Compilation EISE4 — TD

Exercice 1 : Grammaire Hors-Contexte et Ambiguité

Soit la grammaire suivante :

G1 =< {a,b},{S},S,R > et R: S — aSblaS|e

e Quel est le langage engendré par la grammaire ?
e Montrer que cette grammaire est ambigiie
e Donner une grammaire équivalente non-ambigiie

Meémes questions avec la grammaire Gy =< {a,b},{S},S,R > et R: S — SaSaS|bS|e

Exercice 2 : Analyse syntaxique

Soit le programme yacc suivant, qui permet de reconnaitre les mots du langage x"ay™ :

1 A : A { printf()5}
2 | { printf(); X
3 ;

e Qu’affiche ce programme appliqué a la chaine d’entrée xxayy ?
o Afficher les états successifs de la pile de yacc pour la chaine xxayy.

Soit le langage ab*c engendré par la grammaire :

e Dessiner les états successifs de la pile de yacc pour la chaine d’entrée abbbc
e Quel probléme cela peut-il poser 7 Donner une grammaire équivalente qui résout le probléme.

Exercice 3 : MiniC

Soit le programme MiniC suivant :

1 int a = 1, b;

2 bool ¢ = true;
3 void main() {
4 }

e Dessiner 'arbre de ce programme a la fin de ’analyse syntaxique, en numérotant les noeuds
selon 'ordre de leur création

e Dessiner I'arbre de dérivation correspondant & ce programme dans la grammaire hors-contexte
de MiniC (régles qui sont prise depuis 'axiome pour arriver a ce programme)

e Pour chaque noeud de 'arbre du programme, indiquer dans I'arbre de dérivation la réduction
a 'origine de la création du noeud

e Donner le code assembleur mips correspondant & ce programme

Exercice 4 : MiniC

Soit le programme MiniC suivant :

1 void main() {
2 int a = 120, b = 80;
if (a > b) {
a = a - b;
}
print (, a, » b);
}

~N O O W

Dessiner ’arbre de ce programme apres la premiére passe

Donner toutes les conditions, explicites ou implicites, vérifiées par la grammaire attribuée de
MiniC pour ce programme

Dessiner 'état de la pile au moment du if

Donner le code assembleur mips correspondant a ce programme

Exercice 5 : Grammaire attribuée de MiniC

Donner, pour chacune des régles suivantes de la grammaire attribuée, un programme MiniC minimal
ne vérifiant pas la condition de la régle :
e 18
1.12 (partie de la condition : type = type;)
1.20
1.61

Exercice 6 : Génération de code assembleur Mips

Soit le programme MiniC suivant :

1 void main() {

2 int a = 136;

3 int b = 80;

4 while (a !'= b) {
5 if (a > b) {

6 a = a - b;
7 }

8 else {

9 b =Db - a;
10 }

11 }

12 print (a);

13 }

e Que calcule ce programme ?
e Ecrivez un programme assembleur mips correspondant

Exercice 7 : Génération de code assembleur Mips

Soit le programme MiniC suivant :

1 void main() {
2 int 1i;

3 int masque = 1;
4 int mot = 0x46;
5 int res = 0;

6 int temp = O0;

7

8

for (i = 0; i < 32; i =1 + 1) {

9 temp = mot & masque;
10 temp = temp >>> ij;

11 res = res + temp;

12 masque = masque << 1;
13 }

14 print (res);

15 3}

e Qu’affiche ce programme ?
e Ecrivez un programme assembleur mips correspondant

Exercice 8 : Langages sous-contexte (optionnel, hors programme)

Rappel : Une grammaire est dite sous-contexte si toutes ses régles sont de la forme aAf — awf,
avec a, e V¥, Ae Vy,we VT,

Montrer que la définition au-dessus est équivalente a la définition suivante : une grammaire sous-
contexte est une grammaire dans laquelle toutes les régles sont de la forme oo — 3, ou |a| < |B] (]
désigne la longueur d’un mot, c’est-a-dire son nombre d’éléments terminaux et non terminaux)

