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ABSTRACT
Self-stabilization ensures that, after any transient fault, the
system recovers in a finite time and eventually exhibits cor-
rect behavior. Speculation consists in guaranteeing that the
system satisfies its requirements for any execution but ex-
hibits significantly better performances for a subset of ex-
ecutions that are more probable. A speculative protocol is
in this sense supposed to be both robust and efficient in
practice.

We introduce the notion of speculative stabilization which
we illustrate through the mutual exclusion problem. We
then present a novel speculatively stabilizing mutual ex-
clusion protocol. Our protocol is self-stabilizing for any
asynchronous execution. We prove that its stabilization
time for synchronous executions is �diam(g)/2� steps (where
diam(g) denotes the diameter of the system).

This complexity result is of independent interest. The
celebrated mutual exclusion protocol of Dijkstra stabilizes in
n steps (where n is the number of processes) in synchronous
executions and the question whether the stabilization time
could be strictly smaller than the diameter has been open
since then (almost 40 years). We show that this is indeed
possible for any underlying topology. We also provide a
lower bound proof that shows that our new stabilization time
of �diam(g)/2� steps is optimal for synchronous executions,
even if asynchronous stabilization is not required.
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1. INTRODUCTION
The speculative approach to distributed computing [21,

23, 18, 13, 14] lies on the inherent trade-of between ro-
bustness and efficiency. Indeed, we typically require dis-
tributed applications to be safe and live under various hos-
tile conditions such as asynchronism, faults, attacks, and
contention. This typically leads to high consumption of sys-
tem resources, e.g. time of computation, which is due to the
need to perform synchronizations, redundancies or checking.

The speculative approach assumes that, even if degraded
conditions are indeed possible, they are less probable than
friendly conditions (for example, synchronous executions
without faults). The underlying idea is to simultaneously
ensure that the protocol is correct whatever the execution
is (even in degraded conditions) but to optimize it for a
subset of executions that are the most probable in prac-
tice. Even if this idea was applied in various contexts, it has
never been applied to distributed systems tolerant to tran-
sient faults, i.e. self-stabilizing systems [8]. In fact, it was
not clear whether self-stabilization and speculation could be
even combined because of the specific nature of transient
faults, for they could corrupt the state of the entire system.
The objective of this paper is to explore this avenue.

Self-stabilization was introduced by Dijkstra [8]. Intu-
itively, a self-stabilizing system ensures that, after the end of
any transient fault, the system reaches in a finite time, with-
out any external help, a correct behavior. In other words,
a self-stabilizing system repairs itself from any catastrophic
state. Since the seminal work of Dijkstra, self-stabilizing
protocols were largely studied (see e.g. [9, 24, 16]). The
main objective has been to design self-stabilizing systems
tolerating asynchronism while reducing the stabilization time,
i.e., the worst time needed by the protocol to recover a cor-
rect behavior over all executions of the system.

Our contribution is twofold. First, we define a new varia-
tion of self-stabilization in which the main measure of com-
plexity, the stabilization time, is regarded as a function of
the adversary and not as a single value. Indeed, we asso-
ciate to each adversary (known as a scheduler or daemon in
self-stabilization) the worst stabilization time of the protocol
over the set of executions captured by this adversary. Then,
we define a speculatively stabilizing protocol as a protocol
that self-stabilizes under a given adversary but that exhibits
a significantly better stabilization time under another (and
weaker) adversary. In this way, we ensure that the pro-
tocol stabilizes in a large set of executions but guarantees
efficiency only on a smaller set (the one we speculate more
probable in practice). For the sake of simplicity, we present
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our notion of speculative stabilization for two adversaries.
It could be easily extended to an arbitrary number of adver-
saries.

Although the idea of optimizing the stabilization time for
some subclass of executions is new, some self-stabilizing pro-
tocols satisfy (somehow by accident) our definition of spec-
ulative stabilization. For example, the Dijkstra’s mutual
exclusion protocol stabilization time falls to n steps (the
number of processes) in synchronous executions. The ques-
tion whether one could do better has been open since then,
i.e. during almost 40 years. We close the question in this
paper through the second contribution of this paper.

