc implémenter toutes ces vérifications. De plus, c’est au cours de cette passe
que l’on fait les liens entre les occurrences des variables et leur déclaration, de manière à pouvoir avoir
directement la position en mémoire d’une variable lors de la génération de code.

1.4 Génération de code

La passe de génération de code, ou passe 2, effectue un parcours de l’arbre au cours duquel sont générées
les instructions assembleur du programme. Il n’y a plus de vérification à effectuer au cours de cette passe,
sauf éventuellement à l’aide d’asserts.

I-4 Spécifications



2 Exemple introductif illustrant les différentes étapes de la com-
pilation

Cette section illustre les résultats produits à l’issue de chaque analyse et passe, en considérant le programme
MiniC suivant :

1 // Un exemple de programme MiniC
2 int start = 0;
3 int end = 100;
4
5 void main () {
6 int i, s = start , e = end;
7 int sum = 0;
8 for (i = s; i < e; i = i + 1) {
9 sum = sum + i;

10 }
11 print("sum: ", sum , "\n");
12 }

2.1 Étape d’analyse lexicale

Au cours de l’analyse lexicale, le programme est transformé en une séquence des lexèmes (ou tokens). La
séquence de lexèmes pour le programme d’exemple est donnée ci-après, avec les numéros de ligne, les noms
des identificateurs et les valeurs des littéraux.

TOK_INT
2

TOK_IDENT
2 ’start’

TOK_AFFECT
2

TOK_INTVAL
2 ’0’

TOK_SEMICOL
2

TOK_INT
3

TOK_IDENT
3 ’end’

TOK_AFFECT
3

TOK_INTVAL
3 ’100’

TOK_SEMICOL
3

TOK_VOID
5

TOK_IDENT
5 ’main’

TOK_LPAR
5

TOK_RPAR
5

TOK_LACC
5

TOK_INT
6

TOK_IDENT
6 ’i’

TOK_COMMA
6

TOK_IDENT
6 ’s’

TOK_AFFECT
6

TOK_IDENT
6 ’start’

TOK_COMMA
6

TOK_IDENT
6 ’e’

TOK_AFFECT
6

TOK_IDENT
6 ’end’

TOK_SEMICOL
6

TOK_INT
7

TOK_IDENT
7 ’sum’

TOK_AFFECT
7

TOK_INTVAL
7 ’0’

TOK_SEMICOL
7

TOK_FOR
8

TOK_LPAR
8

TOK_IDENT
8 ’i’

TOK_AFFECT
8

TOK_IDENT
8 ’s’

TOK_SEMICOL
8

TOK_IDENT
8 ’i’

TOK_LT
8

TOK_IDENT
8 ’e’

TOK_SEMICOL
8

TOK_IDENT
8 ’i’

TOK_AFFECT
8

TOK_IDENT
8 ’i’

TOK_PLUS
8

TOK_INTVAL
8 ’1’

TOK_RPAR
8

TOK_LACC
8

TOK_IDENT
9 ’sum’

TOK_AFFECT
9

TOK_IDENT
9 ’sum’

TOK_PLUS
9

TOK_IDENT
9 ’i’

TOK_SEMICOL
9

TOK_RACC
10

TOK_PRINT
11

TOK_LPAR
11

TOK_STRING
11 "sum :"

TOK_COMMA
11

TOK_IDENT
9 ’sum’

TOK_COMMA
11

TOK_STRING
11 "\n"

TOK_RPAR
11

TOK_RACC
12

2.2 Étape d’analyse syntaxique

Lors de la phase d’analyse syntaxique, l’arbre correspondant au programme est construit à partir de la
séquence de lexèmes. Les champs ident des noeuds de nature IDENT ainsi que les champs value des noeuds

Spécifications I–5



de nature INTVAL, BOOLVAL et STRINGVAL sont initialisés aux valeurs correspondantes. L’arbre du programme
d’exemple est représenté figure 2.

NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
'start'

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC

NODE_BLOCKNODE_IDENT
'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

(*)
NODE_DECL

NODE_IDENT
'end'

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
'i'

NULL

NODE_DECL

NODE_IDENT
's'

NODE_IDENT
'start'

NODE_DECL

NODE_IDENT
'e'

NODE_IDENT
'end'

NODE_DECL

NODE_IDENT
'sum'

NODE_INTVAL
0

(*)

NODE_LIST

NODE_LIST

NODE_LIST

NODE_STRINGVAL
"sum: "

NODE_IDENT
'sum'

NODE_STRINGVAL
"\n"

NODE_FOR

NODE_AFFECT

NODE_IDENT
'i'

NODE_IDENT
's'

NODE_AFFECT

NODE_IDENT
'i'

NODE_PLUS

NODE_IDENT
'i'

NODE_INTVAL
1

NODE_BLOCK

NULL

NODE_AFFECT

NODE_IDENT
'sum'

NODE_PLUS

NODE_IDENT
'sum'

NODE_IDENT
'i'

NODE_IDENT
'i'

NODE_IDENT
'e'

NODE_LT

NODE_PRINT

Figure 2 – Arbre du programme après analyse syntaxique

2.3 Étape de vérifications contextuelles et décorations

Lors de l’analyse contextuelle, on vérifie que le programme écrit respecte la spécification du langage et que
l’on peut générer un code assembleur correspondant. De plus, les champs suivants sont mis à jour :

• Le champ type de tous les noeuds pouvant se trouver à la racine d’une expression (exemple : IDENT,
PLUS, BXOR). Ce champ est mis à jour au fur et à mesure de la vérification dans la passe 1 mais n’a
pas d’utilité dans la passe 2.

• Le champ global_decl des noeuds de nature IDENT correspondant à une déclaration, qui est mis à
jour pour indiquer si la variable est globale ou locale.

• Le champ decl_node des noeuds de nature IDENT (autres que les noeuds de déclaration), qui est
mis à jour avec l’adresse du noeud contenant la déclaration de la variable référencée.

I-6 Spécifications



• Le champ offset des noeuds de nature IDENT correspondant à une déclaration, qui est mis à jour
pour refléter l’emplacement en mémoire de la variable :

• Pour les variables locales, il s’agit de l’offset de pile (en octets)
• Pour les variables globales, il s’agit de l’offset dans la section .data (en octets)

• Le champ offset du noeud de nature FUNC, qui est mis à jour avec la taille (en octets) en pile
réservée pour les variables locales ; il s’agit également de l’offset de départ pour les temporaires

L’arbre du programme d’exemple à la fin de l’analyse contextuelle, avec les champs offset et decl_node
mis à jour, est représenté figure 3.

2.4 Programme assembleur

# Declaration des variables globales
.data

start : .word 0
end: .word 100
. asciiz "sum: "
. asciiz "\n"

# Programme
.text

main:
# Prologue : allocation en pile pour les variables locales
# i se trouve a l’ emplacement 0( $29)
# s se trouve a l’ emplacement 4( $29)
# e se trouve a l’ emplacement 8( $29)
# sum se trouve a l’ emplacement 12( $29)
addiu $29 , $29 , -16
# s = start
lui $8 , 0x1001
lw $8 , 0($8)
sw $8 , 4( $29)
# e = end
lui $8 , 0x1001
lw $8 , 4($8)
sw $8 , 8( $29)
# sum = 0
ori $8 , $0 , 0
sw $8 , 12( $29)
# for (i = s; i < e; i = i + 1)
# i = s
lw $8 , 4( $29)
sw $8 , 0( $29)
# i < e ?

_L1:
lw $8 , 0( $29)
lw $9 , 8( $29)
slt $8 , $8 , $9
beq $8 , $0 , _L2
# sum = sum + i
lw $8 , 12( $29)
lw $9 , 0( $29)
addu $8 , $8 , $9

Spécifications I–7



NODE_PROGRAM

NODE_LIST

NODE_DECLS

NODE_DECL

NODE_IDENT
ident: 'start'

offset: 0

NODE_INTVAL
0

NODE_DECLS

NODE_TYPE
'int'

NODE_FUNC
offset: 16

NODE_BLOCKNODE_IDENT
ident: 'main'

NODE_TYPE
'void'

NODE_TYPE
'int'

NODE_LIST

NODE_DECLS

NODE_LIST

NODE_DECLS

NODE_TYPE
'int'

NODE_TYPE
'int'

NODE_LIST

(*)
NODE_DECL

NODE_IDENT
ident: 'end'

offset: 4

NODE_INTVAL
100

NODE_DECL

NODE_IDENT
ident: 'i'
offset: 0

NULL

NODE_DECL

NODE_IDENT
ident: 's'
offset: 4

NODE_IDENT
ident: 'start'

decl: 

NODE_DECL

NODE_IDENT
ident: 'e'
offset: 8

NODE_IDENT
ident: 'end'

decl: 

NODE_DECL

NODE_IDENT
ident: 'sum'
offset: 12

NODE_INTVAL
0

(*)

NODE_LIST

NODE_LIST

NODE_LIST

NODE_STRINGVAL
"sum: "

NODE_IDENT
ident: 'sum'

decl:

NODE_STRINGVAL
"\n"

NODE_FOR

NODE_AFFECT

NODE_IDENT
ident: 'i'

decl:

NODE_IDENT
ident: 's'

decl:

NODE_AFFECT

NODE_IDENT
ident: 'i'

decl:

NODE_PLUS

NODE_IDENT
ident: 'i'

decl:

NODE_INTVAL
1

NODE_BLOCK

NULL

NODE_AFFECT

NODE_IDENT
ident: 'sum'

decl:

NODE_PLUS

NODE_IDENT
ident: 'sum'

decl:

NODE_IDENT
ident: 'i'

decl:

NODE_IDENT
ident: 'i'

decl:

NODE_IDENT
ident: 'e'

decl:

NODE_LT

NODE_PRINT

Figure 3 – Arbre du programme après vérifications contextuelles et décorations

sw $8 , 12( $29)
# i = i + 1
lw $8 , 0( $29)
ori $9 , $0 , 1
addu $8 , $8 , $9
sw $8 , 0( $29)

I-8 Spécifications



# Retour au test de boucle
j _L1

_L2:
# print (" sum :")
lui $4 , 0x1001
ori $4 , $4 , 8
ori $2 , $0 , 4
syscall
# print(sum)
lw $4 , 12( $29)
ori $2 , $0 , 1
syscall
# print ("\n");
lui $4 , 0x1001
ori $4 , $4 , 14
ori $2 , $0 , 4
syscall
# Desallocation des variables locales en pile
addiu $29 , $29 , 16
# exit
ori $2 , $0 , 10
syscall

Spécifications I–9



3 Lexicographie de MiniC

3.1 Conventions de notations

• Les éléments entre simple quotes (comme ’0’, ’,’) désignent les caractères ou séquences de carac-
tères correspondants ;

• Les mots notés en majuscules (comme LETTRE, CHIFFRE) désignent des langages.
• Les opérateurs sur les langages utilisés sont les notations habituelles d’expressions régulières.
• On appelle caractère de formatage :

• la tabulation horizontale
• la fin de ligne

• On appelle caractère imprimable tout caractère dont le code ASCII est dans l’intervalle [0x20-0x7E].
N.B. Les code des caractères ’ ’ (espace), ’"’ et ’\’ sont respectivement 0x20, 0x22 et 0x5c. La
tabulation horizontale et la fin de ligne ne sont pas des caractères imprimables.

Remarque : la spécification donnée ici utilise des notations usuelles. Il ne faut pas la recopier telle quelle
mais l’adapter à la syntaxe de lex.

3.2 Unités lexicales

Les unités lexicales de MiniC sont les mots réservés, les symboles spéciaux, ainsi que les langages ENTIER,
IDF, et CHAINE.

3.3 Mots réservés

Les séquences de lettres suivantes sont des mots réservés :

void int bool true false if
else while for do print

3.4 Identificateurs

LETTRE = {’a’, ..., ’z’, ’A’, ..., ’Z’}
CHIFFRE = {’0’, ..., ’9’}
IDF = (LETTRE)(LETTRE | CHIFFRE | ’_’)*

Exception : les mots réservés ne sont pas des identificateurs.

3.5 Symboles spéciaux

Les caractères suivants, ainsi que les associations suivantes de deux caractères ont un sens particulier en
MiniC :

’+’ ’-’ ’*’ ’/’ ’%’ ’>’ ’<’ ’!’ ’~’ ’&’
’|’ ’^’ ’=’ ’;’ ’,’ ’(’ ’)’ ’{’ ’}’
’>>’ ’>>>’, ’<<’ ’>=’ ’<=’ ’==’ ’!=’ ’&&’ ’||’

3.6 Littéraux entiers

CHIFFRE_NON_NUL = {’1’, ..., ’9’}
ENTIER_DEC = ’0’ | CHIFFRE_NON_NUL CHIFFRE*
LETTRE_HEXA = {’a’, ..., ’f’, ’A’, ..., ’F’}
ENTIER_HEXA = ’0x’ (CHIFFRE | LETTRE_HEXA)+
ENTIER = ENTIER_DEC | ENTIER_HEXA

I-10 Spécifications



3.7 Chaines de caractères

CHAINE_CAR est l’ensemble de tous les caractères imprimables, à l’exception des caractères ’"’ et ’\’.

