
Compilation EISE4 – TD

Exercice 1 : Grammaire Hors-Contexte et Ambiguïté

Soit la grammaire suivante :
G1 =< {a, b}, {S}, S, R > et R : S → aSb|aS|ε

• Quel est le langage engendré par la grammaire ?
• Montrer que cette grammaire est ambigüe
• Donner une grammaire équivalente non-ambigüe

Mêmes questions avec la grammaire G2 =< {a, b}, {S}, S, R > et R : S → SaSaS|bS|ε

Exercice 2 : Analyse syntaxique

Soit le programme yacc suivant, qui permet de reconnaitre les mots du langage xnayn :
1 A : 'x' A 'y' { printf("A -> x A y\n"); }
2 | 'a' { printf("A -> a\n"); }
3 ;

• Qu’affiche ce programme appliqué à la chaine d’entrée xxayy ?
• Afficher les états successifs de la pile de yacc pour la chaine xxayy.

Soit le langage ab∗c engendré par la grammaire :
1 A : 'a' B
2 ;
3 B : 'b' B
4 | 'c'
5 ;

• Dessiner les états successifs de la pile de yacc pour la chaine d’entrée abbbc
• Quel problème cela peut-il poser ? Donner une grammaire équivalente qui résout le problème.

Exercice 3 : MiniC

Soit le programme MiniC suivant :
1 int a = 1, b;
2 bool c = true;
3 void main() {
4 }

• Dessiner l’arbre de ce programme à la fin de l’analyse syntaxique, en numérotant les noeuds
selon l’ordre de leur création

• Dessiner l’arbre de dérivation correspondant à ce programme dans la grammaire hors-contexte
de MiniC (règles qui sont prise depuis l’axiome pour arriver à ce programme)

• Pour chaque noeud de l’arbre du programme, indiquer dans l’arbre de dérivation la réduction
à l’origine de la création du noeud

• Donner le code assembleur mips correspondant à ce programme

Exercice 4 : MiniC

Soit le programme MiniC suivant :
1 void main() {
2 int a = 120, b = 80;
3 if (a > b) {
4 a = a - b;
5 }
6 print("a = ", a, " - b = ", b);
7 }

• Dessiner l’arbre de ce programme après la première passe
• Donner toutes les conditions, explicites ou implicites, vérifiées par la grammaire attribuée de

MiniC pour ce programme
• Dessiner l’état de la pile au moment du if
• Donner le code assembleur mips correspondant à ce programme

Exercice 5 : Grammaire attribuée de MiniC

Donner, pour chacune des règles suivantes de la grammaire attribuée, un programme MiniC minimal
ne vérifiant pas la condition de la règle :

• 1.8
• 1.12 (partie de la condition : type = type1)
• 1.20
• 1.61

Exercice 6 : Génération de code assembleur Mips

Soit le programme MiniC suivant :
1 void main() {
2 int a = 136;
3 int b = 80;
4 while (a != b) {
5 if (a > b) {
6 a = a - b;
7 }
8 else {
9 b = b - a;

10 }
11 }
12 print(a);
13 }

• Que calcule ce programme ?
• Écrivez un programme assembleur mips correspondant

Exercice 7 : Génération de code assembleur Mips

Soit le programme MiniC suivant :
1 void main() {
2 int i;
3 int masque = 1;
4 int mot = 0x46;
5 int res = 0;
6 int temp = 0;
7
8 for (i = 0; i < 32; i = i + 1) {
9 temp = mot & masque;

10 temp = temp >>> i;
11 res = res + temp;
12 masque = masque << 1;
13 }
14 print(res);
15 }

• Qu’affiche ce programme ?
• Écrivez un programme assembleur mips correspondant

Exercice 8 : Langages sous-contexte (optionnel, hors programme)

Rappel : Une grammaire est dite sous-contexte si toutes ses règles sont de la forme αAβ → αωβ,
avec α, β ∈ V ∗, A ∈ VN , ω ∈ V +.

Montrer que la définition au-dessus est équivalente à la définition suivante : une grammaire sous-
contexte est une grammaire dans laquelle toutes les règles sont de la forme α → β, où |α| ≤ |β| (|.|
désigne la longueur d’un mot, c’est-à-dire son nombre d’éléments terminaux et non terminaux)