Indeed, we present a novel speculatively stabilizing mutual
exclusion protocol. We prove that its stabilization time for
synchronous executions is �diam(g)/2� steps (where diam(g)
denotes the diameter of the system), which significantly im-
proves the bound of Dijkstra’s protocol. We prove that we
cannot improve it. Indeed, we present a lower bound result
on the stabilization time of mutual exclusion for synchronous
executions. This result is of independent interest since it re-
mains true beyond the scope of speculation and holds even
for a protocol that does not need to stabilize in asynchronous
executions.

Designing our protocol went through addressing two tech-
nical challenges. First, we require the stabilization of a
global property (the uniqueness of critical section) in a time
strictly smaller than the diameter of the system, which is
counter-intuitive (even for synchronous executions). Second,
the optimization of the stabilization time for synchronous
executions must not prevent the stabilization for asynchron-
ous ones.

The key to addressing both challenges was a “reduction”
to clock synchronization: more specifically, leveraging the
self-stabilizing asynchronous unison protocol of [2] within
mutual exclusion. We show that it is sufficient to choose cor-
rectly the clock size and to grant the access to critical section
upon some clock values to ensure (i) the self-stabilization of
the protocol for any asynchronous execution as well as (ii)
the optimality of its stabilization time for synchronous ones.
This reduction was also, we believe, the key to the genericity
of our protocol. Unlike Dijkstra’s protocol which assumes an
underlying ring shaped communication structure, our pro-
tocol runs over any communication structure.

We could derive our lower bound result for synchronous
executions based on the observation that a process can gather
information at most at distance d in d steps whatever proto-
col it executes. Hence, in the worst case, it is impossible to
prevent two processes from simultaneously entering a critical
section during the first �diam(g)/2� steps of all executions
with a deterministic protocol.

The rest of this paper is organized as follows. Section 2
introduces the model and the definitions used through the
paper. Section 3 presents our notion of speculative stabi-
lization. Section 4 presents our mutual exclusion protocol.
Section 5 provides our lower bound result. Section 6 ends
the paper with some perspectives. Due to space limitations,
some proofs are only given in the appendix.

2. MODEL AND DEFINITIONS
We consider the classical model of distributed systems in-

troduced by Dijkstra [8]. Processes communicate by atomic
reading of all neighbors’ states and the (asynchronous) ad-

versary of the system is captured by an abstraction called
daemon.

Distributed protocol.
The distributed system consists of a set of processes that

form a communication graph. The processes are vertices
in this graph and the set of those vertices is denoted by
V . The edges of this graph are pairs of processes that can
communicate with each other. Such pairs are neighbors and
the set of edges is denoted by E (E ⊆ V 2). Hence, g =
(V,E) is the communication graph of the distributed system.
Each vertex of g has a set of variables, each of them ranges
over a fixed domain of values. A state γ(v) of a vertex v
is the vector of values of all variables of v at a given time.
An assignment of values to all variables of the graph is a
configuration. The set of configurations of g is denoted by Γ.
An action α of g transitions the graph from one configuration
to another with the restriction that each process can only
update its state based on locally available information. The
set of actions of g is denoted by A (A = {(γ, γ′)|γ ∈ Γ, γ′ ∈
Γ, γ �= γ′}). A distributed protocol π on g is defined as a
subset of A that gathers all actions of g allowed by π. The
set of distributed protocols on g is denoted by Π (Π = P (A)
where, for any set S, P (S) denotes the powerset of S).

Execution.
Given a graph g, a distributed protocol π on g, an ex-

ecution σ of π on g, starting from a given configuration
γ0, is a sequence of actions of π of the following form σ =
(γ0, γ1)(γ1, γ2)(γ2, γ3) . . . that is either infinite or finite but
its last configuration is terminal (i.e. there exists no actions
of π starting from this configuration). The set of all exe-
cutions of π on g, starting from all configurations of Γ, is
denoted by Σπ .