CHAINE = ’"’ (CHAINE_CAR | ’\"’ | ’\n’)* ’"’

3.8 Commentaires

Un commentaire est une suite de caractères imprimables et de tabulations qui commence par ’//’ et s’étend
jusqu’à la fin de la ligne.

3.9 Séparateurs

Les séparateurs de MiniC sont ’ ’ (caractère d’espace) et les caractères de formatage (tabulation horizontale
et fin de ligne).

Spécifications I–11



4 Syntaxe
Ce document présente la syntaxe hors-contexte du langage MiniC. Les lexèmes (ou tokens) sont les éléments
retournés à l’issue de l’analyse lexicale sous la forme d’une suite.

4.1 Définition des lexèmes

%token TOK_VOID TOK_INT TOK_BOOL TOK_TRUE TOK_FALSE TOK_IF TOK_DO TOK_WHILE TOK_FOR
%token TOK_PRINT TOK_SEMICOL TOK_COMMA TOK_LPAR TOK_RPAR TOK_LACC TOK_RACC

Les lexèmes suivants ont une associativité et une priorité donnée. Les opérateurs sont dans l’ordre de
priorité croissante. Le lexème TOK_THEN n’est jamais retourné et est là pour résoudre le problème classique
de positionnement du else dans le cas d’une expression if (a) if (b) c; else d;. De même, le lexème
TOK_UMINUS sert à changer la priorité du TOK_MINUS lorsque le ’-’ rencontré est un moins unaire.

%nonassoc TOK_THEN
%nonassoc TOK_ELSE

/* a = b = c + d <=> b = c + d; a = b; */
%right TOK_AFFECT

%left TOK_OR
%left TOK_AND
%left TOK_BOR
%left TOK_BXOR
%left TOK_BAND
%nonassoc TOK_EQ TOK_NE
%nonassoc TOK_GT TOK_LT TOK_GE TOK_LE
%nonassoc TOK_SRL TOK_SRA TOK_SLL

/* a / b / c = (a / b) / c et a - b - c = (a - b) - c */
%left TOK_PLUS TOK_MINUS
%left TOK_MUL TOK_DIV TOK_MOD

%nonassoc TOK_UMINUS TOK_NOT TOK_BNOT

Pour les lexèmes qui retournent une information en plus, on doit spécifier le type de cette information.

%token <intval> TOK_INTVAL;
%token <strval> TOK_IDENT TOK_STRING;

%type <ptr> program listdecl listdeclnonnull vardecl ident type listtypedecl decl maindecl
%type <ptr> listinst listinstnonnull inst block expr listparamprint paramprint

4.2 Règles syntaxiques de MiniC

Certaines listes utilisent des non-terminaux différents pour le cas vide et non-vide, afin d’éviter des conflits
de type shift-reduce dans yacc.

program : listdeclnonnull maindecl
| maindecl
;

listdecl : listdeclnonnull
|
;

listdeclnonnull : vardecl

I-12 Spécifications



| listdeclnonnull vardecl
;

vardecl : type listtypedecl TOK_SEMICOL
;

type : TOK_INT
| TOK_BOOL
| TOK_VOID
;

listtypedecl : decl
| listtypedecl TOK_COMMA decl
;

decl : ident
| ident TOK_AFFECT expr
;

maindecl : type ident TOK_LPAR TOK_RPAR block
;

listinst : listinstnonnull
|
;

listinstnonnull : inst
| listinstnonnull inst
;

inst : expr TOK_SEMICOL
| TOK_IF TOK_LPAR expr TOK_RPAR inst TOK_ELSE inst
| TOK_IF TOK_LPAR expr TOK_RPAR inst %prec TOK_THEN
| TOK_WHILE TOK_LPAR expr TOK_RPAR inst
| TOK_FOR TOK_LPAR expr TOK_SEMICOL expr TOK_SEMICOL expr TOK_RPAR inst
| TOK_DO inst TOK_WHILE TOK_LPAR expr TOK_RPAR TOK_SEMICOL
| block
| TOK_SEMICOL
| TOK_PRINT TOK_LPAR listparamprint TOK_RPAR TOK_SEMICOL
;

block : TOK_LACC listdecl listinst TOK_RACC
;

expr : expr TOK_MUL expr
| expr TOK_DIV expr
| expr TOK_PLUS expr
| expr TOK_MINUS expr
| expr TOK_MOD expr
| expr TOK_LT expr
| expr TOK_GT expr
| TOK_MINUS expr %prec TOK_UMINUS
| expr TOK_GE expr
| expr TOK_LE expr
| expr TOK_EQ expr
| expr TOK_NE expr
| expr TOK_AND expr
| expr TOK_OR expr
| expr TOK_BAND expr

Spécifications I–13



| expr TOK_BOR expr
| expr TOK_BXOR expr
| expr TOK_SRL expr
| expr TOK_SRA expr
| expr TOK_SLL expr
| TOK_NOT expr
| TOK_BNOT expr
| TOK_LPAR expr TOK_RPAR
| ident TOK_AFFECT expr
| TOK_INTVAL
| TOK_TRUE
| TOK_FALSE
| ident
;

listparamprint : listparamprint TOK_COMMA paramprint
| paramprint
;

paramprint : ident
| TOK_STRING
;

ident : TOK_IDENT
;

I-14 Spécifications



5 Grammaire d’arbres

5.1 Généralités

Les arbres construits lors de l’analyse syntaxique sont décrits à l’aide d’une grammaire hors-contexte. Les non
terminaux sont en gras minuscule ; ils définissent des “classes d’arbres”, ensemble des arbres qui en dérivent.
L’axiome est le premier non terminal, ici program. La classe d’arbres program est donc l’ensemble des
arbres des programmes MiniC syntaxiquement corrects.

Les règles de la grammaire sont de la forme :
• G → D1 | D2 | ... | Dn

(n ≥ 1) où G est le non terminal partie gauche (définissant une classe d’arbres), et les Di sont les alternatives
de partie droite. Un Di est :

• soit un non terminal A, auquel cas la classe d’arbres définie par A est incluse dans celle définie par
G ;

• soit de la forme NODE_XXX ou NODE_YYY(F1, F2, ..., Fp), auquel cas NODE_XXX est un noeud sans
enfant (une feuille) de nature XXX, et NODE_YYY est un noeud interne de nature YYY ayant p enfants,
dans l’ordre F1, ..., Fp. Un Fi est un non terminal A, arbre de la classe définie par A.

5.2 Champs des noeuds de l’arbre du programme

Aux noeuds de l’arbre sont associées des informations supplémentaires (des “champs”) : tous les noeuds
de l’arbre possèdent un champ lineno (numéro de ligne du texte correspondant, dans le fichier source, à
initialiser avec yylineno), un champ opr qui est un tableau de pointeurs vers les noeuds enfants, et un
champ nops (nombre d’enfants, i.e. taille du tableau opr). Certains noeuds ont aussi un champ spécifique
initialisé lors de la création du noeud. D’autres champs sont également définis et utilisés lors des étapes de
vérification contextuelle et de génération de code.

Les champs spécifiques aux noeuds de certaines natures sont les suivants :
• champ ident : identifiant, chaine de caractères

• NODE_IDENT : initialisé à la création
• champ type : type de l’expression, type énuméré

• NODE_TYPE : initialisé à la création
• NODE_IDENT (occurrence de déclaration) : mis à jour au cours de la passe 1
• NODE_IDENT (occurrence d’utilisation) : mis à jour au cours de la passe 1, à partir du type

enregistré dans le NODE_IDENT correspondant à la déclaration
• Noeuds correspondant à des expressions : mis à jour au cours de la passe 1

• champ value : entier, valeur du littéral
• NODE_INTVAL, NODE_BOOLVAL : initialisé à la création

• champ str : chaine de caractères, valeur du littéral
• NODE_STRINGVAL : initialisé à la création

• champ global_decl : variable globale, booléen
• NODE_IDENT (occurrence de déclaration) : mis à jour au cours de la passe 1

• champ decl_node : pointeur vers un NODE_IDENT, correspondant à la déclaration de la variable
• NODE_IDENT (occurrence d’utilisation) : mis à jour au cours de la passe 1

• champ offset : entier, position de la variable en mémoire (en section .data ou en pile) pour les
NODE_IDENT et les NODE_STRINGVAL ; taille en pile correspondant à toutes les variables locales pour
les NODE_FUNC

• NODE_IDENT (occurrence de déclaration) : mis à jour au cours de la passe 1
• NODE_STRINGVAL : mis à jour au cours de la passe 1
• NODE_FUNC : mis à jour au cours de la passe 1, après l’analyse de la fonction

Remarque : dans l’implémentation, il n’y a qu’une sorte de noeud, qui possède donc tous les attributs.
La nature d’un noeud est définie par son champ nature. Il s’agira de n’utiliser que les attributs pertinents
d’un noeud en fonction de sa nature.

Spécifications I–15



5.3 Règles de la grammaire d’arbres

program → NODE_PROGRAM(vardecls, main) (0.1)

vardecls → decls_list (0.2)
→ NULL (0.3)

decls_list → NODE_LIST(decls_list, decls) (0.4)
→ decls (0.5)

decls → NODE_DECLS(type, decl_list) (0.6)

decl_list → NODE_LIST(decl_list, decl) (0.7)
→ decl (0.8)

decl → NODE_DECL(ident, expinit) (0.9)
main → NODE_FUNC(type, ident, block) (0.10)

type → NODE_TYPE (0.11)

ident → NODE_IDENT (0.12)

block → NODE_BLOCK(vardecls, insts) (0.13)

insts → inst_list (0.14)
→ NULL (0.15)

inst_list → NODE_LIST(inst_list, inst) (0.16)
→ inst (0.17)

inst → block (0.18)
→ exp (0.19)
→ NODE_IF(exp, inst) (0.20)
→ NODE_IF(exp, inst, inst) (0.21)
→ NODE_WHILE(exp, inst) (0.22)
→ NODE_DOWHILE(inst, exp) (0.23)
→ NODE_FOR(exp, exp, exp, inst) (0.24)
→ NODE_PRINT(printparams_list) (0.25)
→ NULL (0.26)

printparam_list
→ NODE_LIST(printparam_list, printparam)

(0.27)

I-16 Spécifications



→ printparam (0.28)

printparam → ident (0.29)
→ NODE_STRINGVAL (0.30)

expinit → exp (0.31)
→ NULL (0.32)

exp → NODE_PLUS(exp, exp) (0.33)
→ NODE_MINUS(exp, exp) (0.34)
→ NODE_MUL(exp, exp) (0.35)
→ NODE_DIV(exp, exp) (0.36)
→ NODE_MOD(exp, exp) (0.37)
→ NODE_UMINUS(exp) (0.38)
→ NODE_LT(exp, exp) (0.39)
→ NODE_GT(exp, exp) (0.40)
→ NODE_LE(exp, exp) (0.41)
→ NODE_GE(exp, exp) (0.42)
→ NODE_EQ(exp, exp) (0.43)
→ NODE_NE(exp, exp) (0.44)
→ NODE_AND(exp, exp) (0.45)
→ NODE_OR(exp, exp) (0.46)
→ NODE_BAND(exp, exp) (0.47)
→ NODE_BOR(exp, exp) (0.48)
→ NODE_BXOR(exp, exp) (0.49)
→ NODE_SLL(exp, exp) (0.50)
→ NODE_SRL(exp, exp) (0.51)
→ NODE_SRA(exp, exp) (0.52)
→ NODE_NOT(exp) (0.53)
→ NODE_BNOT(exp) (0.54)
→ NODE_AFFECT(ident, exp) (0.55)
→ NODE_INTVAL (0.56)
→ NODE_BOOLVAL (0.57)
→ ident (0.58)

Spécifications I–17



6 Sémantique de MiniC

6.1 Introduction

La sémantique de MiniC n’est pas formellement définie : on se référera à la sémantique des langages de
programmation usuels, en particulier du C, pour les constructions non évoquées dans les paragraphes qui
suivent.

Un programme sémantiquement correct (ou simplement correct) est un programme qui respecte les règles de
la grammaire attribuée, c’est-à-dire pour lequel la passe de vérification se déroule sans erreur. Un programme
non correct est dit incorrect.

Un programme correct est dit erroné si une erreur peut survenir lors de son exécution, par exemple en cas
de division par 0 ou d’accès à une variable non initialisée. Le compilateur est tenu, en l’absence d’options
spécifiques, de produire du code assembleur d’un programme correct erroné, même s’il arrive à déterminer
qu’une erreur va arriver à l’exécution.

