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Abstract

A snap-stabilizing protocol, starting from any config-
uration, always behaves according to its specification.
In this paper, we present a snap-stabilizing protocol to
solve the message forwarding problem in a message-
switched network. In this problem, we must manage re-
sources of the system to deliver messages to any proces-
sor of the network. In this purpose, we use informations
given by a routing algorithm. By the context of stabi-
lization (in particular, the system starts in any config-
uration), these informations can be corrupted. So, the
existence of a snap-stabilizing protocol for the message
forwarding problem implies that we can ask the system
to begin forwarding messages even if routing informa-
tions are initially corrupted.

In this paper, we propose a snap-stabilizing algo-
rithm (in the state model) for the following specification
of the problem:

• Any message can be generated in a finite time.

• Any emitted message will be delivered to its desti-
nation once and only once in a finite time.

This implies that our protocol can deliver any emitted
message regardless of the state of routing tables in the
initial configuration.

Keywords: Distributed protocols, snap-stabilization,
fault-tolerance, message forwarding, point-to-point
communication, deadlock-free routing, message-
switched networks.

1 Introduction

The quality of a distributed system depends on its
fault-tolerance. Many fault-tolerant schemes have been
proposed. For instance, self-stabilization [8] allows to
design a system tolerating arbitrary transient faults. A
self-stabilizing system, regardless of the initial state of
the system, is guaranteed to converge into the intended
behavior in a finite time. An other paradigm called snap-
stabilization has been introduced in [3, 2]. A snap-
stabilizing protocol guarantees that, starting from any
configuration, it always behaves according to its spec-
ification. In other words, a snap-stabilizing protocol is a
self-stabilizing protocol which stabilizes in 0 time unit.

In a distributed system, it is commonly assumed that
each processor can exchange messages only with its
neighbors (i.e. processors with which it shares a com-
munication link) but processors may need to exchange
messages with any processor of the network. To perform
this goal, processors have to solve two problems: the de-
termination of the path which messages have to follow
in the network to reach their destinations (it is the rout-
ing problem) and the management of network resources



in order to forward messages (it is the message forward-
ing problem). These two problems received a great at-
tention in literature. The routing problem is studied for
example in [1, 4, 13, 14, 15, 29, 30, 20, 23, 25] and
self-stabilizing approach can be found (directly or not)
in [16, 18, 9, 17]. The forwarding problem has also been
well studied, see [12, 21, 22, 26, 27, 28] for example. As
far we know, the message forwarding problem was never
directly studied with a snap-stabilizing approach (note
that the protocol proposed by [17] can be used to per-
form a self-stabilizing forwarding protocol for dynamic
networks since it is guaranteed that the routing tables re-
main loop-free even if topological changes are allowed).
This is the scope of this paper.

Informally, the goal is to give a protocol which al-
lows all processors of the network to send messages to
any destination of the network knowing that a routing
algorithm calculates the path that messages have to fol-
low to reach their destinations. Problems come of the
following fact: messages traveling through a message-
switched network ([24]) must be stored in each pro-
cessor of their path before being forwarded to the next
processor on this path. This temporary storage of mes-
sages is performed with reserved memory spaces called
buffers. Obviously, each processor of the network re-
serves only a finite number of buffers for the message
forwarding. So, it is a problem of bounded resources
management which exposes the network to deadlocks
and livelocks if no control is performed. In this paper,
we focus on a message forwarding protocol which deals
the problem with a snap-stabilizing approach. The goal
is to allow the system to forward messages regardless of
the state of the routing tables. Obviously, we need that
theses routing tables repair themselves within a finite
time. So, we assume the existence of a self-stabilizing
protocol to compute routing tables (see [16, 18, 9]).

In the following, we say that a valid message is a
message which has been generated by a processor. As
a consequence, an invalid message is a message which
is present in the initial configuration. We can now spec-
ify the problem. We propose a specification of the prob-
lem where message duplications (i.e. the same message
reaches its destination many time while it has been gen-
erated only once) are forbidden:

Specification 1 (SP) Specification of the message for-
warding problem.

• Any message can be generated in a finite time.

• Any valid message will be deliver to its destination
once and only once in a finite time.