Adversary (daemon).
Intuitively, a daemon is a restriction on the executions

of distributed protocols to be considered possible. For a
distributed protocol π, at each configuration γ, a subset
of vertices are enabled, that is there exists an action of π
that modifies their state (formally, v is enabled if ∃γ′ ∈
Γ, (γ, γ′) ∈ π, γ(v) �= γ′(v)). The daemon then chooses one
of the possible action of π starting from γ (and hence, se-
lects a subset of enabled vertices that are allowed to modify
their state during this action). A formal definition follows.

Definition 1 (Daemon). Given a graph g, a daemon
d on g is a function that associates to each distributed proto-
col π on g a subset of executions of π, that is d : π ∈ Π �−→
d(π) ∈ P (Σπ).

Given a graph g, a daemon d on g and a distributed pro-
tocol π on g, an execution σ of π (σ ∈ Σπ) is allowed by d if
and only if σ ∈ d(π). Also, given a graph g, a daemon d on
g and a distributed protocol π on g, we say that π runs on
g under d if we consider that the only possible executions of
π on g are those allowed by d.

Some classical examples of daemons follow. The unfair
distributed daemon [19] (denoted by ud) is the less con-
strained one because we made no assumption on its choices
(any execution of the distributed protocol is allowed). The
synchronous daemon [15] (denoted by sd) is the one that
selects all enabled vertices in each configuration. The cen-

291



tralized (a.k.a. central) daemon [8] (denoted by cd) selects
only one enabled vertex in each configuration.

This way of viewing daemons as a set of possible execu-
tions (for a particular graph g) drives a natural partial order
over the set of daemons. For a particular graph g, a daemon
d is more powerful than another daemon d′ if all executions
allowed by d′ are also allowed by d. Overall, d has more
scheduling choices than d′. A more precise definition fol-
lows.

Definition 2 (Partial order over daemons). For
a given graph g, we define the following partial order � on
D: ∀(d, d′) ∈ D, d � d′ ⇔ (∀π ∈ Π, d(π) ⊆ d′(π)). If two
daemons d and d′ satisfy d � d′, we say that d′ is more
powerful than d.

For example, the unfair distributed daemon is more pow-
erful than any daemon (in particular the synchronous one).
Note that some daemons (for example the synchronous and
the central ones) are not comparable. For a more detailed
discussion about daemons, the reader is referred to [10].

Further notations.
Given a graph g and a distributed protocol π on g, we

introduce the following set of notations. First, n denotes
the number of vertices of the graph whereas m denotes the
number of its edges (n = |V | and m = |E|). The set of
neighbors of a vertex v is denoted by neig(v). The distance
between two vertices u and v (that is, the length of a shortest
path between u and v in g) is denoted by dist(g, u, v). The
diameter of g (that is, the maximal distance between two
vertices of g) is denoted by diam(g). For any execution
e = (γ0, γ1)(γ1, γ2) . . ., we denote by ei the prefix of e of
length i (that is ei = (γ0, γ1)(γ1, γ2) . . . (γi−1, γi)).

Guarded representation of distributed protocols.
For the sake of clarity, we do not describe distributed pro-

tocols by enumerating all their actions. Instead, we rep-
resent distributed protocols using a local description of ac-
tions borrowed from [8]. Each vertex has a local protocol
consisting of a set of guarded rules of the following form:
< label > :: < guard > −→ < action >. < label >
is a name to refer to the rule in the text. < guard > is
a predicate that involves variables of the vertex and of its
neighbors. This predicate is true if and only if the vertex
is enabled in the current configuration. We say that a rule
is enabled in a configuration when its guard is evaluated to
true in this configuration. < action > is a set of instructions
modifying the state of the vertex. This set of instructions
must describe the changes of the vertex state if this latter is
activated by the daemon.

Self-stabilization.
To formally define self-stabilizing distributed protocols,

we need first to introduce the notion of specification. The
specification of a problem is the set of executions that sat-
isfies the problem. We say that an execution satisfies the
specification of a problem if it belongs to this specification.

Intuitively, to be self-stabilizing [8], a distributed proto-
col must satisfy the two following properties: (i) closure,
that is there exists configurations such that any execution
of the distributed protocol starting from them satisfies the
specification; and (ii) convergence, that is starting from any

arbitrary configuration, any execution of the distributed pro-
tocol reaches in a finite time a configuration that satisfies the
closure property.