6.2 Initialisation des variables

Une variable globale non initialisée doit être initialisée à la valeur 0 pour un entier, et false pour un
booléen.

Une variable locale non initialisée ne doit pas être initialisée. Avant qu’elle soit affectée, sa valeur est
indéterminée.

Les initialisations doivent avoir lieu dans l’ordre de déclaration des variables.

6.3 Terminaison d’un programme

Pour des raisons de limitation du simulateur, tous les programmes doivent se terminer par l’appel système
exit() (appel système numéro 10 en mips). Cet appel système doit être effectué au niveau de l’accolade
fermante de la fonction main(), après l’épilogue. La fonction main() doit toujours retourner le type void.

6.4 Ordre d’évaluation

Les opérandes des opérations arithmétiques binaires, de comparaison et d’affectation sont évalués de gauche
à droite.

Attention : cela est différent du C : il n’y a pas de point de séquence, ni de comportement indéfini, puisque
l’ordre d’évaluation est parfaitement défini. La sémantique des expressions est donc la même que celle des
expressions en Java (hormis point suivant).

Les expressions booléennes sont évaluées non-paresseusement de gauche à droite. Cela signifie que lorsqu’on
évalue C1 && C2, on évalue C1, puis C2 même si C1 est fausse. De même, lorsque l’on évalue C1 || C2, on
évalue d’abord C1, puis C2 même si C1 est vraie.

6.5 Taille des entiers et débordements lors de l’évaluation des expressions

Les entiers réprésentables du langage sont ceux codables sur 32 bits. Lors de l’analyse lexicale, seuls des
entiers positifs peuvent être retournés. De ce fait, l’intervalle des entiers pouvant être reconnus sans erreurs
lors de cette analyse est l’intervalle [0 ; 232 - 1 = 4294967295]. En principe, l’analyse lexicale ne permet pas
de discriminer entre un entier représentable et un entier non représentable. Cependant, comme la conversion
des caractères en entier est faite lors de cette analyse, l’erreur correspondante – sémantique – sera malgré
tout levée durant cette phase.

I-18 Spécifications



Remarque : chaque mot ayant le bit de poids fort à 1 représente deux nombres ; par exemple, le mot
0x80000000 représente les nombres -231 et 231, et le mot 0xFFFFFFFF les valeurs -1 et 231 - 1. De plus,
comme toutes les comparaisons sont signées, on a par exemple que -2 > 3000000000.

Une division entière par 0 ou un calcul modulo 0 doit provoquer une erreur. L’instruction mips div ne
générant pas d’exception, celle-ci doit être testée logiciellement (“à la main”) à l’aide de l’instruction teq
(trap if equal).

Il n’y a pas de débordement pour les opérations d’addition, de soustraction et de décalage sur les entiers :
les calculs sont fait modulo 232 ; les décalages à droite sont arithmétiques avec l’opérateur >> (la valeur
des bits injectés est la valeur du bit de poids fort avant injection – instruction mips sra) et logiques avec
l’opérateur >>> (la valeur des bits injectés est 0 – instruction mips srl).

6.6 Procédures d’affichage

Un appel à print(e); écrit sur la sortie standard :
• la valeur de la variable e si e est une variable ; pour les variables booléennes, la valeur affichée doit

être 0 pour false et 1 pour true
• la chaine de caractères e s’il s’agit d’une chaine de caractères littérale

print(e1, e2, ..., en); est équivalent à print(e1); print(e2); ... ; print(en);.

6.7 Catégories des erreurs à l’exécution

A priori, les seules erreurs qui peuvent survenir à l’exécution (c’est-à-dire lors de la simulation du programme
assembleur) sont les suivantes :

• Programmes corrects erronés dont le code est généré :
• Divison par 0 ou calcul modulo 0 : exception logicielle avec test dynamique (utiliser l’instruction

mips teq)
• Accès à des variables locales non initialisées : comportement indéfini

• Programmes corrects non erronés mais pour lesquels le code généré comporte une erreur (erreur
dans le code généré par le compilateur) :

• Lecture ou écriture non alignée
• Lecture ou écriture dans un segment non autorisé
• Format de l’instruction incorrect ou instruction inexistante (devrait être limité avec l’utilisation

de la bilbiothèque fournie)
• ...

• Programmes corrects non erronés qui dépassent les capacités de la machine :
• Débordement de pile (se traduit par un accès dans un segment non autorisé)

Spécifications I–19



7 Grammaire attribuée de MiniC

7.1 Introduction

La vérification contextuelle d’un programme MiniC peut être faite en une seule passe. En effet, ce langage
(tout comme le C) ne contient pas, à un endroit donné d’un programme, de référence à un identificateur
qui est défini plus loin dans le programme, ce qui nécéssiterait plusieurs passes. En C, si une fonction f()
appelle une fonction g() définie plus tard, la fonction g() doit être pré-déclarée avant f().

Les vérifications à effectuer lors de la passe de vérification sont spécifiées formellement à l’aide d’une gram-
maire attribuée.

Remarque : certaines règles diffèrent de celles de la grammaire hors-contexte du langage (règles récursives
notamment) car il s’agit uniquement d’une spécification, et non d’une grammaire qui doit être implantée.

7.2 Domaines d’attributs

Dans cette partie sont définis les domaines d’attributs et les opérations sur les attributs.

7.2.1 Définition des domaines
Soit Nom le domaine des identificateurs, et Type le domaine des types du langage MiniC. Les types du
langage MiniC sont void, bool et int.

Type = {void, bool, int}
Dans le langage MiniC, les identificateurs sont tous des identificateurs de variables. Cela est une spécificité
du langage, car dans un langage comme Java, il y a des identificateurs de type (enum), de champ ou attribut
de classe, de paramètre, de variable, de classe et de méthode.
Opérateur est l’ensemble des opérateurs du langage.

Opérateur = {plus, minus, mul, div, mod, eq, ne, lt, gt, le, ge, and, or, bxor, band, bor,
not, bnot, sll, srl, sra}

7.2.2 Opérations sur les domaines d’attributs

Compatibilité pour l’affectation
Contrairement au C, le langage MiniC fait une distinction nette entre le type entier et le type booléen. Ainsi,
il n’est pas possible d’affecter une expression de type booléenne dans une variable de type entier, et une
expression de type entière dans une variable de type booléenne. De même, les conditions doivent retourner
une expression de type booléenne.

Signature des opérateurs
On définit deux opérations : type_op_unaire et type_op_binaire, qui permettent de calculer respectivement
le type du résultat d’un opérateur unaire et d’un opérateur arithmétique binaire.

type_op_unaire : Opérateur × Type → Type

type_op_unaire(minus, int) = int
type_op_unaire(bnot, int) = int
type_op_unaire(not, bool) = bool

type_op_binaire : Opérateur × Type × Type → Type

type_op_binaire(op, int, int) = int,
si op ∈ {plus, minus, mul, div, mod, band, bor, bxor, sll, srl, sra}

I-20 Spécifications



type_op_binaire(op, int, int) = bool,
si op ∈ {eq, ne, lt, gt, le, ge}

type_op_binaire(op, bool, bool) = bool,
si op ∈ {and, or, eq, ne}

7.2.3 Contextes et environnements
Un contexte associe à un identificateur la déclaration de la variable correspondante. Dans le cadre de la
vérification contextuelle, la seule information pertinente associée à une variable est son type, c’est pourquoi
un contexte associe à un nom de variable un type. Au sein d’un contexte, il ne peut donc pas y avoir deux
variables avec le même nom. Un environnement correspond à l’ensemble des variables accessibles depuis un
endroit du programme. Un environnement est créé par un empilement de contextes, noté /, au sein duquel
la définition la plus récente d’une variable masque les définitions plus anciennes. L’empilement est défini
formellement de la façon suivante :

• / : Contexte × Environnement → Environnement
∀x ∈ Nom, (ctx/env)(x) = ctx(x), si x ∈ dom(ctx),

= env(x), si x /∈ dom(ctx) et x ∈ dom(env).

L’environnement constitué d’un seul contexte ctx est noté Env(ctx).

7.3 Conventions d’écriture

On utilise les notations suivantes :
• les parties hors-contexte des règles sont en gras ;
• les terminaux de la grammaire, autres que les symboles spéciaux, sont soulignés ;
• les attributs synthétisés sont préfixés par ↑ ;
• les attributs hérités sont préfixés par ↓.

7.3.1 Affectation des attributs
Pour toute règle, les attributs synthétisés du non terminal en partie gauche et les attributs hérités des
non terminaux en partie droite doivent être affectés. Ces affectations peuvent être effectuées de deux ma-
nières différentes : 1. explicitement en utilisant une clause affectation ; 2. implicitement par une expression
fonctionnelle.

• Affectation explicite de la forme affectation v := exp. Par exemple, la règle (1.61)
ident ↓env ↑type → idf ↑nom

affectation type := env(nom)

signifie qu’à l’attribut synthétisé ↑type du non terminal ident est affecté la valeur env(nom).
• Affectation implicite par une expression fonctionnelle. Par exemple, dans la règle (1.5) :

main_declaration ↓env
→ type ↑type idf ↑nom ’(’ ’)’ bloc ↓env

L’attribut hérité du non terminal bloc est directement affecté avec la valeur de l’attribut hérité du
non terminal main_declaration : env.

7.3.2 Conditions sur les attributs
Les valeurs d’attributs, pour une règle de grammaire, peuvent être contraintes. Ces contraintes peuvent être
exprimées de 2 manières différentes : 1. explicitement par une condition logique sur les valeurs d’attributs ;
2. implicitement en contraignant par filtrage les valeurs possibles d’attributs.

• Utilisation d’une clause condition P , où P est une condition logique. Si P est faux, la clause n’est
pas respectée. Par exemple, dans la règle (1.5)

Spécifications I–21



main_declaration ↓env
→ type ↑type idf ↑nom ’(’ ’)’ bloc ↓env

condition nom = “main”
condition type = void

les deux conditions imposent que le nom de l’identifiant de l’unique fonction soit main, et que le
type de retour de l’unique fonction soit void.

• Par filtrage : on impose une forme particulière pour un attribut hérité dans une partie gauche de
règle, ou pour un attribut synthétisé pour une partie droite de règle. Par exemple, la règle (1.20)

inst ↓env → while ’(’ exp ↓env ↑bool ’)’ bloc ↓env
impose que la valeur de l’attribut synthétisé de exp soit le type boolean.

7.3.3 Abréviation pour les valeurs de domaines
Dans certaines règles, certaines valeurs de domaines ne sont pas contraintes et n’ont pas d’utilité pour la
règle (elles ne servent ni au calcul de valeur d’attribut hérité en partie droite ou synthétisé en partie gauche,
ni dans l’expression d’une affectation ou d’une contrainte portant sur une autre valeur). Dans ce cas, on
remplace ce nom par un “tiret bas” ’__’, de façon à bien mettre en évidence que la valeur correspondante
n’est pas utilisée ni contrainte.
Par exemple, la règle (1.29) pourrait s’écrire :

param_print ↓env
→ ident ↓env ↑type

en introduisant un nom inutile (type).

7.4 Grammaire attribuée spécifiant la passe de vérification

7.4.1 Type
Le type void n’est utilisé que pour le type de retour de la fonction main().
type ↑int → int (1.1)
type ↑bool → bool (1.2)
type ↑void → void (1.3)

7.4.2 Programme
programme → liste_decl_vars ↓__ ↓{} ↓true ↑ctx

main_declaration ↓Env(ctx)
(1.4)

Le premier attribut hérité de liste_decl_vars, l’environnement des variables pour l’analyse des expressions,
n’est pas affecté car les variables globales ne peuvent pas être initialisées à partir d’expressions. Il y a
seulement besoin d’initialiser un contexte global vide.

main_declaration ↓env
→ type ↑type idf ↑nom ’(’ ’)’ bloc ↓env

condition nom = “main”
condition type = void

(1.5)

7.4.3 Déclaration de variables
Les variables globales ne peuvent être initialisées qu’avec des constantes littérales, tandis que les variables
locales aux blocs peuvent être initialisées avec des expressions. L’attribut global dans les différentes règles
se réfère au fait qu’il s’agisse d’une déclaration de variable globale. Cet attribut est passé avec la valeur
true pour les déclarations de variables globales (règle (1.4)), et à false pour les variables locales aux blocs
(règle (1.14)). L’attribut env passé dans les différentes règles correspond à l’empilement des contextes à
l’entrée du contexte courant. Il est vide pour la déclaration des variables globales. L’attribut ctx correspond
quant à lui au contexte courant, créé à l’entrée du bloc.