The remainder of this paper is organized as follows:
we present first our model (section 2), then we give,

prove, and analyze our solution in the state model (sec-
tion 3). Finally, we conclude by some remarks and open
problems (section 4).

2 Preliminaries

We consider a network as an undirected connected
graph G = (V,E) where V is a set of processors and E
is the set of bidirectional asynchronous communication
links. In the network, a communication link (p, q) exists
if and only if p and q are neighbors. Every processor p
can distinguish all its links. To simplify the presentation,
we refer to a link (p, q) of a processor p by the label q.
We assume that the labels of p are stored in the set Np.
We also use the following notations: respectively, n is
the number of processors, ∆ the maximal degree, andD
the diameter of the network. If p and q are two proces-
sors of the network, we denote by dist(p, q) the length
of the shortest path between p and q. In the following,
we assume that the network is identified, i.e. each pro-
cessor have an identity which is unique on the network.
Moreover, we assume that all processors know the set I
of all identities of the network.

2.1 State model

We consider a local shared memory model of com-
putation (see [24]) in which communications between
neighbors are modeled by direct reading of variables in-
stead of exchange of messages.

In this model, the program of every processor con-
sists in a set of shared variables (henceforth, referred to
as variables) and a finite set of actions. A processor can
write to its own variables only, and read its own variables
and those of its neighbors. Each action is constituted as
follows: < label >::< guard >−→< statement >.
The guard of an action in the program of p is a boolean
expression involving variables of p and its neighbors.
The statement of an action of p updates one or more vari-
ables of p. An action can be executed only if its guard is
satisfied.

The state of a processor is defined by the value of its
variables. The state of a system is the product of the
states of all processors. We will refer to the state of a
processor and the system as a (local) state and (global)
configuration, respectively. We note C the set of all con-
figurations of the system.

Let γ ∈ C and A an action of p (p ∈ V ). A is called
enabled at p in γ if and only if the guard of A is satis-
fied by p in γ. Processor p is said to be enabled in γ if
and only if at least one action is enabled at p in γ. Let a
distributed protocol P be a collection of actions denoted
by→, on C. An execution of a protocol P is a maximal
sequence of configurations Γ = (γ0, γ1, ..., γi, γi+1, ...)



such that, ∀i ≥ 0, γi → γi+1 (called a step) if γi+1

exists, else γi is a terminal configuration. Maximality
means that the sequence is either finite (and no action
of P is enabled in the terminal configuration) or infinite.
All executions considered here are assumed to be maxi-
mal. E is the set of all executions of P .

As we already said, each execution is decomposed
into steps. Each atomic step is composed of three se-
quential phases: (i) every processor evaluates its guards,
(ii) a daemon chooses some enabled processors, (iii)
each chosen processor executes one of its enabled ac-
tions. When the three phases are done, the next step
begins. A daemon can be defined in terms of fairness
and distribution. There exists several kinds of fairness
assumption. Here, we present the strong fairness, weak
fairness, and unfairness assumptions. Under a strongly
fair daemon, every processor that is enabled infinitively
often is chosen by the daemon infinitively often to ex-
ecute an action. When a daemon is weakly fair, every
continuously enabled processor is eventually chosen by
the daemon. Finally, the unfair daemon is the weakest
scheduling assumption: it can forever prevent a proces-
sor to execute an action except if it is the only enabled
processor. Concerning the distribution, we assume that
the daemon is distributed meaning that, at each step, if
one or several processors are enabled, then the daemon
chooses at least one of these processors to execute an
action.

We consider that any processor p is neutralized in the
step γi → γi+1 if p was enabled in γi and not enabled
in γi+1, but did not execute any action in γi → γi+1.
To compute the time complexity, we use the definition
of round (introduced in [10] and modified by [3]). This
definition captures the execution rate of the slowest pro-
cessor in any execution. The first round of Γ ∈ E , noted
Γ′, is the minimal prefix of Γ containing the execution of
one action or the neutralization of every enabled proces-
sor from the initial configuration. Let Γ′′ be the suffix of
Γ such that Γ = Γ′Γ′′. The second round of Γ is the first
round of Γ′′, and so on.

2.2 Message-switched network

Today, most of computer networks use a variant of
the message-switching method (also called store-and-
forward method). It’s why we have chosen to work with
this switching model. In this section, we are going to
present this method (see [24] for a detailed presenta-
tion).