Self-stabilization induces fault-tolerance since the initial
configuration of the system may be arbitrary because of a
burst of transient faults. Then, a self-stabilizing distributed
protocol ensures that after a finite time (called the conver-
gence or stabilization time), the distributed protocol recov-
ers on his own a correct behavior (by convergence property)
and keeps this correct behavior as long as there is no faults
(by closure property).

Definition 3 (Self-stabilization [8]). A distributed
protocol π is self-stabilizing for specification spec under a
daemon d if starting from any arbitrary configuration every
execution of d(π) contains a configuration from which every
execution of d(π) satisfies spec.

For any self-stabilizing distributed protocol π under a dae-
mon d for a specification spec, its convergence (or stabiliza-
tion) time (denoted by conv time(π, d)) is the worst sta-
bilization time (that is, the number of actions to reach a
configuration from which any execution satisfies spec) of ex-
ecutions of π allowed by d. Note that, for any self-stabilizing
distributed protocol π under a daemon d and for any dae-
mon d′ such that d′ � d, π is self-stabilizing under d′ and
conv time(π, d′) ≤ conv time(π, d).

3. SPECULATIVE STABILIZATION
Intuitively, a speculative protocol ensures the correctness

in a large set of executions but is optimized for some scenar-
ios that are speculated to be more frequent (maybe at the
price of worse performance in less frequent cases).

Regarding self-stabilization, the most common measure
of complexity is the stabilization time. Accordingly, we
choose to define a speculatively stabilizing protocol as a self-
stabilizing protocol under a given daemon that exhibits a
significantly better stabilization time under a weaker dae-
mon (the latter gathers scenarios that are speculated to be
more frequent). We can now define our notion of speculative
stabilization.

Definition 4 (Speculative Stabilization). For two
daemons d and d′ satisfying d′ ≺ d, a distributed protocol π
is (d, d′, f, f ′)-speculatively stabilizing for specification spec
if: (i) π is self-stabilizing for spec under d; and (ii) f and f ′

are two function on g satisfying f ′ < f , conv time(π, d) ∈
Θ(f), and conv time(π, d′) ∈ Θ(f ′).

We restrict ourselves for two daemons here for the sake
of clarity. We can easily extend this definition to an ar-
bitrary number of daemons (as long as they are compara-
ble). For instance, we can say that a distributed protocol π
is (d, d1, d2, f, f1, f2)-speculatively stabilizing (with d1 ≺ d
and d2 ≺ d) if it is both (d, d1, f, f1)-speculatively stabilizing
and (d, d2, f, f2)-speculatively stabilizing.

Still for the sake of simplicity, we say in the following
that a distributed protocol π is d-speculatively stabilizing
for specification spec if there exists a daemon d �= ud such
that π is (ud, d, f, f ′)-speculatively stabilizing for specifi-
cation spec. In other words, a d-speculatively stabilizing
distributed protocol is self-stabilizing under the unfair dis-
tributed daemon (and hence always guarantees convergence)
but is optimized for a given subclass of executions described
by d.
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Examples.
Although the idea of speculative approache in self-stabi-

lization has not been yet precisely defined, there exists some
examples of self-stabilizing distributed protocols in the lit-
erature that turn out to be speculative. We survey some of
them in the following.

The seminal work of Dijkstra [8] introduced self-stabi-
lization in the context of mutual exclusion. His celebrated
protocol operates only on rings. It is in fact (ud, sd, g �→
n2, g �→ n)-speculatively stabilizing since it stabilizes upon
Θ(n2) steps under the unfair distributed daemon and it is
easy to see that it needs only n steps to stabilize under
the synchronous daemon. The well-known min + 1 pro-
tocol of [17] is (ud, sd, g �→ n2, g �→ diam(g))-speculatively
stabilizing for BFS spanning tree construction. Its stabiliza-
tion time is in Θ(n2) steps under the unfair distributed dae-
mon while it is in Θ(diam(g)) steps under the synchronous
daemon. Another example is the self-stabilizing maximal
matching protocol of [22]. This protocol is (ud, sd, g �→
m, g �→ n)-speculatively stabilizing: its stabilization time
is 4n+2m (respectively 2n+1) steps under the unfair dis-
tributed (respectively synchronous) daemon.