I-22 Spécifications



liste_decl_vars ↓env ↓ctx0 ↓global ↑ctx
→ liste_decl_vars ↓env ↓ctx0 ↓global ↑ctx1

decl_vars ↓env ↓ctx1 ↓global ↑ctx

(1.6)

liste_decl_vars ↓env ↓ctx ↓global ↑ctx
→ ε

(1.7)

decl_vars ↓env ↓ctx0 ↓global ↑ctx
→ type ↑type

liste_decl_type ↓env ↓ctx0 ↓type ↓global ↑ctx ’;’
condition type ̸= void

(1.8)

liste_decl_type ↓env ↓ctx0 ↓type ↓global ↑ctx
→ liste_decl_type ↓env ↓ctx0 ↓type ↓global ↑ctx1 ’,’

decl_var ↓env ↓ctx1 ↓type ↓global ↑ctx

(1.9)

→ decl_var ↓env ↓ctx0 ↓type ↓global ↑ctx (1.10)

decl_var ↓env ↓ctx0 ↓type ↓global ↑ctx
→ idf ↑nom

condition nom /∈ dom(ctx0)
affectation ctx := ctx0 ∪ {nom 7→ type}

(1.11)

→ idf ↑nom ’=’ litteral ↑type1
condition global = true et nom /∈ dom(ctx0) et type = type1

affectation ctx := ctx0 ∪ {nom 7→ type}

(1.12)

→ idf ↑nom ’=’ exp ↓ctx0 /env ↑type1
condition global = false et nom /∈ dom(ctx0) et type = type1

affectation ctx := ctx0 ∪ {nom 7→ type}

(1.13)

Pour analyser l’expression d’initialisation, l’environnement affecté à l’attribut est l’empilement du contexte
courant avec l’environnement englobant. En effet, l’expression d’initialisation peut référencer des variables
déclarées précédemment dans le même bloc et des variables déclarées dans un bloc englobant.

7.4.4 Bloc
bloc ↓env → ’{’ liste_decl_vars ↓env ↓{} ↓false ↑ctx liste_inst ↓ctx/env ’}’ (1.14)

L’environnement considéré pour analyser les expressions du bloc est l’empilement du contexte du bloc sur
l’environnement englobant.

7.4.5 Instructions
liste_inst ↓env → liste_inst ↓env inst ↓env (1.15)

→ ε (1.16)

Toutes les expressions apparaissant dans des conditions doivent avoir le type bool.
inst ↓env → exp ↓env ↑__ ’;’ (1.17)

→ if ’(’ exp ↓env ↑bool ’)’ inst ↓env (1.18)
→ if ’(’ exp ↓env ↑bool ’)’ inst ↓env else inst ↓env (1.19)
→ while ’(’ exp ↓env ↑bool ’)’ inst ↓env (1.20)

→ for ’(’ exp ↓env ↑__ ’;’ exp ↓env ↑bool ’;’ exp ↓env ↑__ ’)’
inst ↓env

(1.21)

→ do inst ↓env while ’(’ exp ↓env ↑bool ’)’ ’;’ (1.22)

Spécifications I–23



→ bloc ↓env (1.23)
→ print ’(’ liste_param_print ↓env ’)’ (1.24)
→ ’;’ (1.25)

liste_param_print ↓env
→ liste_param_print ↓env ’,’ param_print ↓env

(1.26)

→ param_print ↓env (1.27)

param_print ↓env
→ chaine

(1.28)

→ ident ↓env ↑__ (1.29)

7.4.6 Expressions
exp ↓env ↑type → exp ↓env ↑type0 op_bin ↑op exp ↓env ↑type1

affectation type := type_op_binaire(op, type0, type1)
(1.30)

→ op_un ↑op exp ↓env ↑type
affectation type := type_op_unaire(op, type)

(1.31)

→ ident ↓env ↑type0 ’=’ exp ↓env ↑type1
condition type0 = type1

affectation type := type0

(1.32)

→ ident ↓env ↑type0
affectation type := type0

(1.33)

→ ’(’ exp ↓env ↑type0 ’)’
affectation type := type0

(1.34)

→ litteral ↑type0
affectation type := type0

(1.35)

op_bin ↑plus → ’+’ (1.36)
op_bin ↑minus → ’-’ (1.37)
op_bin ↑mul → ’*’ (1.38)
op_bin ↑div → ’/’ (1.39)
op_bin ↑mod → ’%’ (1.40)
op_bin ↑sll → ’<<’ (1.41)
op_bin ↑srl → ’>>>’ (1.42)
op_bin ↑sra → ’>>’ (1.43)
op_bin ↑gt → ’>’ (1.44)
op_bin ↑lt → ’<’ (1.45)
op_bin ↑ge → ’>=’ (1.46)
op_bin ↑le → ’<=’ (1.47)
op_bin ↑band → ’&’ (1.48)
op_bin ↑bor → ’|’ (1.49)
op_bin ↑bxor → ’ˆ’ (1.50)
op_bin ↑eq → ’==’ (1.51)
op_bin ↑ne → ’!=’ (1.52)

I-24 Spécifications



op_bin ↑and → ’&&’ (1.53)

op_bin ↑or → ’||’ (1.54)

op_un ↑uminus → ’-’ (1.55)

op_un ↑bnot → ’˜’ (1.56)

op_un ↑not → ’!’ (1.57)

litteral ↑int → entier (1.58)

litteral ↑bool → true (1.59)

litteral ↑bool → false (1.60)

7.4.7 Identificateur
ident ↓env ↑type → idf ↑nom

condition nom ∈ dom(env)
affectation type := env(nom)

(1.61)

On doit trouver une définition associée au nom nom dans l’environnement env.

7.5 Profils d’attributs des symboles non terminaux et terminaux

7.5.1 Type
type ↑Type

7.5.2 Programme
liste_decl_vars ↓Environnement ↓Contexte ↓Bool ↑Contexte
main_declaration ↓Environnement

7.5.3 Déclaration de variables
liste_decl_vars ↓Environnement ↓Contexte ↓Bool ↑Contexte
decl_vars ↓Environnement ↓Contexte ↓Bool ↑Contexte
liste_decl_type ↓Environnement ↓Contexte ↓Type ↓Bool ↑Contexte
decl_var ↓Environnement ↓Contexte ↓Type ↓Bool ↑Contexte

7.5.4 Instructions
bloc ↓Environnement

7.5.5 Instructions
liste_inst ↓Environnement
inst ↓Environnement
liste_param_print ↓Environnement
param_print ↓Environnement

7.5.6 Expressions
exp ↓Environnement ↑Type
op_bin ↑Opérateur
op_un ↑Opérateur
litteral ↑Type

Spécifications I–25



7.5.7 Identificateur
ident ↓Environnement ↑Type
idf ↑Nom

7.6 Implémentation de l’environnement

Dans cette partie, on montre sur un exemple comment les environnements peuvent être implémentés.

Un environnement est une liste chaînée de contextes, qui sont des tables d’associations identificateur 7→
définition. La définition correspond au noeud de nature NODE_IDENT associé à la déclaration dans l’arbre du
programme. Considérons le programme MiniC suivant :

1 int a = 0;
2 int b = 0;
3
4 void main () {
5 int a = 1;
6 int c = 2;
7
8 if (true) {
9 int a = 5;

10 int d = 6;
11 a = a + b + c + d;
12 }
13 else {
14 int d;
15 int e;
16 e = d = 1;
17 }
18 }

La figure 4 montre l’environnement d’analyse de différentes parties du programme.
(a) Le contexte global C0 est empilé dans l’environnement. Les variables a et b y sont ajoutées lorsque l’on
rencontre leur déclaration durant le parcours de l’arbre du programme : les définitions associées aux noms
enregistrées dans le contexte sont les noeuds de l’arbre de nature IDENT correspondant à la déclaration de
ces variables.

(b) Au début de l’analyse du main() le contexte C1 est empilé dans l’environnement au dessus de C0. Les
définitions des variables locales a et c y sont ajoutées. On remarque que la définition de la variable locale a
masque la définition de la variable globale a.

(c) Au début de l’analyse du bloc then, le contexte C2 est empilé dans l’environnement au dessus de C1.
Les définitions des variables locales a et d y sont ajoutées. Lors de l’analyse de l’expression a = a + b +
c + d;, on commence par chercher dans l’environnement la définition de l’occurrence de a à droite du =.
Une définition pour a est trouvée dans l’environnement C2, et permet de générer l’instruction de lecture de
a à partir de l’offset enregistré dans le noeud. On cherche ensuite la définition de b dans l’environnement.
Puisqu’une aucune définition de b n’est trouvée dans C2, on en recherche une dans C1. Puisqu’aucune
définition de b n’est trouvée dans C1, on la recherche dans C0, où elle est trouvée. De même, les variables c
et d sont trouvées respectivement dans C1 et C2, puis la définition de l’occurrence de a à gauche du = est
trouvée dans C2. À la fin du bloc, le contexte C2 est dépilé de l’environnement.

(d) Au début de l’analyse du bloc else, le contexte C3 est empilé dans l’environnement au dessus de C1.
Les définitions des variables locales d et e y sont ajoutées. Lors de l’analyse de l’expression e = d = 1; les
définitions de d et e sont trouvées dans C3.

I-26 Spécifications



int a = 0;
int b = 0;

void main() {
   int a = 1;
   int c = 2;

   if (true) {
      int a = 5;
      int d = 6;
      a = a + b + c + d;
   }
   else {
      int d;
      int e;
      e = d = 1;
   }
}

int a = 0;
int b = 0;

void main() {
   int a = 1;
   int c = 2;

   if (true) {
      int a = 5;
      int d = 6;
      a = a + b + c + d;
   }
   else {
      int d;
      int e;
      e = d = 1;
   }
}

int a = 0;
int b = 0;

void main() {
   int a = 1;
   int c = 2;

   if (true) {
      int a = 5;
      int d = 6;
      a = a + b + c + d;
   }
   else {
      int d;
      int e;
      e = d = 1;
   }
}

int a = 0;
int b = 0;

void main() {
   int a = 1;
   int c = 2;

   if (true) {
      int a = 5;
      int d = 6;
      a = a + b + c + d;
   }
   else {
      int d;
      int e;
      e = d = 1;
   }
}

a

b

Noeuds IDENT de l'arbre
liés à des déclarations

C0

IDENT
'a' 

IDENT
'b' 

a

b

Noeuds IDENT de l'arbre
liés à des déclarations

C0

IDENT
'a' 

IDENT
'b' 

a

c

C1

IDENT
'a' 

IDENT
'c' 

a

b

Noeuds IDENT de l'arbre
liés à des déclarations

C0

IDENT
'a' 

IDENT
'b' 

a

c

C1

IDENT
'a' 

IDENT
'c' 

a

d

C2

IDENT
'a' 

IDENT
'd' 

a

b

Noeuds IDENT de l'arbre
liés à des déclarations

C0

IDENT
'a' 

IDENT
'b' 

a

c

C1

IDENT
'a' 

IDENT
'c' 

d

e

C3

IDENT
'd' 

IDENT
'e' 

Env

Env

Env

Env

(a) (b)

(c)

(d)

Figure 4 – Environnement d’analyse des différents blocs du programme

8 MiniCC : Spécification du compilateur

8.1 Ligne de commande

Le programme principal, minicc, est un compilateur MiniC complet. Cette section décrit les arguments de
la ligne de commande qui doivent être supportés par minicc. Les arguments de la ligne de commande feront
l’objet de tests spécifiques pour l’évaluation.

On permettra de désigner le fichier d’entrée par des chemins de la forme <répertoires/nom.c>. Le nom
du fichier à compiler doit être compris comme le premier argument de la ligne de commande qui ne soit ni
une option, ni une valeur d’option. Cet argument ne doit être défini qu’une seule fois. Sauf erreur dans le
programme d’entrée, le résultat doit être par défaut dans un fichier <out.s> situé dans le répertoire courant
(et non pas dans le répertoire du fichier source).

La commande minicc, sans argument, affichera les options disponibles. On définira les options suivantes à
la commande minicc 1.

• -b : Affiche une bannière indiquant le nom du compilateur et des membres du binôme
• -o <filename> : Définit le nom du fichier assembleur produit (défaut : out.s).

1. Pour l’implémentation des options, il est conseillé de ne pas utiliser la fonction getopt(), qui n’est pas très
adaptée à cette spécification

Spécifications I–27



• -t <int> : Définit le niveau de trace à utiliser entre 0 et 5 (0 = pas de trace ; 5 = toutes les traces.
defaut = 0).

• -r <int> : Définit le nombre maximum de registres à utiliser, entre 4 et 8 (défaut : 8).
• -s : Arrêter la compilation après l’analyse syntaxique (défaut = non).
• -v : Arrêter la compilation après la passe de vérifications (défaut = non).
• -h : Afficher la liste des options (fonction d’usage) et arrêter le parsing des arguments.

Remarque : les options ’-s’ et ’-v’ sont incompatibles.