Each processor has B buffers for temporarily storing
messages. The model assumes that each buffer can store
a whole message and that each message needs only one
buffer to be stored. The switching method is modeled
by three types of moves:

1. Generation: when a processor sends a new mes-
sage, it “creates” a new message in one of its empty
buffers. We assume that the network may allow this
move as soon as at least one buffer of the processor
is empty.

2. Forwarding: a message m is forwarded (copied)
from a processor p to an empty buffer in the next
processor q on its route (determined by the routing
algorithm). As a result of the move the buffer pre-
viously occupied bym becomes empty. We assume
that the network may allow this move as soon as at
least one buffer buffer of the processor is empty.

3. Consumption: A message m occupying a buffer
in its destination processor is removed from this
buffer (and delivered to the processor). We assume
that the network may always allow this move.

2.3 Stabilization

In this section, we give formal definitions of self- and
snap-stabilization using notations introduced in 2.1.

Definition 1 (Self-Stabilization [8]) Let T be a task,
and ST a specification of T . A protocol P is self-
stabilizing for ST if and only if ∀Γ ∈ E , there exists
a finite prefix Γ′ = (γ0, γ1, ..., γl) of Γ such that all exe-
cutions starting from γl satisfies ST .

Definition 2 (Snap-Stabilization [2, 3]) Let T be a
task, and ST a specification of T . A protocol P is snap-
stabilizing for ST if and only if ∀Γ ∈ E , Γ satisfies ST .

This definition has the two following consequences.
We can see that a snap-stabilizing protocol for ST is a
self-stabilizing protocol for ST with a stabilization time
of 0 time unit. A common method used to prove that a
protocol is snap-stabilizing is to distinguish an action as
a “starting action” (i.e. an action which initiates a com-
putation) and to prove the following property for every
execution of the protocol: if a processor requests it, the
computation is initiated by a starting action in a finite
time and every computation initiated by a starting action
satisfies the specification of the task. We will use these
two remarks to prove snap-stabilization of our protocol
in the following of this paper.

3 Our protocol

3.1 Informal description

We have seen in section 2.2 that, by default, the net-
work always allows message moves between buffers.
But, if we do no control on these moves, the network can
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Figure 1. Example of a “destination-
based” buffer graph (on the right) on the
network on the left.

reach unacceptable situations such as deadlocks, live-
locks or message losses. If such situations appear, spec-
ifications of message forwarding are not respected.

Now, we quickly present solutions brought by the lit-
erature in the case where routing tables are correct in
the initial configuration. In order to avoid deadlocks,
we must define an algorithm which permits or forbids
various moves in the network (functions of the cur-
rent occupation of buffers) in order to prevent the net-
work to reach a deadlock. Such algorithms are called
deadlock-free controllers (see [24] for a much detailed
description). [21] introduced a generic method to design
deadlock-free controllers. It consists to restrict moves of
messages along edges of an oriented graph BG (called
buffer graph) defined on the network buffers. Then, it
is easy to see that cycles on BG can lead to deadlocks.
So, authors show that, ifBG is acyclic, they can define a
deadlock-free controller on this buffer graph. For exam-
ple, we can present a “destination-based” buffer graph.
In this scheme, we assume that the routing algorithm
forwards all packets of Destination d via a directed tree
Td rooted in d. Each processor p of the network has a
buffer bp(d) for each possible Destination d (called the
target of bp(d)). The buffer graph has n connected com-
ponents, each of them containing all the buffers which
shared their target. The connected component associ-
ated to the target d is isomorphic to Td (the reader can
find an example of such a graph in Figure 1). It is easy
to see that this oriented graph is acyclic.

Livelocks can be avoided by fairness assumptions on
the controller for the generation and the forwarding of
messages. Message losses are avoided by the using of
identifier on messages. For example, one can use the
concatenation of the identity of the source and a two-
value flag in order to distinguish two consecutive identi-
cal messages generated by the same processor for Des-
tination d (since all messages follow the same path in
Td).