4. MUTUAL EXCLUSION PROTOCOL
Mutual exclusion was classically adopted as a benchmark

in self-stabilization under various settings [8, 20, 11, 5, 1].
Intuitively, it consists in ensuring that each vertex can enter
infinitely often in critical section and there are never two
vertices simultaneously in the critical section. Using such a
distributed protocol, vertices can for example access shared
resources without conflict.

Our contribution in this context is a novel self-stabilizing
distributed protocol for mutual exclusion under the unfair
distributed daemon that moreover exhibits optimal conver-
gence time under the synchronous daemon. Contrary to
the Dijkstra’s protocol, our protocol supports any underly-
ing communication structure (we do not assume that the
communication graph is reduced to a ring). Thanks to spec-
ulation, our protocol is ideal for environment in which we
speculate that most of the executions are synchronous.

We adopt the following specification of mutual exclusion.
For each vertex v, we define a predicate privilegedv (over
variables of v and possibly of its neighbors). We say that
a vertex v is privileged in a configuration γ if and only if
privilegedv = true in γ. If a vertex v is privileged in a
configuration γ and v is activated during an action (γ, γ′),
then v executes its critical section during this action. We
can now specify the mutual exclusion problem as follows.

Specification 1 (Mutual exclusion specME). An
execution e satisfies specME if at most one vertex is priv-
ileged in any configuration of e (safety) and any vertex in-
finitely often executes its critical section in e (liveness).

The rest of this section is organized as follows. Section 4.1
overviews our protocol. Section 4.2 proves the correctness of
our protocol under the unfair distributed daemon. Section
4.3 analyzes its stabilization time under the synchronous and
the unfair distributed daemon.

4.1 Speculatively Stabilizing Mutual Exclusion
As we restrict ourselves to deterministic protocols, we

know by [4] that, to ensure mutual exclusion, we must as-
sume a system with identities (that is, each vertex has a
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Figure 1: A bounded clock X = (cherry(α,K), φ) with
α = 5 and K = 12.

distinct identifier). Indeed, we know by [4] that the problem
does not admit deterministic solution on anonymous (i.e.
without identifiers) rings of composite size. Moreover, we
assume the set of identities (denoted by ID) to be equal to
{0, 1, . . . , n− 1}.

Our protocol is based upon an existing self-stabilizing
distributed protocol for the asynchronous unison problem
[12, 6]. This problem consists in ensuring, under the un-
fair distributed daemon, some synchronization guarantees
on vertices’ clocks. More precisely, each vertex has a regis-
ter rv that contains a clock value. A clock is a bounded set
enhanced with an incrementation function. Intuitively, an
asynchronous unison protocol ensures that the difference be-
tween neighbors’ registers is bounded and that each register
is infinitely often incremented.

In the following, we give the definition of this problem
and the solution proposed in [2] from which we derive our
mutual exclusion protocol.

Clock.
A bounded clock X = (C, φ) is a bounded set C =

cherry(α,K) (parametrized with two integers α ≥ 1 and
K ≥ 2) enhanced with an incrementation function φ defined
as follows.

Let c be any integer. Denote by c the unique element
in [0, . . . ,K − 1] such that c = c mod K. We define the
distance dK(c, c′) = min{c− c′, c′ − c} on [0, . . . ,K − 1].
Two integers c and c′ are said to be locally comparable if
and only if dK(a, b) ≤ 1. We then define the local relation
≤l as follows: c ≤l c

′ if and only if 0 ≤ c′ − c ≤ 1 (note that
this relation is not an order). Let us define cherry(α,K) =
{−α, . . . , 0, . . . ,K − 1}. Let φ be the function defined by:

φ : c ∈ cherry(α,K) �→
{

(c+ 1) if c < 0
(c+ 1) mod K otherwise

The pair X = (cherry(α,K), φ) is called a bounded clock
of initial value α and of size K (see Figure 1). We say that a
clock value c ∈ cherry(α,K) is incremented when this value
is replaced by φ(c). A reset on X consists of an operation
replacing any value of cherry(α,K) \ {−α} by −α. Let
initX = {−α, . . . , 0} and stabX = {0, . . . ,K − 1} be the
set of initial values and correct values respectively. Let us
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denote init∗X = initX \ {0}, stab∗X = stabX \ {0}, and ≤init

the usual total order on initX .