En l’absence des options ’-b’, ’-h’, et ’-t <n>’ avec n ̸= 0, une exécution de minicc ne doit produire
aucun affichage si la compilation réussit. Il est impératif de respecter les conventions sur les arguments de
la ligne de commande, car les compilateurs rendus seront testés automatiquement à l’aide de scripts à la fin
du projet.

L’option -b ne peut être utilisée que sans autre option, et sans fichier source. Dans ce cas, minicc termine
après avoir affiché la bannière.

En cas d’erreur dans la ligne de commande, le programme devra retourner un code d’erreur (valeur de
retour ou du paramètre de exit() différente de 0), sauf si l’option -h est rencontrée avant que l’erreur ne
soit détectée. Si la ligne de commande est correcte, la valeur de retour de minicc devra être 0. En bash, la
valeur de retour du dernier programme lancé est stockée dans la variable $?.

Exemples de lignes de commandes correctes :

• ./minicc -h
• ./minicc -b
• ./minicc fichier.c
• ./minicc fichier.c -o fichier.s
• ./minicc -o fichier.s fichier.c
• ./minicc -o fichier.s -t 0 fichier.c -r 6
• ./minicc -o fichier.s -v test.c
• ./minicc -s test.c

Exemples de lignes de commandes incorrectes :

• ./minicc -b fichier.c
• ./minicc fichier_1.c fichier_2.c
• ./minicc -s -v fichier.c
• ./minicc -t -r 4 fichier.c
• ./minicc fichier_1.c -o fichier.s fichier_2.c
• ./minicc -r 2 fichier.c
• ./minicc -t 6 fichier.c
• ./minicc -t 0 -r 8 -o fichier.s

8.2 Formattage des messages d’erreur

Les messages d’erreur (lexicales, syntaxiques, contextuelles, et éventuelles limitations du compilateur) doivent
être formatées de la manière suivante (cette règle est également indispensable pour l’évaluation automatique
de votre compilateur par les enseignants) :

Error line <numéro de ligne>: <description informelle du problème>

Comme par exemple :

Error line 12: variable "foobar" undeclared (rule 1.4)

ou bien :

I-28 Spécifications



Error line 3: Syntax error

Il est indispensable d’afficher un numéro de ligne correct et selon ce format car les scripts d’évaluation
vérifieront ce numéro.

Spécifications I–29



II. Ressources et environnement de développement





I Philosophie générale et vue globale du travail à réaliser

L’objectif de ce projet est de toucher à tous les aspects d’un compilateur. En ce sens, il vous
est demandé de réaliser la quasi-totalité du code. Néanmoins, suite à des retours faisant état d’une
longueur trop importante pour ce projet, un certain nombre de tâches sont annexes. Pour ces
tâches, une interface ainsi qu’une version compilée de son implémentation vous seront fournies et
pourront être utilisées sans pénalité. Néanmoins, toute tâche annexe correctement réalisée sera
prise en compte au niveau de la notation. Dans ce dernier cas, notez que les interfaces fournies ne
sont qu’une façon possible de faire et que vous n’êtes obligés de conserver le même découpage en
fonctions. Enfin, les binaires fournis seront compilés pour Linux.

Le travail à réaliser peut se décomposer grossièrement selon les tâches/modules suivants :
• Compléter l’écriture du fichier lexico.l décrivant la lexicographie du langage
• Compléter l’écriture du fichier grammar.y réalisant l’analyse syntaxique du langage et la

construction de l’arbre du programme
• Module implémentant l’analyse des arguments de la ligne de commande
• Module implémentant un contexte, c’est-à-dire l’association entre un nom de symbole et un

noeud de l’arbre (annexe)
• Module implémentant un environnement, réalisant l’empilement et le dépilement des contextes

en fonction des blocs du programme (annexe)
• Module implémentant un allocateur de registres, définissant les registres source et destina-

tion à utiliser pour une instruction (annexe)
• Première passe réalisant les vérifications contextuelles
• Deuxième passe réalisant la génération du code assembleur

Note : il n’est normalement pas nécessaire de faire plus de 2 passes sur le programme (c’est-à-
dire 2 parcours de l’arbre). Si vous souhaitez en faire plus, il conviendra alors de justifier chaque
passe.

La librairie fournie, nommée miniccutils (fichiers libminiccutils.a et miniccutils.h)
regroupe toutes les fonctions pour les modules de contexte, d’environnement, et d’allocation de
registre. Elle contient également les fonctions relatives à la création des instruction mips et du
programme assembleur, qui ne sont pas à refaire. Enfin, pour vous aider, elle contient une fonction
permettant de vérifier qu’un arbre de programme construit au cours de l’analyse syntaxique est
valide.

II Ressources et code fourni

1 Fichier defs.h

Le fichier defs.h contient la définition du type node_t, ainsi que les enums node_nature et
node_type. Le type node_t est expliqué dans le document de spécifications, dans la partie décrivant
la grammaire d’arbre.

Les enums node_nature et node_type définissent respectivement les différentes nature possibles
pour un noeud, et le type des expressions possibles pour un programme.

2 Fichiers arch.h et arch.c

Les fichiers arch.[ch] contiennent des fonctions implémentant des constantes de l’architecture
Mips concernant certains registres ou adresses. Les registres disponibles dans l’architecture sont
considérés être les registres $8 à $15, de manière à ne pas avoir à gérer la sauvegarde et la restaura-
tion des registres persistants. Cela laisse donc 8 registres au maximum (num_arch_registers). La
fonction get_num_registers() retourne le nombre de registres disponibles pour le code à générer,

Ressources et environnement de développement II–3



qui peut être différent si l’option -r a été utilisée sur la ligne de commande (dans ce cas, c’est à
vous d’appeler la fonction set_max_registers() lors de l’analyse des arguments).

3 Bibliothèque de création des programmes mips

Les fonctions de la librairie miniccutils servent à la création des différents type d’instruction
mips, mais aussi des directives utiles pour ce projet. Chaque instruction ou directive créée est
automatiquement ajoutée à la fin du programme courant.

Voici la liste de toutes les fonctions fournies pour la création de directives et d’instructions :
• void create_data_sec_inst();
• void create_text_sec_inst();
• void create_word_inst(char * label, int32_t init_value);
• void create_asciiz_inst(char * label_str, char * str);
• void create_label_inst(int32_t label);
• void create_comment_inst(char * comment);
• void create_lui_inst(int32_t r_dest, int32_t imm);
• void create_addu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_subu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_slt_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_sltu_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_and_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_or_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_xor_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_nor_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_mult_inst(int32_t r_src_1, int32_t r_src_2);
• void create_div_inst(int32_t r_src_1, int32_t r_src_2);
• void create_sllv_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_srlv_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_srav_inst(int32_t r_dest, int32_t r_src_1, int32_t r_src_2);
• void create_addiu_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_andi_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_ori_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_xori_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_slti_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_sltiu_inst(int32_t r_dest, int32_t r_src_1, int32_t imm);
• void create_lw_inst(int32_t r_dest, int32_t imm, int32_t r_src_1);
• void create_sw_inst(int32_t r_src_1, int32_t imm, int32_t r_src_2);
• void create_beq_inst(int32_t r_src_1, int32_t r_src_2, int32_t label);
• void create_bne_inst(int32_t r_src_1, int32_t r_src_2, int32_t label);
• void create_mflo_inst(int32_t r_dest);
• void create_mfhi_inst(int32_t r_dest);
• void create_j_inst(int32_t label);
• void create_teq_inst(int32_t r_src_1, int32_t r_src_2);
• void create_syscall_inst();
• void create_stack_allocation_inst();
• void create_stack_deallocation_inst(int32_t val);

Remarques :
• Pour toutes ces fonctions, les paramètres sont les opérandes de l’instruction dans l’ordre.

Quand l’opérande est un registre, le paramètre est le numéro entier du registre (exemple :
8 pour r8).

• Pour les labels correspondant à un point du programme, un entier identifiant le label de
manière unique doit être passé (c’est à vous de gérer les numéros de ces labels). Un nom

II-4 Ressources et environnement de développement



de label générique est généré à partir du numéro (’_L<num>’), et ne peut pas entrer en
conflit avec des noms de variables ou de fonctions (car celles-ci ne peuvent pas commencer
par ’_’.

• Pour les labels correspondant à des directives de déclaration de variables (.word) et des
chaines de caractères (.asciiz), une valeur non nulle du paramètre label génère le label
correspondant suivi de ’:’ avant la directive. À titre d’exemple :
• l’appel create_word_inst("a", 5); génère le code a: .word 5
• l’appel create_word_inst(null, 5); génère le code .word 5
• l’appel create_asciiz_inst("chaine", "hello"); génère le code chaine: .asciiz

"hello"
• l’appel create_asciiz_inst(null, "hello"); génère le code .asciiz "hello"

Néanmoins, le paramètre de nom (premier paramètre) ne peut être utilisé qu’à des fins
de débug, car la simulation du code sur mars doit être faite avec les macros instructions
désactivées, et il n’est pas possible d’autoriser seulement certaines macros comme la. Il
faut donc stocker l’offset de la variable dans la section (dans le champ offset du noeud de
l’arbre correspondant) afin de pouvoir calculer l’adresse à chaque lecture.

• La fonction void create_stack_allocation_inst() crée une instruction d’allocation en
pile, qui sera mise à jour par la suite : en effet, au début de l’analyse d’une fonction MiniC
lors de la passe 2, on ne sait pas encore de combien de temporaires on aura besoin en pile.
Cette valeur sera connue à la fin de l’analyse de la fonction MiniC, et mise à jour à partir de la
valeur passée en paramètre à la fonction void create_stack_deallocation_inst(int32_t
val), qui doit donc être appelée pour désallouer la place en pile nécessaire.

Il y a enfin les 3 fonctions suivantes :
• void create_program() : à appeler au début pour créer un programmeRemarque : la fonction create_program() ne devrait pas être appelée dans le cadre de ce projet, et il faut lui préférer la fonction create_mips_program(), plus adaptée.

• void dump_mips_program(char * filename) : pour écrire le programme au format texte
dans le fichier filename

• void free_program() : à appeler à la fin de la passe 2 pour libérer les structures allouées
à la créationRemarque : la fonction free_program() ne devrait pas être appelée dans le cadre de ce projet, et il faut lui préférer la fonction free_mips_program()

4 Implémentation du module de Contexte

Le module de contexte définit le type context_t qui fait l’association entre un nom d’identifi-
cateur et la définition de la variable correspondante.

Les fonctions de l’interface fournie sont les suivantes :
• context_t create_context() : alloue un objet de type context_t et le retourne
• bool context_add_element(context_t context, char * idf, void * data) : ajoute

l’association entre le nom idf et le noeud data dans le contexte context. Ce noeud doit
être le NODE_IDENT associé à la déclaration de la variable. Si le nom idf est déjà présent,
l’ajout échoue et la fonction retourne false. Sinon, la fonction retourne true.

• void * get_data(context_t context, char * idf) : retourne le noeud précédemment
associé à idf dans context, ou null si idf n’existe pas dans context.

• void free_context(context_t context) : libère la mémoire allouée pour context.

Remarque : Ce module n’est utilisé que par le module d’environnement. Cette interface n’est
donc utile que dans le cas où vous implémentez votre propre module d’environnement mais pas
votre module de contexte.

Ressources et environnement de développement II–5



5 Implémentation du module d’Environnement

Le module d’environnement réalise la gestion de l’empilement et du dépilement des contextes,
et permet d’associer un nom de variable à sa définition dans le contexte le plus proche (du bloc le
plus interne vers le bloc le plus externe puis variable globale). Pour cela, le module chaine entre
eux des contextes à l’aide de plusieurs variables statiques en interne, et en particulier une variable
statique contenant l’environnement courant.

La difficulté de ce module est de gérer les offsets des différentes variables (globales, chaines de
caractère, locales). En effet, le module gère un offset de contexte, réinitialisé au début de chaque
fonction, qui est incrémenté à chaque déclaration de variable. À la fin de l’analyse d’une fonction,
l’offset courant correspond à la place à allouer en pile pour les variables locales de la fonction. De
plus, si l’environnement global est optionnel, les cas les chaines de caractère doivent dans tous les
cas être placées en section .data après la déclaration de la dernière variable globale. Il faut donc
pouvoir se souvenir de la valeur de l’offset courant à la fin de l’analyse des variables globales.

Dans l’absolu, il est possible d’utiliser le même emplacement en pile pour les variables locales
de deux blocs consécutifs (non imbriqués). Néanmoins, il est conseillé d’utiliser des emplacements
distincts pour toutes les variables locales de la fonction. C’est l’approche adoptée par l’implémen-
tation fournie ; c’est aussi l’approche utilisée par gcc.