The main idea that leads our research is to adapt this

solution in order to tolerate the corruption of routing ta-
bles in the initial configuration. To perform this goal,
we assume the existence of a self-stabilizing silent (i.e.
no actions are enabled after convergence) algorithm A
to compute routing tables which runs simultaneously to
our message forwarding protocol. Moreover, we assume
that A has priority over our protocol (i.e. a processor
which has enabled actions for both algorithms always
chooses the action ofA). This guarantees us that routing
tables will be correct and constant within a finite time.
To simplify the presentation, we assume that A induces
only minimal paths in number of edges. We assume that
our protocol can have access to the routing table via a
function, called nextHopp(d). This function returns the
identity of the neighbor of p to which p must forward
messages of Destination d. We use a controller based
on a buffer graph similar to that we presented before
(once routing tables are computed). The buffer graph
is composed of n connected components, each associ-
ated to a destination d and based on the oriented tree Td.
So, we are going to present only one connected com-
ponent, associated to a destination noted d (others are
similar). We use two buffers per processor for Desti-
nation d. The first one, noted bufRp(d) (for processor
p), is reserved to the reception of messages whereas the
second one, noted bufEp(d), is used to emit messages
(see Figure 2). This scheme allows us to control the ad-
vance of messages. Indeed, we allow a message to be
forwarded from bufRp(d) to bufEp(d) if and only if
the message is only present in bufRp(d) and we erase it
simultaneously. In this way, we can control the effect of
routing tables moves on messages (duplication or merge
which can involve message losses).

To avoid livelocks, we use a fair scheme of selection
of processors allowed to forward or to emit a message
for each reception buffer. We can manage this fairness
by a queue of requesting processors. Finally, we use a
specific flag to prevent message losses. It is composed
of the identity of the last processor cross over by the
message and a color which is dynamically given to the
message when it reaches an emission buffer. In order to
distinguish a such incoming message of these contained
in reception buffers of neighbors of the considered pro-
cessor, we give to this incoming message a color which
is not carry by a such message. It is why a message is
considered as a triplet (m, p, c) in our algorithm where
m is the useful information of the message, p is the iden-
tity of the last processor crossed over by the message,
and c is a color (a natural integer between 0 and ∆). We
must manage a communication between our algorithm
and processors in order to know when a processor have
a message to send. We have chosen to create a boolean
shared variable requestp (for any processor p). Proces-
sor p can set it at true when it is at false and when p
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Figure 2. Example of our buffer graph (on
the right) for Destination b on the network
(on the left).

has a message to send. Otherwise, p must wait that our
algorithm sets the shared variable to false (that is done
when a message is generated).

The reader can find a complete example of the execu-
tion of our algorithm in Figure 3. Diagram (N) shows
the network and diagram (0) shows the initial configura-
tion for the connected component associated to b of the
buffer graph. We observe that ∆ = 3, so we need 4 dif-
ferent values for the variable color, we have chosen to
represent them by a natural integer in {0, 1, 2, 3}. Re-
mark that routing tables are incorrect (in particular there
exists a cycle involving buffers of a and c) and that there
exists an invalid message m′ in the reception buffer of
b (its color is 0). Then, Processor c emits a message m
(its color is 0) in the reception buffer of c to obtain con-
figuration (1). When the message m is forwarded to the
emission buffer of c, we associate it the color 1 (since
0 is forbidden, see configuration (2)). During the next
step, message m is forwarded to the reception buffer of
a (remark that it keeps its color) and c emits (in its re-
ception buffer) a new message m′ which has the same
useful information as the invalid message present on b.
So, we obtain configuration (3). Message m can now
be erased from the emission buffer of c and m′ can be
forwarded into this buffer (we associate it the color 2).
These two steps lead to configuration (4). Assume that
routing tables are repaired during the next step. Simul-
taneously, processor a is allowed to forward m into its
emission buffer. We obtain configuration (5). Remark
that the use of color forbids the merge between the two
messages which have m′ for useful information. Then,
the system is able to deliver these three messages by the
repetition of moves that we have described:

• forwarding from reception buffer to emission
buffer of the same processor.

• forwarding from emission buffer to reception
buffer of two processors.

• erasing from emission buffer or delivering.

The sequence of configuration (6) to (12) shows an ex-
ample of the end of our execution.