Asynchronous unison.
Given a distributed system in which each vertex v has

a register rv taken a value of a bounded clock X = (C, φ)
with C = cherry(α,K), we define a legitimate configuration
for asynchronous unison as a configuration satisfying: ∀v ∈
V, ∀u ∈ neig(v), (rv ∈ stabX )∧ (ru ∈ stabX )∧ (dK(rv, ru) ≤
1). In other words, a legitimate configuration is a configura-
tion in which each clock value is a correct one and the drift
between neighbors’ registers is bounded by 1. We denote by
Γ1 the set of legitimate configurations for asynchronous uni-
son. Note that we have, for any configuration of Γ1 and any
pair of vertices, (u, v), dK(ru, rv) ≤ diam(g) by definition.
We can now specify the problem.

Specification 2 (Asynchronous unison specAU).
An execution e satisfies specAU if every configuration of e
belongs to Γ1 (safety) and the clock value of each vertex is
infinitely often incremented in e (liveness).

In [2], the authors propose a self-stabilizing asynchronous
unison distributed protocol in any anonymous distributed
system under the unfair distributed daemon. The main idea
of this protocol is to reset the clock value of each vertex
that detects any local clock inconsistence (that is, when-
ever some neighbor that has a not locally comparable clock
value). Otherwise, a vertex is allowed to increment its clock
(of initial or of correct value) only if this latter has lo-
cally the smallest value. The choice of parameters α and
K are crucial. In particular, to make the protocol self-
stabilizing for any anonymous communication graph g un-
der the unfair distributed daemon, the parameters must
satisfy α ≥ hole(g) − 2 and K > cyclo(g), where hole(g)
and cyclo(g) are two constants related to the topology of g.
Namely, hole(g) is the length of a longest hole in g (i.e. the
longest chordless cycle), if g contains a cycle, 2 otherwise.
cyclo(g) is the cyclomatic characteristic of g (i.e. the length
of the maximal cycle of the shortest maximal cycle basis of
g, see [2] for a formal definition), if g contains a cycle, 2
otherwise. Actually, [2] shows that taking α ≥ hole(g) − 2
ensures that the protocol recovers in finite time a configu-
ration in Γ1. Then, taking K > cyclo(g) ensures that each
vertex increments its local clock infinitely often. Note that,
by definition, hole(g) and cyclo(g) are bounded by n.

The mutual exclusion protocol.
The main idea behind our protocol is to execute the asyn-

chronous unison of [2], presented earlier, with a particular
bounded clock and then to grant the privilege to a vertex
only when its clock reaches some value. The clock size must
be sufficiently large to ensure that at most one vertex is
privileged in any configuration of Γ1. If the definition of the
predicate privileged guarantees this property, then the cor-
rectness of our mutual exclusion protocol follows from the
one of the underlying asynchronous unison.

More specifically, we choose a bounded clock X =
(cherry(α,K), φ) with α = n and K = (2.n− 1)(diam(g)+
1)+2 and we define privilegedv ≡ (rv = 2.n+2.diam(g).idv).
In particular, note that we have : privilegedv0 ≡ (rv0 = 2.n)
and privilegedvn−1 ≡ (rvn−1 = (2.n− 2)(diam(g) + 1) + 2).

Our distributed protocol, called SSME (for Speculatively
Stabilizing Mutual Exclusion), is described in Algorithm 1.

Note that this protocol is identical to the one of [2] except
for the size of the clock and the definition of the predicate
privileged (that does not interfere with the protocol).

We prove in the following that this protocol is self-stabili-
zing for specME under the unfair distributed daemon and ex-
hibits the optimal convergence time under the synchronous
one. In other words, we will prove that this protocol is sd-
speculatively stabilizing for specME.