Pour des raisons de simplicité, on pourra considérer que toutes les variables se voient réservés
4 octets en mémoire quelque soit leur type et l’endroit de leur allocation (pile ou section .data).
Les chaines de caractères doivent faire l’objet d’un traitement particulier.

L’interface fournie est décrite ci-après. Les fonctions push_global_context(), push_context(),
pop_context(), get_decl_node(), env_add_element(), reset_env_current_offset(),
get_env_current_offset() et add_string() sont à appeler lors de la passe 1, tandis que les fonc-
tions get_global_strings_number() et get_global_string() sont à appeler lors de la passe 2.
La fonction free_global_strings() est à appeler à la fin de la passe 2.Note importante : il faut également impérativement appeler la fonction cleanup_tree(node_t root) sur la racine de l’arbre à la fin de la passe 1, afin de nettoyer correctement certaines allocations faites dans les noeuds.

• void push_global_context() : est à appeler avant l’analyse de la déclaration des variables
globales. Elle initialise un contexte pour les variables globales et en fait le contexte courant.

• void push_context() : est à appeler avant l’analyse de la déclaration des variables d’un
bloc. Elle initialise un contexte pour les variables locales et en fait le contexte courant.

• void pop_context() : est à appeler à la fin de l’analyse d’un bloc déclarant des variables.
Cette fonction dépile et libère le contexte courant.Remarque : il est fortement conseillé d’utiliser plutôt la fonction alternative pop_global_context(), qui de plus désalloue des structures et évite les fuites mémoire.

• int32_t env_add_element(char * ident, void * node) : ajoute dans le contexte cou-
rant l’association entre le nom ident et le noeud node. Si la valeur retournée est positive ou
nulle, il s’agit de l’offset de la variable dans l’environnement et l’offset courant du contexte
courant est mis à jour ; si la valeur retournée est négative, cela signifie qu’une variable du
même nom existe déjà dans le contexte courant.

• void * get_decl_node(char * ident) : retourne la définition de la variable ident ren-
contrée en premier dans l’empilement des contextes, en commençant par le contexte courant.

• void reset_env_current_offset() : réinitialise l’offset courant du contexte à 0 ; cette
fonction doit être appelée au début de l’analyse d’une fonction dans la passe 1.

• int32_t get_env_current_offset() : retourne l’offset courant du contexte ; cette fonc-
tion est à appeler à la fin de l’analyse d’une fonction lors la passe 1 pour connaitre la place
en pile qu’il est nécessaire d’allouer pour les variables locales de cette fonction. Cette valeur
est à sauvegarder dans le champ offset du noeud de nature NODE_FUNC de la fonction
analysée.

• int32_t add_string(char * str) : ajoute la déclaration en section .data d’une chaine
de caractères littérale et retourne l’offset correspondant

• int32_t get_global_strings_number() : retourne le nombre de chaines de caractères
littérales. Cette fonction devrait être utilisée pour la déclaration des chaines littérales en
section .data.

• char * get_global_string(int32_t index) : retourne la chaine de caractères littérale

II-6 Ressources et environnement de développement



d’index index, qui doit être strictement inférieur à la valeur retournée par
get_global_strings_number(). Cette fonction devrait être utilisée pour la déclaration des
chaines littérales en section .data.

• free_global_strings() : libère la mémoire allouée pour les chaines littérales.
La valeur de retour des fonctions env_add_element() et add_string() devrait être stockée

dans le champ offset des noeuds adéquats.

6 Implémentation de l’allocateur de registres

Le but de ce module est de fournir les numéros des registres pour les instructions du programme
assembleur, et de gérer correctement le cas où il n’y a plus de registre disponible. Dans ce dernier
cas, une expression dite temporaire, dans le sens où il ne s’agit pas d’une expression correspondant
à la valeur d’une variable, doit être stockée en pile pour libérer un registre et restaurée plus tard.

Exemple

Par exemple, pour traduire en assembleur l’expression suivante :
a = 1 + (2 + (3 + (4 + 5)))
La sémantique de MiniC oblige l’évaluation dans l’ordre des expressions 1, puis 2, puis 3, puis

4 et enfin 5, mais aussi de respecter l’ordre des opérations spécifié par les parenthèses. L’arbre
obtenu pour cette expression est représenté figure 1.

NODE PLUS

NODE INTVAL
1

NODE AFFECT

NODE IDENT
'a'

NODE PLUS

NODE INTVAL
2

NODE PLUS

NODE INTVAL
3

NODE PLUS

NODE INTVAL
4

NODE INTVAL
5

Figure 1 – Arbre de l’expression a = 1 + (2 + (3 + (4 + 5)))

Un code assembleur correct serait donc (en supposant que a se trouve à l’adresse 4(r29)) :

addiu r8 , r0 , 1
addiu r9 , r0 , 2
addiu r10 , r0 , 3
addiu r11 , r0 , 4
addiu r12 , r0 , 5
addu r11 , r11 , r12
addu r10 , r10 , r11
addu r9 , r9 , r10
addu r8 , r8 , r9
sw r8 , 4( r29)

Cette implémentation utilise 5 registres. Si on suppose que l’on ne dispose maintenant que
de 4 registres pour implémenter cette expression, il faut utiliser la pile pour stocker des résultats
intermédiaires du calcul. Un code assembleur est le suivant :

addiu r8 , r0 , 1
addiu r9 , r0 , 2

Ressources et environnement de développement II–7



addiu r10 , r0 , 3
sw r10 , 8( r29)
addiu r10 , r0 , 4
sw r10 , 12( r29)
addiu r10 , r0 , 5
lw r11 , 12( r29)
addu r10 , r11 , r10
lw r11 , 8( r29)
addu r10 , r11 , r10
addu r9 , r9 , r10
addu r8 , r8 , r9
sw r8 , 4( r29)

On observe ici que l’on a besoin de deux mots en pile pour stocker des valeurs temporaires.
Ces deux mots en pile utilisée doivent être alloués au début de la fonction en même temps que la
place pour les variables locales.

Remarque : Si une passe d’optimisation basée sur la propagation des constantes permettrait de
résoudre ce cas précis (charger directement la valeur 15 dans un registre), le problème se pose
dans tous les cas avec des variables et des expressions plus complètes, en particulier dans le cas
des expressions qui ont des effets de bord. Par ailleurs, il ne vous est pas demandé de réaliser des
passes d’optimisation.

Si maintenant on enlève les parenthèses de l’expression, l’arbre construit est illustré figure 2,
et seuls deux registres suffisent :

NODE PLUS

NODE INTVAL
5

NODE AFFECT

NODE IDENT
'a'

NODE PLUS

NODE INTVAL
4

NODE PLUS

NODE INTVAL
3

NODE PLUS

NODE INTVAL
2

NODE INTVAL
1

Figure 2 – Arbre de l’expression 1 + 2 + 3 + 4 + 5

addiu r8 , r0 , 1
addiu r9 , r0 , 2
addu r8 , r8 , r9
addiu r9 , r0 , 3
addu r8 , r8 , r9
addiu r9 , r0 , 4
addu r8 , r8 , r9
addiu r9 , r0 , 5
addu r8 , r8 , r9
sw r8 , 4( r29)

Remarque : Dans le code précédent, il s’agit de l’implémentation la plus naïve et la plus auto-
matique (celle qui vous est demandée). Il est bien sûr possible d’utiliser un seul registre et moins
d’instructions en utilisant directement des instructions addiu r8, r8, x (pour x de 2 à 5).

II-8 Ressources et environnement de développement



Implémentation fournie

Toutes les fonctions de ce module sont à appeler au cours de la passe 2. Ainsi, au cours de cette
passe, les instructions correspondant à la sauvegarde et à la restauration en pile des expressions
temporaires doivent être générées, via les fonctions push_temporary() et pop_temporary(). De
plus, la taille maximale allouée à un instant donné pour la sauvegarde des temporaires est utilisée
à la fin de l’analyse d’une fonction pour connaitre la quantité de mémoire qu’il faut allouer en pile
au début de la fonction.

• bool reg_available() : teste s’il reste un registre disponible pour stocker un résultat
d’expression. Si la fonction retourne false, cela signifie qu’il faudra stocker un résultat
intermédiaire en pile.

• void push_temporary(int32_t reg) : génère une instruction de sauvegarde du registre
reg en pile (contenant une expression temporaire) et met à jour l’offset de sauvegarde des
temporaires.

• void pop_temporary(int32_t reg) : génère une instruction de restauration du registre
reg à partir de la pile, et met à jour l’offset de sauvegarde des temporaires.

• int32_t get_current_reg() : retourne le numéro du registre courant, c’est-à-dire du der-
nier registre alloué.

• int32_t get_restore_reg() : retourne le numéro du registre réservé pour la restauration
des valeurs en pile. Ce numéro est dépendant du nombre de registres utilisables (option -r).

• void allocate_reg() : alloue un registre pour y stocker le résultat d’une expression ; il
faut pour cela qu’il y ait au moins un registre disponible. L’effet de cette fonction sera
visible lors du prochain appel à get_current_reg(), qui retournera un nouveau numéro.

• void release_reg() : libère le registre courant.
• int32_t get_new_label() : retourne un numéro unique de label
• void set_temporary_start_offset(int32_t offset) : définit l’offset de début pour les

temporaires. Cet offset de début correspond à la place en pile réservée pour les variables
locales. Cette fonction doit être appelée au début de l’analyse d’une fonction, pour que les
offsets générés dans les instruction de sauvegarde et restauration des temporaires soient
corrects.

• void reset_temporary_max_offset() : réinitialise l’offset maximum pour les temporaires.
Cette fonction doit être appelée au début de l’analyse d’une fonction.

• int32_t get_temporary_max_offset() : retourne l’offset maximum atteint pour les tem-
poraires lors de l’analyse de la fonction courante. Cette fonction doit être appelée à la fin
de l’analyse d’une fonction, pour calculer la place requise en pile par cette fonction : il faut
pour cela ajouter à cette valeur la place occupée par les variables locales.

• int32_t get_temporary_curr_offset() : retourne l’offset courant pour les temporaires.
Cette fonction n’est utile qu’à des fins de débug.

Lien entre variables locales et temporaires

Les variables locales, comme les expressions temporaires, utilisent toutes les deux la pile. Ce
sont néanmoins deux choses différentes : les variables locales sont rencontrées au cours de la passe 1,
et à la fin de celle-ci, on est donc en mesure de dire le nombre de variables locales que comporte une
fonction. Comme les offsets des variables locales retournés par l’environnement servent directement
à adresser la pile depuis son sommet (si l’appel env_add_element(...) retourne 4 pour l’ajout
d’une variable locale, alors il faudra accéder à la variable par 4($29)), ces offsets ne peuvent pas
être modifiés. Pour cette raison et pour ne pas introduire davantage de complexité, les temporaires
sont alloués en pile “sous” les variables locales, contrairement à ce qui est normalement fait. À la
fin de la passe 2, quand on connait le nombre de mots à allouer en pile pour les temporaires, on
ajoute cette valeur à la place à allouer en pile pour les variables locales pour obtenir la place totale
en pile à allouer pour la fonction.

Ceci est illustré sur l’exemple suivant, qui reprend l’expression de l’exemple précédent, en

Ressources et environnement de développement II–9



supposant que l’on n’ait que 4 registres disponibles :

1 void main () {
2 int a = 0;
3 {
4 int b = 1;
5 a = 1 + (2 + (3 + (4 + 5)));
6 }
7 }

• Lors de la passe 1, on analyse les déclarations de a et b, et on les ajoute dans l’environ-
nement courant avec la fonction env_add_element(). Ces variables obtiennent respective-
ment les offsets 0 et 4, valeurs qui sont écrites dans le champ offset des noeuds de nature
NODE_IDENT correspondant à la déclaration de ces variables.

• À la fin de l’analyse de la fonction main, toujours dans la passe 1, le champ offset
du noeud de nature NODE_FUNC est mis à jour avec la valeur renvoyée par la fonction
get_env_current_offset(), ici 8 car ces 2 variables occupent 8 octets en pile.

• Au début de la passe 2, il faut informer le module de gestion des registres que les temporaires
doivent commencer à l’offset 8 avec la fonction set_temporary_start_offset(). Cela est
nécessaire car la passe 2 va générer des instructions sw et lw pour les temporaires, sans
écraser les variables locales a et b.

• L’appel à la fonction create_stack_allocation_inst() au début du main crée une ins-
truction addiu $29, $29, 0 dont l’immédiat sera modifié plus tard.

• Lors de la passe 2, lors de l’analyse de l’expression 1 + (2 + (3 + (4 + 5))), 2 mots en
pile pour stocker des expressions temporaires sont requis. Lors du stockage du 2e temporaire,
l’offset courant des temporaires atteint la valeur 8. On ne sait néanmoins toujours pas la
valeur qu’il faudra allouer en pile car une expression qui suit pourrait avoir besoin de plus
de temporaires.