3.2 Algorithm

We now present formally our protocol in Algorithm
1. We call it SSMFP for Snap-StabilizingMessage
Forwarding Protocol. In order to simplify the presenta-
tion, we write the algorithm for Destination d only. Ob-
viously, each destination of the network needs a simi-
lar algorithm. Moreover, we assume that all these al-
gorithms run simultaneously (as they are mutually inde-
pendent, this assumption has no effect on the provided
proof).

3.3 Proof of the snap-stabilization

In order to simplify the proof, we introduce a second
specification of the problem. This specification allows
message duplications.

Specification 2 (SP ′) Specification of message for-
warding problem allowing duplication.

• Any message can be generated in a finite time.

• Any valid message will be deliver to its destination
in a finite time.

In this section, we give ideas to prove that SSMFP
is a snap-stabilizing message forwarding protocol for
specification SP . For that, we are going to prove suc-
cessively that:

1. SSMFP is a snap-stabilizing message forward-
ing protocol for specification SP ′ if routing tables
are correct in the initial configuration (Proposition
1).

2. SSMFP is a self-stabilizing message forwarding
protocol for specification SP ′ even if routing tables
are corrupted in the initial configuration (Proposi-
tion 2).

3. SSMFP is a snap-stabilizing message forward-
ing protocol for specification SP even if rout-
ing tables are corrupted in the initial configuration
(Proposition 3).

In this proof, we consider that the notion of message
is different from the notion of useful information. This
implies that two messages with the same useful infor-
mation generated by the same processor are considered
as two different messages. We must prove that the algo-
rithm does not lose one of them thanks to the use of the
flag. Let γ be a configuration of the network. We say
that a message m is existing in γ if at least one buffer
contains m in γ. We say that m is existing on p in γ if
at least one buffer of p contains m in γ.
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Figure 3. An example of execution of our algorithm.



Algorithm 1 (SSMFP): Message forwarding protocol for Processor p with Destination d.

Data:
- n: natural integer equals to the number of processors of the network.
- I = {0, ..., n− 1}: set of processor identities of the network.
- Np: set of neighbors of p.
- ∆: natural integer equals to the maximal degree of the network.

Message:
- (m, q, c) with m useful information of the message, q ∈ Np ∪ {p} identity of the last processor crossed over by
the message, and c ∈ {0, ...,∆} a color. The message destination is the buffer index.

Variables:
- bufRp(d), bufEp(d): buffers which can contain a message.

Input/Output:
- requestp: boolean. The higher layer can set it to true when its value is false and when there is a waiting
message. We consider that this waiting is blocking.

Macros:
- nextMessagep: gives the message waiting in the higher layer.
- nextDestinationp: gives the destination of nextMessagep if it exists, null otherwise.

Procedures:
- nextHopp(d): neighbor of p given by the routing algorithm for Destination d.
- choicep(d): fairly chooses one of the processors which can forward or generate a message in bufRp(d), i.e.
choicep(d) satisfies predicate (choicep(d) ∈ Np ∧ bufEchoicep(d)(d) = (m, q, c)∧ nextHopchoicep(d)(d) =
p) ∨ (choicep(d) = p ∧ requestp). We can manage this fairness with a queue of length ∆ + 1 of processors
which satisfies the predicate.
- deliverp(m): delivers the message m to the higher layer of p.
- colorp(d): gives a natural integer c between 0 and ∆ such as ∀q ∈ Np, bufRq(d) does not contain a message
with c as color.

Rules:
/* Rule for the generation of a message */
(R1) :: requestp ∧ (nextDestinationp = d) ∧ (bufRp(d) = empty) ∧ (choicep(d) = p) −→ bufRp(d) :=
(nextMessagep, p, 0); requestp := false
/* Rule for the internal forwarding of a message */
(R2) :: (bufEp(d) = empty) ∧ (bufRp(d) = (m, q, c)) ∧ ((q = p) ∨ (bufEq(d) 6= (m, q′, c))) −→
bufEp(d) := (m, p, colorp(d)); bufRp(d) := empty
/* Rule for the forwarding of a message */
(R3) :: (bufRp(d) = empty) ∧ (choicep(d) = s) ∧ (s 6= p) ∧ (bufEs(d) = (m, q, c)) −→ bufRp(d) :=
(m, s, c)1