4.2 Correctness
We prove here the self-stabilization of SSME under the

unfair distributed daemon.

Theorem 1. SSME is a self-stabilizing distributed pro-
tocol for specME under ud.

Proof. As we choose α = n ≥ hole(g) − 2 and K =
(2.n − 1)(diam(g) + 1) + 2 > n ≥ cyclo(g), the main result
of [2] allows us to deduce that SSME is a self-stabilizing
distributed protocol for specAU under ud (recall that the
predicate privileged does not interfere with the protocol).
By definition, this implies that there exists, for any execu-
tion e of SSME under ud, a suffix e′ reached in a finite time
that satisfies specAU .

Let γ be a configuration of e′ such a vertex v is privileged
in γ. Then, by definition, we have rv = 2.n+2.diam(g).idv.
As γ belongs to e′, we can deduce that γ ∈ Γ1. Hence, for
any vertex u ∈ V \{v}, we have dK(ru, rv) ≤ diam(g). Then,
by definition of the predicate prvileged, no other vertex than
v can be privileged in γ. We can deduce that the safety of
specME is satisfied on e′. The liveness of specME on e′

follows from the one of specAU and from the definition of
the predicate privileged.

Hence, for any execution of SSME under ud, there exists
a suffix reached in a finite time that satisfies specME, that
proves the theorem.

4.3 Time Complexities
This section analyses the time complexity of our self-stabi-

lizing mutual exclusion protocol. In particular, we provide
an upper bound of its stabilization time under the syn-
chronous daemon (see Theorem 2) and under the unfair dis-
tributed daemon (see Theorem 3).

Synchronous daemon.
We first focus on the stabilization time of SSME under

the synchronous daemon. We need to introduce some nota-
tions and definitions.

From now, e = (γ0, γ1)(γ1, γ2) . . . denotes a synchronous
execution of SSME starting from an arbitrary configuration
γ0. For a configuration γi and a vertex v, riv denotes the
value of rv in γi.

Definition 5 (Island). In a configuration γi, an is-
land I is a maximal (w.r.t. inclusion) set of vertices such
that I � V and ∀(u, v) ∈ I, u ∈ neig(v) ⇒ correctv(u). A
zero-island is an island such that ∃v ∈ I, riv = 0. A non-
zero-island is an island such that ∀v ∈ I, riv �= 0.

Note that any vertex v that satisfies rv ∈ stabX in a con-
figuration γ /∈ Γ1 belongs by definition to an island (either
a zero-island or a non-zero-island) in γ.

Definition 6 (Border and depth of an island).
In a configuration γi that contains an island I �= ∅, the
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Algorithm 1 SSME: Mutual exclusion protocol for vertex v.

Constants:
idv ∈ ID : identity of v
n ∈ N : number of vertices of the communication graph
diam(g) ∈ N : diameter of the communication graph
X = (cherry(n, (2.n− 1)(diam(g) + 1) + 2), φ) : clock of v

Variable:
rv ∈ X : register of v

Predicates:
privilegedv ≡ (rv = 2.n+ 2.diam(g).idv)
correctv(u) ≡ (rv ∈ stabX ) ∧ (ru ∈ stabX ) ∧ (dK(rv, ru) ≤ 1)
allCorrectv ≡ ∀u ∈ neig(v), correctv(u)
normalStepv ≡ allCorrectv ∧ (∀u ∈ neig(v), rv ≤l ru)
convergeStepv ≡ rv ∈ init∗X ∧ ∀u ∈ neig(v), (ru ∈ initX ∧ rv ≤init ru)
resetInitv ≡ ¬allCorrectv ∧ (rv /∈ initX )

Rules:
NA :: normalStepv −→ rv := φ(rv)
CA :: convergeStepv −→ rv := φ(rv)
RA :: resetInitv −→ rv := −n

border of I (denoted by border(I)) is defined by border(I) =
{v ∈ I |∃u ∈ V \ I, u ∈ neig(v)} and the depth of I (denoted
by depth(I)) is defined by depth(I) = max{min{dist(g, v, u)|
u ∈ border(I)}|v ∈ I}.

Then, we have to prove a set of preliminary lemmata be-
fore stating our main theorem.