• À la fin de l’analyse du main dans la passe 2, on connait enfin la place à allouer en
pile : il s’agit de la somme entre le champ offset du noeud NODE_FUNC mis à jour à la
fin de la passe 1 et contenant la valeur 8 (pour les variables locales), et la valeur 8 ren-
voyée par la fonction get_temporary_max_offset(). Cette valeur est passée à la fonction
create_stack_deallocation_inst() qui va créer l’instruction addiu pour désallouer cette
place en pile, et mettre à jour le champ immédiat de l’instruction addiu utilisée pour l’al-
location.

La pile peut être représentée comme sur la figure 3.

Non alloué

a (offset 0)

b (offset 4)

Sommet de pile

Adresses décroissantes
(allocation)

inconnu

À la fin de la passe 1

Fond de pile

Non alloué

a (offset 0)

b (offset 4)

Sommet de pile

À la fin de la passe 2

temporaire 0

temporaire 1

adresse 0($29)

adresse 4($29)

adresse 0($29)

adresse 4($29)

adresse 8($29)

adresse 12($29)

Figure 3 – Vue de la pile à la fin des passes 1 et 2

II-10 Ressources et environnement de développement



7 Vérification de l’arbre du programme

La fonction check_program_tree(node_t n) fournie dans la librairie prend en paramètre le
noeud racine de l’arbre d’un programme et vérifie que l’arbre est conforme à la grammaire d’arbre.
Si c’est le cas, cette fonction n’affiche rien et retourne true. Si une erreur est rencontrée, la fonction
affiche un message décrivant le problème et retourne false (remarque : il est possible que cette
fonction ne soit pas exempte de bug, notamment pour les arbres incorrects).

8 Affichage de l’arbre du programme

La fonction dump_tree qui vous est fournie dans le fichier common.c permet de générer un
graphe de l’arbre du programme au format dot. Ce graphe peut être visualisé à l’aide de l’outil
xdot ou graphviz. On peut par exemple faire appel à cette fonction à la fin de la construction
de l’arbre pour vérifier que l’arbre construit respecte bien la grammaire d’arbre, ou à la fin de la
passe 1 pour vérifier que les décorations ajoutées lors de la passe 1 sont correctes.

Sur les distributions récentes de linux, installer cet outil se fait de la manière suivante :

sudo apt install python3-pip # pour installer pip3, le gestionnaire de packages
# de python3

pip3 install xdot # pour installer le module xdot de python3
sudo apt install xdot # pour installer l’utilitaire xdot
xdot apres_syntaxe.dot & # Pour visualiser un arbre

Attention : l’ordre affiché entre les différents fils d’un noeud ne correspond pas forcément à
l’ordre des fils dans le tableau opr.

9 Allocations et désallocations mémoire

Dans ce projet, un certain nombre d’allocations mémoire sont à réaliser. Dans un esprit de
programmation durable, il est attendu (et il sera vérifié) que votre programme ne comporte pas
de fuite mémoire. Vous pouvez bien sûr utiliser valgrind pour traquer de telles fuites, et il est
fortement recommandé de le faire (valgrind est également utile pour le débug, pour voir par
exemple les accès aux variables non initialisées). Pour ne pas avoir de fuites mémoire avec l’uti-
lisation de lex et yacc, il faut appeler la fonction yylex_destroy() à la fin de votre main(), et
compiler le fichier produit par yacc avec l’option -DYY_NO_LEAKS. Une exception à ceci est lorsque
le programme d’entrée comporte une erreur détectée dans la passe 1. Dans ce cas, on ne cherchera
pas à désallouer toutes les structures.

10 Code de référence, simulateur et fichiers fournis

Les différentes ressources numériques se trouvent dans une archive projet_compilation_src.tar
dont l’emplacement vous sera communiqué ultérieurement. Elle contient notamment les fichiers
source fournis, ainsi que les implémentations des différentes fonctions fournies dans la librairie
libminiccutils.a. L’arborescence de l’archive est la suivante :

arch.c
arch.h
common.c
common.h
defs.h
grammar.y
lexico.l

Ressources et environnement de développement II–11



Makefile
minicc_ref
passe_1.c
passe_1.h
passe_2.c
passe_2.h
Tests/

Syntaxe/
KO/
OK/

Verif/
KO/
OK/

Gencode/
KO/
OK/

utils/
libminiccutils.a
miniccutils.h

Remarques
• minicc_ref est un binaire du compilateur de référence
• Le projet est à faire sous linux, car les binaires ne seront pas portés sur windows.
• Il est conseillé d’utiliser le simulateur mars pour simuler le code assembleur produit. L’ar-

chive java de ce simulateur, Mars_4_2.jar est disponible sur mooodle. Elle est utilisable en
ligne de commande ou avec une interface graphique (utile pour débugger les codes assem-
bleur générés). Cette archive est exécutable et se lance de la manière suivante : java -jar
Mars_4_2.jar (il est conseillé de créer un alias).

• Vos noms de fichiers et répertoires, si vous en créez, ne doivent pas comporter d’espace.

III Organisation du travail

1 Gestion du projet

Le travail est à réaliser par binôme, et c’est à vous de vous répartir le travail au sein du binôme.
Néanmoins, à l’issue du projet, les deux membres du binôme devraient avoir une connaissance
précise du projet, y compris sur le code qu’ils n’ont pas écrit.

La partie concernant lex et yacc est à réaliser en priorité, puisqu’elle conditionne tout le reste
du projet. Ensuite, il vous est conseillé de faire marcher au plus vite l’affichage des chaines de
caractère, afin de pouvoir tester vos programmes. À ce sujet, il est généralement observé que les
programmes sont largement sous-testés. L’écriture des tests devrait être faite en parallèle, sinon
avant, l’écriture du programme à tester. Il vous est par ailleurs fortement recommandé d’écrire des
scripts de test qui permettent de lancer tous vos tests en d’en vérifier le résultat (à titre personnel,
je recommande python pour cela, mais d’autres langages sont possibles). Cela permet d’avoir des
tests dits de "non régression", et de s’assurer ainsi qu’un ajout ou une modification dans une passe
ne “casse” pas une fonctionnalité qui marchait.

Concernant les optimisations (par exemple : propagation des constantes, mises de certaines
variables locales en registres, etc.), cet aspect ne sera pas pris en compte pour la notation, aussi il
vous est déconseillé d’essayer d’optimiser le code assembleur produit. Seule la fonctionnalité et le
respect de la spécification seront évalués. Bien sûr, il n’y aura pas de pénalité pour la génération
d’un code optimisé mais le temps devrait plutôt être passé sur les tests.

II-12 Ressources et environnement de développement



Enfin, les types fournis, tels que le type node_t ne doivent pas être modifiés, car la librairie
libminiccutils.a ne serait pllus compatible.

2 Livrables

Il vous est demandé de fournir à la fin du projet votre code, vos tests, vos scripts de tests et
un rapport d’une dizaine de pages au format pdf décrivant tous les éléments qui vous semblent
pertinents, comme par exemple :

• Les choix de conception réalisés
• Les modules et fonctionnalités implémentés et non implémentés, les fonctionnalités qui ne

marchent pas, les bugs connus
• Une description concernant l’utilisation de vos scripts de test
• L’architecture logicielle de votre compilateur ou de vos scripts

L’archive contenant votre code et le rapport devra être de type .tar.gz et ne devra contenir aucun
fichier binaire (autre que le rapport).

Si cela est possible, une soutenance sera organisée à la fin du projet, au cours de laquelle des
questions vous seront posées sur des aspects d’implémentation aussi bien que sur des aspects plus
généraux.

Concernant les tests, ceux-ci comptent pour une part conséquente de la note (20%) et seront
évalués de manière automatique à la fin du projet. Ils peuvent être écrits en parallèle ou même
avant le compilateur, et il est conseillé de les démarrer au plus tôt. La structure donnée pour
l’arborescence des tests devrait être respectée, à savoir :

• Les tests présents dans le dossier Tests/Syntaxe/OK ne doivent pas provoquer d’erreur –
et donc ne rien afficher – quand ils sont compilés avec l’option -s.

• Les tests présents dans le dossier Tests/Syntaxe/KO doivent provoquer une erreur – et donc
afficher un message avec le numéro de ligne correct – quand ils sont compilés avec l’option
-s.

• Les tests présents dans le dossier Tests/Verif/OK ne doivent pas provoquer d’erreur – et
donc ne rien afficher – quand ils sont compilés avec l’option -v.

• Les tests présents dans le dossier Tests/Verif/KO doivent provoquer une erreur – et donc
afficher un message avec le numéro de ligne correct – quand ils sont compilés avec l’option
-v.

• Les tests présents dans le dossier Tests/Gencode/OK ne doivent pas provoquer d’erreur –
et donc ne rien afficher et produire un fichier assembleur – quand ils sont compilés.

• Les tests présents dans le dossier Tests/Gencode/KO ne doivent pas provoquer d’erreur –
et donc ne rien afficher et produire un fichier assembleur – quand ils sont compilés, mais
provoquer une erreur à l’exécution.

Remarques :
• Les tests présents dans les deux sous-dossiers de Syntaxe ne seront appelés qu’avec l’option

-s, et ceux dans les deux sous-dossiers de Verif ne seront appelés qu’avec l’option -v
• Les tests de Gencode devraient effectuer des affichages avec print ; en effet, le code as-

sembleur ne peut pas être testé autrement que par le résultat de son exécution, donc les
résultats des conditions et calculs faits dans le programme de test devraient être affichés
pour permettre de discriminer entre un compilateur buggé et un compilateur sain.

• Certains tests peuvent être réutilisés entre deux parties. Par exemple, tous les tests dans
Verif/OK produisent un fichier assembleur s’ils sont compilés sans -v, et peuvent donc être
copiés dans Gencode, modulo l’ajout d’une trace pertinente (cf. point du dessus).

• Concernant les scripts de tests, ceux-ci ne doivent pas reposer sur l’utilisation de minicc_ref :
par exemple, il ne faut pas faire un diff entre la sortie de votre compilateur et celle de
minicc_ref. En effet, dans un vrai projet, vous n’aurez pas de programme de référence.

Ressources et environnement de développement II–13



Vous pouvez bien sûr vous servir de minicc_ref pour savoir le résultat attendu de la com-
pilation d’un fichier (par exemple, voir qu’il y a une erreur ligne 24), mais pas de manière
automatique dans un script (c’est à vous de stocker quelque part l’information que l’erreur
doit se produire ligne 24).

3 Évaluation

Votre projet sera évalué sur les aspects suivants :
• 40% : Le passage de votre compilateur sur un ensemble de tests de manière automatique.

Le score obtenu constituera la note.
• 20% : Le passage de l’ensemble de vos tests sur des compilateurs buggés (“mutants”) de

manière automatique. Le score obtenu constituera la note.
• 10% : L’automatisation de vos tests.
• 10% : La qualité d’écriture de votre code (indentation, respect d’un style, découpage en

fonctions pertinent, etc.). Cette note sera aussi abaissée si la quantité de code écrite est
faible (par exemple, rendre 50 lignes parfaitement indentées ne permet pas d’avoir 20 à ce
critère).

• 10% : Le rapport décrivant l’architecture logicielle.
• 5% : Fuites mémoire, si nombre d’allocation suffisamment conséquent.
• 5% : Erreurs visibles ou non à l’exécution (typiquement, erreurs détectées par valgrind), si

le code écrit est suffisamment conséquent.
Les coefficients données sont indicatifs et sont susceptibles d’être modifiés. En cas de soute-

nance, ces coefficients seront réajustés. Les notes seront à priori les mêmes pour les deux membres
d’un binôme. Néanmoins, en cas de déséquilibre significatif perçu entre les membres, les notes
seront dissociées.

Remarques :
• Le non respect des consignes (telles que la gestion des arguments de la ligne de commande,

la modification de l’arborescence des tests, ou l’affichage de messages ou traces pour un
test correct) entrainera un malus sur la note. De même, un code qui ne compile pas sera
sanctionné.

• Une grande partie des tests qui seront utilisés pour évaluer votre compilateur comportent
l’affichage de chaines de caractères pour déterminer si le résultat est correct. Il est donc
indispensable que votre compilateur gère correctement l’affichage d’une chaine de caractères
littérale simple.

• Les pseudos-instructions (macros) mips ne sont pas autorisées ; l’évaluation avec Mars uti-
lisera l’option np qui les désactive, et vous êtes encouragés à faire de même.

4 Fraude

Tous les projets seront analysés de manière automatique pour y détecter les cas de fraude. Voici
ci-après un extrait du règlement de l’école au regard de la fraude et des sanctions associées.