/* Rule for the erasing of a message after its forwarding */
(R4) :: (bufEp(d) = (m, q, c)) ∧ (p 6= d) ∧ (bufRnextHopp(d)(d) = (m, p, c)) ∧ (∀r ∈
Np\{nextHopp(d)}, bufRr(d) 6= (m, p, c)) −→ bufEp(d) := empty
/* Rule for the erasing of a message after its duplication */
(R5) :: (bufRp(d) = (m, q, c)) ∧ (bufEq(d) = (m, q′, c)) ∧ (nextHopq(d) 6= p) −→ bufRp(d) := empty
/* Rule for the consumption of a message */
(R6) :: (bufEp(p) = (m, q, c)) −→ deliverp(m); bufEp(p) := empty

1 The fact that q may be different of s implies that the message was in the system at the initial configuration. We could locally
delete this message but that will not improve the performance of SSMFP .



Definition 3 (Caterpillar of a message m) Let m be a
message of Destination d existing on a processor p in
a configuration γ. We define a caterpillar associated to
m as the longest sequence of buffers that satisfies one of
the three definitions below:

1. Caterpillar of type 1: (bufRp(d) = (m, q, c)) ∧
((bufEq(d) 6= (m, q′, c)) ∨ (q = p)).

2. Caterpillar of type 2: (bufEp(d) = (m, q, c)) ∧
(bufRnextHopp(d)(d) 6= (m, p, c)).

3. Caterpillar of type 3: (bufEp(d) = (m, q′, c)) ∧
∃q ∈ Np, (bufRq(d) = (m, p, c)).

The reader can find in Figure 4 an example for each
type of caterpillar. Remark that an emission buffer can
belong to several caterpillars of type 3.

Assume that routing tables are correct in the initial
configuration. When we observe the execution of Pro-
tocol SSMFP under a weakly fear daemon, we can
see that a caterpillar of type 1 associated to a message
m (of Destination d) on a processor p becomes a cater-
pillar C of type 2 associated to m on p within a finite
time (by rule (R2)). If p is the destination of m, the
message is delivered (by rule (R6)) else, C becomes
a caterpillar of type 3 on p (by rule (R3)) thanks to
the fairness of choicenextHopp(d)(d). If several neigh-
bors are implied in caterpillars of type 3 which share
bufRp(d) (due to invalid messages in the initial config-
uration), (R5) is enabled for each neighbor q of p such
that nextHopp(d) 6= q. It’s why rule (R4) is enabled
in a finite time for nextHopp(d), its activation trans-
form C into a caterpillar of type 1 associated to m on
nextHopp(d). Then, we can give the following lemma:

Lemma 1 Let γ be a configuration in which routing ta-
bles are correct. Let m be a message existing on p in γ.
Under a weakly fair daemon, the execution of SSMFP
will product within a finite time one of the following ef-
fects for any caterpillar of type 1 associated to m:

• m is delivered to its destination.

• the caterpillar disappeared on p and there exists a
caterpillar of type 1 associated to the same mes-
sage on nextHopp(d).

Assume that routing tables are correct in the initial
configuration. If a buffer bufRp(d) contains a cater-
pillar of type 3, we have seen (in the proof of lemma
1) that this caterpillar become a caterpillar of type 1
on p or disappear. Moreover, Lemma 1 implies that a
buffer bufRp(d) which contains a caterpillar of type
1 is erased within a finite time. Then, the fairness of
choicep(d) allows us to give the following result:

Lemma 2 Under a weakly fair daemon when routing
tables are correct, every processor can generate a first
message (i.e. it can execute (R1)).

Assume that routing tables are correct in the initial
configuration and that a processor p has generated a
message m of Destination d (with rule (R1)). This im-
plies the creation of a caterpillar of type 1 associated to
m in bufRp(d) when m has been generated. The fol-
lowing result is obtained by dist(p, d) + 1 applications
of Lemma 1:

Lemma 3 Once a message is accepted by SSMFP ,
it will be correctly forwarded to its destination under a
weakly fair daemon if routing tables are correct (when
the message was accepted).

Assume that routing tables are correct in the initial
configuration. To prove that our algorithm is a snap-
stabilizing message forwarding protocol for specifica-
tion SP ′, we must prove that (R1) (the starting ac-
tion) is executed within a finite time if a computation
is requested. Lemma 2 proves this. After a starting ac-
tion, the protocol is executed in accordance to SP ′. If
we consider that (R1) have been executed at least one
time, we can prove that: the first property of SP ′ is al-
ways verified (by Lemma 2 and the fact that the waiting
for the generation of new messages is blocking) and the
second property of SP ′ is always verified (by Lemma
3). By the remark which follows the definition 2, this
implies the following result:

Proposition 1 SSMFP is a snap-stabilizing message
forwarding protocol for SP ′ if routing tables are correct
in the initial configuration.

We recall that a self-stabilizing silent algorithmA for
computing routing tables is running simultaneously to
SSMFP . Moreover, we assume that A has priority
over SSMFP (i.e. a processor which have enabled ac-
tions for both algorithms always chooses the action of
A). This guarantees us that routing tables will be cor-
rect and constant within a finite time regardless of their
initial states. As we are guaranteed that SSMFP is a
snap-stabilizing message forwarding protocol for spec-
ification SP ′ from such a configuration by Proposition
1, we can conclude on the following property:

Proposition 2 SSMFP is a self-stabilizing message
forwarding protocol for SP ′ (even if routing tables are
corrupted in the initial configuration) when A runs si-
multaneously.

By the construction of the algorithm, it is obvious that
a message cannot be erased from two distinct buffers
simultaneously. Then, the construction of colorp(d) and
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of rule (R4) guarantees us that, when (R4) is applied
by p, the message in bufRnextHopp(d)(d) is a copy of
that in bufEp(d). So, the message have been copied at
least once before it is erased, that allows us to give the
following lemma:

Lemma 4 Under a weakly fair daemon, SSMFP
does not delete a valid message without deliver it to its
destination even if A runs simultaneously.

It is obvious that the emission of a message by rule
(R1) creates only one caterpillar of type 1. Then, the
construction of rules (R6) and (R4) implies the fol-
lowing property: if a caterpillar of type 1 associated to a
message m is present on a processor p and this message
is erased from all buffers of p, then only one neighbor of
p contains a caterpillar of type 1 associated to m or m
have been delivered to its destination (perhaps m have
been copied several times but (R5) ensure us that there
exists a unique copy of m when (R4) is enabled). This
allows us to give the following lemma:

Lemma 5 Under a weakly fair daemon, SSMFP
never duplicates a valid message even if A runs simul-
taneously.

Proposition 2 and Lemma 4 allows us to conclude
that SSMFP is a snap-stabilizing message forwarding
protocol with specification SP ′ even if routing tables are
corrupted in the initial configuration on condition thatA
run simultaneously. Then, using this remark and Lemma
5, we can claim:

Proposition 3 SSMFP is a snap-stabilizing message
forwarding protocol for SP (even if routing tables are
corrupted in the initial configuration) when A run si-
multaneously.

3.4 Time complexities

Let RA be the stabilization time of A in terms of
rounds.

Proposition 4 In the worst case, 2n invalid messages
will be delivered to Processor d.

Sketch of proof. In the initial configuration, the system
has at most 2n distinct invalid messages of Destination
d (since the connected component of the buffer graph
associated to d has 2n buffers). In the worst case, all
these messages will be delivered to their destination, that
allows us to reach the announced bound. �

Proposition 5 In the worst case, a message m (of Des-
tination d) needs O(max(RA,∆D)) rounds to be deliv-
ered to d once it has been generated by its source.

Sketch of proof. In a first time, we can show by induc-
tion the following result: if γ is a configuration in which
routing tables are correct and C is a caterpillar of type 1
associated to a message m (of Destination d) on a pro-
cessor p such as dist(p, d) = δ, then m is delivered to
d or there exists a caterpillar of type 1 associated to m
on nextHopp(d) in at most O(∆δ) rounds. This result
is due to the fairness of choicep(d) which can allow at
most ∆ messages to “pass” m. Then, consider that s is
the source of a message m of Destination d. We have
dist(s, d) ≤ D by definition. We can conclude that m

is delivered in at most
0∑

δ=D

O(∆δ) ∈ O(∆D) rounds if

routing tables are correct when m is emitted. Finally,
we can deduce the result when m is emitted in a con-
figuration in which routing tables are not correct since
the message is delivered in at most O(∆D) rounds after
routing tables computation (which takes at most O(RA)
rounds if m is not delivered during the routing tables
computation since we have assumed the priority of A
over SSMFP). �

Proposition 6 The delay (waiting time before the first
emission) and the waiting time (between two consecutive
emissions) of SSMFP isO(max(RA,∆D)) rounds in
the worst case.