7.3 Infraction, plagiat, fraude
Toute infraction aux instructions énoncées au §7.2 ou tentative de fraude dûment

constatée entraîne l’application des articles R.712-9 à R 712-46 et R811-10 et R 811-
11 du code de l’éducation relatifs à la procédure disciplinaire dans les établissements
publics d’enseignement supérieur.

Le plagiat consiste à présenter comme sien ce qui a été produit par un autre, quelle
qu’en soit la source (ouvrage, documents sur internet, travail d’un autre élève...). Le
plagiat est une fraude.

II-14 Ressources et environnement de développement



En cas de fraude, l’élève est susceptible d’être déféré en section disciplinaire de
l’établissement et s’expose aux sanctions suivantes :
• l’avertissement ;
• le blâme ;
• l’exclusion de l’établissement pour une durée maximum de 5 ans - cette sanction

peut être prononcée avec sursis si l’exclusion n’excède pas 2 ans ;
• l’exclusion définitive de l’établissement ;
• l’exclusion de tout établissement public d’enseignement supérieur pour une durée

maximum de 5 ans ;
• l’exclusion définitive de tout établissement public d’enseignement supérieur.

Toute sanction prévue ci-dessus et prononcée dans le cas d’une fraude ou d’une tentative
de fraude commise à l’occasion d’une épreuve de contrôle continu, d’un examen ou d’un
concours entraîne, pour l’intéressé, la nullité de l’épreuve correspondante ou du groupe
d’épreuves ou de la session d’examen ou du concours.

En particulier, tout échange de code, y compris de tests ou de scripts, entre deux binômes
différents constitue une fraude et entrainera la note de 0 pour les deux membres des deux binômes
et/ou une procédure disciplinaire à l’encontre des personnes concernées.

Pour protéger vos données de toute tentative de copie de la part d’autres étudiants, vous devrez
exécuter la commande suivante :

chmod -R go-rwx compilation/
sur le dossier contenant tous vos fichiers de projet (compilation/ dans cet exemple). Enfin, si
vous utilisez un dépôt git sur internet, pensez à empêcher les accès extérieurs.

IV Crédits

La présentation de ce projet s’inspire, en version réduite, du projet de génie logiciel de Grenoble INP
- Ensimag. Avec l’aimable autorisation de Roland Groz et Catherine Oriat (Prenom.Nom@imag.fr)

Ressources et environnement de développement II–15





III. Annexes





Instructions MIPS
Assembleur Opération Effet For

mat
A
r
i
t
h
m
é
t
i
q
u
e
s
/l
o
g
i
q
u
e
s

Add Rd, Rs, Rt Add Overflow detection Rd<-Rs+Rt R

Sub Rd, Rs, Rt Substract Overflow detection Rd<-Rs-Rt R

Addu Rd, Rs, Rt Add No Overflow Rd<-Rs+Rt R

Subu Rd, Rs, Rt Substract No Overflow Rd<-Rs-Rt R

Addi Rt, Rs, I Add Immediate Overflow detection Rt<-Rs+I I

Addiu Rt, Rs, I Add Immediate No Overflow Rt<-Rs+I I

Or Rd, Rs, Rt Logical Or Rd<-Rs or Rt R

And Rd, Rs, Rt Logical And Rd<-Rs and Rt R

Xor Rd, Rs, Rt Logical Exclusive-Or Rd<-Rs xor Rt R

Nor Rd, Rs, Rt Logical Not Or Rd<-Rs nor Rt R

Ori Rt, Rs, I Or Immediate Unsigned immediate Rt<-Rs or I I

Andi Rt, Rs, I And Immediate Unsigned immediate Rt<-Rs and I I

Xori Rt, Rs, I Exclusive-Or Immediate Unsigned immediate Rt<-Rs xor I I

Sllv Rd, Rt, Rs Shitf Left Logical Variable 5 lsb of Rs is significant Rd<-Rt<<Rs R

Srlv Rd, Rt, Rs Shitf Right Logical 
Variable

5 lsb of Rs is significant Rd<-Rt>>Rs R

Srav Rd, Rt, Rs Shitf Right Arithmetical 
Variable

5 lsb of Rs is significant
*with sign extension 

Rd<-Rt>>*Rs R

Sll Rd, Rt, sh Shitf Left Logical Rd<-Rt<<sh R

Srl Rd, Rt, sh Shitf Right Logical Rd<-Rt>>sh R

Sra Rd, Rt, sh Shitf Right Arithmetical *with sign extension Rd<-Rt>>*sh R

Lui Rt, I Load Upper Immediate 16 lowers bits of Rt are set to zero Rt<-I  "0000" I

Slt Rd, Rs, Rt Set if Less Than Rd<-1   if Rs<Rt else 0 R

Sltu Rd, Rs, Rt Set if Less Than 
Unsigned

Rd<-1   if Rs<Rt else 0 R

Slti Rt, Rs, I Set if Less Than 
Immediate

Sign extended Immediate Rt<-1    if Rs<I else 0 I

Sltiu Rt, Rs, I Set if Less Than 
Immediate

Unsigned Immediate Rt<-1    if Rs<I else 0 I

Mult Rs, Rt Multiply LO<-32 low significant bits
HI<-32 high significant bits

Rs*Rt R

Multu Rs, Rt Multiply Unsigned LO<-32 low significant bits
HI<-32 high significant bits

Rs*Rt R

Div Rs, Rt Divide LO<-Quotient
HI<-Remainder

Rs/Rt R

Divu Rs, Rt Divide Unsigned LO<-Quotient
HI<-Remainder

Rs/Rt R

H
I
, 
L
O

Mfhi Rd Move From HI Rd<-HI R

Mflo Rd Move From LO Rd<-LO R

Mthi Rs Move To HI HI<-Rs R

Mtlo Rs Move To LO LO<-Rs R



L
e
c
t
u
r
e
/
é
c
r
i
t
u
r
e 
m
é
m
o
i
r
e

Lw Rt, I(Rs) Load Word Sign extended immediate Rt<-M(Rs+I) I

Sw Rt, I(Rs) Store Word Sign extended immediate M(Rs+I)<-Rt I
Lh Rt, I(Rs) Load Half Word Sign extended immediate. Two bytes 

from storage are located into the 2 less 
significant bytes of Rt. The sign of 
these 2 bytes is extended on the 2 most 
significant bytes.

Rt<-M(Rs+I) I

Lhu Rt, I(Rs) Load Half Word 
Unsigned

Sign extended immediate. Two bytes 
from storage are located into the 2 less 
significant bytes of Rt, others bytes are 
set to zero.

Rt<-M(Rs+I) I

Sh Rt, I(Rs) Store Half Word Sign extended immediate/. The two less 
significant bytes of Rt are stored into 
the storage.

M(Rs+I)<-Rt I

Lb Rt, I(Rs) Load Byte Sign extended immediate. One byte 
from storage is located into the less 
significant bytes of Rt. The sign of this 
byte is extended on the 3 most 
significant bytes.

Rt<-M(Rs+I) I

Lbu Rt, I(Rs) Load Byte Unsigned Sign extended immediate. One byte 
from storage is located into the less 
significant bytes of Rt, others bytes are 
set to zero.

Rt<-M(Rs+I) I

Sb Rt, I(Rs) Store Byte Sign extended immediate. The less 
significant byte of Rt is stored into the 
storage.

M(Rs+I)<-Rt I

B
r
a
n
c
h
e
m
e
n
t
s

Beq Rs, Rt, label Branch if EQual PC<-PC+4+(I*4)  if Rs=Rt
PC<-PC+4            if Rs!=Rt

I

Bne Rs, Rt, label Branch if Not Equal PC<-PC+4+(I*4)  if Rs!=Rt
PC<-PC+4            if Rs=Rt

I

Bgez Rs, label Branch if Greater or Equal 
Zero

PC<-PC+4+(I*4)  if Rs>=0
PC<-PC+4             if Rs<0

I

Bgtz Rs, label Branch if Greater Than 
Zero

PC<-PC+4+(I*4)   if Rs>0
PC<-PC+4             if Rs<=0

I

Blez Rs, label Branch if Less or Equal 
Zero

PC<-PC+4+(I*4)   if Rs<=0
PC<-PC+4             if Rs>0

I

Bltz Rs, label Branch if Less Than Zero PC<-PC+4+(I*4)   if Rs<0
PC<-PC+4             if Rs>=0

I

Bgezal Rs, label Branch if Greater or Equal 
Zero And Link

PC<-PC+4+(I*4)   if Rs>=0
PC<-PC+4             if Rs<0
R31<-PC+4 in both cases

I

Bltzal Rs, label Branch if Greater Than 
Zero And Link

PC<-PC+4+(I*4)   if Rs<0
PC<-PC+4             if Rs>=0
R31<-PC+4 in both cases

I

J Label Jump PC<-PC 31:28  I*4 J

Jal Label Jump and Link R31<-PC+4
PC<-PC 31:28  I*4

J

Jr Rs Jump Register PC<-Rs R

Jalr Rs Jump and Link Register R31<-PC+4
PC<-Rs

R

Jalr Rd, Rs Jump and Link Register Rd<-PC+4
PC<-Rs

R



Appels système

Avant de réaliser un appel système (avec syscall), il faut placer dans le registre $2 le numéro de l'appel système
demandé. Il faut aussi donner les paramètres de l'appel quand il y en a. Le passage se fait par les registres, les registres
$4 et/ou $5 sont utilisés. La valeur de retour (s'il y en a une) se trouve après l'appel dans le registre $2.

Écrire un entier en décimal sur la console :
● Appel système numéro 1.

Un paramètre : l'entier à écrire sur la console qui doit être placé dans le registre $4.
Lire un entier sur la console :

Appel système numéro 5.
Valeur de retour (dans $2 après l'appel) : l'entier lu.

Écrire une chaîne de caractères sur la console :
Appel système numéro 4.
Un paramètre : l'adresse de la chaîne de caractères à écrire doit être placée dans le registre $4.

Lire une chaîne de caractères sur la console :
Appel système numéro 8.
2 paramètres :

1. l'adresse mémoire à partir de laquelle la chaîne de caractères lue sera sauvegardée doit être placée
dans le registre $4.

2. la taille maximale de la chaîne de caractères attendue doit être placée dans le registre $5 (en octet).
Attention, avec le simulateur MARS, la chaîne de caractères lue se termine par '\n' puis par '\0'.

Terminer un programme :
Appel système numéro 10.

OPCOD RS RT RD

31 25 20 15 10 0

OPCOD RS RT

OPCOD

IMD16

IMD26

Format R

Format I

Format J

5

SH FUNC

Format de codage des instructions

Table des codes ASCII

Hex

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 A B C D E F

NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

SP ! " # $ % & ' ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [ \ ] ^ _

` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

●

●
●

●
●

●

●

●



           Directives assembleur

.align n : aligne le compteur d'adresse de la section concernée sur une adresse telle que les n bits de poids faible soient à  
zéro (c'est-à-dire une adresse multiple de 2^n).

.ascii chaîne [, autrechaîne, ...] : place à partir de l'adresse du compteur d'adresse de la section concernée la suite de  
caractères entre guillemets. S'il y a plusieurs chaînes, elles sont placées à la suite. Cette chaîne peut contenir des  
séquences d'échappement du langage.

.asciiz chaîne [, autrechaîne, ...] : identique à la précédente, la seule différence étant qu'elle ajoute un zéro binaire à la  
fin de chaque chaîne.

.byte n [, m, ...] : les valeurs de n [et m,...] représentées sur 1octet (tronquées sur 8 bits) sont placées à des adresses  
successives de la section, à partir de l'adresse du compteur d'adresse de cette section.

.half n [, m, ...] : les valeurs de n [et m,...] représentées sur 2 octets (tronquées sur 16 bits)  sont placées à des adresses  
successives de la section,  à partir de l'adresse du compteur d'adresse de la section.

.word n [, m, ...] : les valeurs de n [et m, ...] représentées sur 4 octets sont placées dans des adresses successives de la  
section, à partir de l'adresse du compteur d'adresse de la section.

.space n : un espace de n octets est réservé à partir du compteur d'adresse de la section concernée.

Codage des codes opération des instructions

000 001 010 011 101 110 111

000

001

100

011

010

100

101

110

111

SPECIAL

ADDI LUISLTI

SWSHSB

LB

ANDI ORI XORI

J JAL BEQ BNE

INS  28 : 26

IN
S
31
:
29

BCOND BLEZ BGTZ

ADDIU SLTIU

COPRO

LH LW LBU LHU

DECODAGE  OPCOD

INS  5 : 3

SUB

SLL SRL SRA

SLT

AND OR XOR

JALR

INS  2 : 0

OPCOD = SPECIAL

SLLV SRLV SRAV

SYSCALL BREAK

NORADD ADDU SUBU

SLTU

JR

DIVMULT MULTU DIVU

MFLOMFHI MTHI MTLO

000 001 010 011 101 110 111

000

001

100

011

010

100

101

110

111