Sketch of proof. Let p be a processor which has a
message of Destination d to emit. By the fairness of
choicep(d), we can say that m will be generated after
at most (∆ − 1) releases of bufRp(d). The result of
Proposition 5 allows us to say that bufRp(d) is released
in O(max(RA,∆D)) rounds at worst. Indeed, we can
deduce the result. �

The complexity obtained in Proposition 5 is due to
the fact that the system delivers a huge quantity of mes-
sages during the forwarding of the considered message.
It’s why we interest now in the amortized complexity (in
rounds) of our algorithm. For an execution Γ, this mea-
sure is equal to the number of rounds of Γ divided by
the number of delivered messages during Γ (see [5] for
a formal definition).

Proposition 7 The amortized complexity (to forward a
message) of SSMFP is O(max (RA, D)) rounds.

Sketch of proof. In a first time, we must prove the
following property: if γ is a configuration in which at
least one message of Destination d is present and in
which routing tables are correct, then SSMFP deliv-
ers at least one message to d in the 3D rounds following
γ. Assume now an initial configuration in which rout-
ing tables are correct. Let Γ be one execution leads to
the worst amortized complexity. Let RΓ be the num-
ber of rounds of Γ. By the last remark, we can say
that SSMFP delivers at least RΓ

3D messages during Γ.
So, we have an amortized complexity of RΓ

RΓ
3D

∈ Θ(D).

Then, the announced result is obvious. �

4 Conclusion

In this paper, we provide the first algorithm (at our
knowledge) to solve the message forwarding problem in
a snap-stabilizing way (when a self-stabilizing algorithm
for computing routing tables runs simultaneously) for a
specification which forbids message losses and duplica-
tion. This property implies the following fact: our pro-
tocol can forward any emitted message to its destination
regardless of the state of routing tables in the initial con-
figuration. Such an algorithm allows the processors of
the network to send messages to other without waiting
for the routing table computation. We use a tool called
“buffer graph” which has been introduced in [21]. This
paper proposed a “destination-based” buffer graph that
we have adapted in order to control the effect of routing
table moves on messages. Our analysis shows that we
ensure snap-stabilization without significant over cost in
space or in time with respect to the fault-free algorithm.

[21] also proposed other buffer graphs. So, it is natu-
ral to wonder if they could be adapted to tolerate tran-
sient faults. In particular, one of them (based on the

acyclic covering of the network, see also [24]) is very
interesting since it needs less buffers per processor in
general (3 for a ring, 2 for a tree...). But, authors of
[19] show that it is NP-hard to compute the size of the
acyclic covering of any graph. So, this buffer graph can-
not be easily applied to any network. An open problem
is the following: what is the minimal number of buffers
per processor to allow snap-stabilization on the message
forwarding problem ?

Another way to improve our protocol is to speed up
the message forwarding in the worst case (without in-
creasing amortized complexity). In this goal, we be-
lieve that we can keep our protocol and modify the fair
scheme of selection of messages choicep(d). In fact, the
complexity of our algorithm depends on the number of
messages which can “pass” a specific message at each
hop.

Our protocol has the following drawback: when a
message m is delivered to a processor p, p cannot de-
termine if m is valid or not. This can bring some prob-
lems for applications which use these messages. So, an
interesting way of future researches could be to design
a protocol which solves this problem. In [6] the au-
thors propose an efficient solution for the PIF problem
that deals with a similar problem, unfortunately their ap-
proach does not seem suitable for our problem.

Finally, it will be interesting to carry our protocol in
the message passing model (a more realistic model of
distributed system) in order to enable snap-stabilizing
message forwarding in a real network. To our knowl-
edge, in this model, only two snap-stabilizing protocols
exist in the literature ([7, 11]). The problem to carry au-
tomatically a protocol from the state model to the mes-
sage passing model is still open.
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