Lemma 1. If a vertex v is privileged in a configuration γi
(with 0 ≤ i < diam(g)), then v cannot execute rules CA and
RA in ei.

Proof. As the result is obvious for i = 0, let γi (with
0 < i < diam(g)) be a configuration such that a vertex v
is privileged in γi. Then, we have by definition that riv =
2.n+ 2.diam(g).idv.

By contradiction, assume that v executes at least once rule
CA or RA in ei. Let j be the biggest integer such that v
executes rule CA or RA during action (γj , γj+1) with j < i.

Assume that v executes rule RA during (γj , γj+1). Then,
we have rj+1

v = −n. From this point, only rule CA may be
enabled at v but v does not execute it by construction of j.
Then, we can deduce that riv = −n that is contradictory.

Hence, we know that v executes rule CA during (γj , γj+1).
Consequently, we have rj+1

v ∈ initX by construction of the
rule. As v can only execute rule NA between γj+1 and γi by
construction of j, we can deduce that riv ∈ initX∪{0, . . . , 0+
i− (j+1)}. As 0+ i− (j+1) < diam(g), this contradiction
proves the result.

Lemma 2. If a vertex v is privileged in a configuration
γi (with 0 ≤ i < diam(g)), then v cannot belong to a zero-
island in any configuration of ei.

Proof. Let γi (with 0 ≤ i < diam(g)) be a configuration
such that a vertex v is privileged in γi. Then, we have by
definition that riv = 2.n+ 2.diam(g).idv.

By contradiction, assume that there exists some configu-
rations of ei such that v belongs to a zero-island. Let j be
the biggest integer such that v belongs to a zero-island I in
γj with j ≤ i.

By definition of a zero-island, we know that there exists
a vertex u in I such that rju = 0. As dist(g, u, v) ≤ diam(g)
and u and v belongs to the same island in γj , we have

dK(rju, r
j
v) ≤ diam(g). By construction of the clock, we have

so rjv ∈ {(2.n− 2)(diam(g) + 1) + 3, . . . , 0, . . . , diam(g)}.
By Lemma 1, we know that v may execute only rule NA

between γj and γi. Then, we have r
i
v ∈ {(2.n−2)(diam(g)+

1)+3, . . . , 0, . . . , diam(g)+ (i− j)}. As diam(g)+ (i− j) <
2.diam(g) < 2.n + 2.diam(g) < . . ., v cannot be privileged
in γi (whatever is its identity). This contradiction proves
the result.

Lemma 3. If a vertex v belongs to a non-zero-island of
depth k ≥ 0 in a configuration γi (with 0 < i < diam(g)),
then v belongs either to a non-zero-island of depth at least
k + 1 or to a zero-island in γi−1.

Proof. Let γi (with 0 < i < diam(g)) be a configuration
such that a vertex v belongs to a non-zero-island I of depth
k ≥ 0 in γi.

Assume that v does not belongs to any island in γi−1. In
other words, we have ri−1

v ∈ init∗X . Consequently, v may
only execute rule CA during action (γi−1, γi) and we have
riv ∈ initX . This means that v either belongs to a zero-island
or does not belong to any island in γi. This contradiction
shows us that v belongs to an island in γi−1.

If v belongs to a zero-island in γi−1, we have the result.
Otherwise, assume by contradiction that v belongs to a non-
zero island I ′ such that depth(I ′) ≤ k in γi−1. By definition
of a non-zero-island, all vertices of border(I ′) are enabled
by rule RA in γi−1. As we consider a synchronous execu-
tion, we obtain that I (the non-zero-island that contains v
in γi) satisfies depth(I) < k. This contradiction shows the
lemma.

Lemma 4. If γ0 /∈ Γ1, then any vertex v satisfies

r
diam(g)
v ∈ initX ∪ {(2.n − 2)(diam(g) + 1) + 3, . . . , 0, . . . ,
2.diam(g)− 1}.

Proof. Assume that γ0 /∈ Γ1. Then, by definition of Γ1

and by the construction of the protocol, we know that there
exists a set ∅ �= V ′ ⊆ V such that vertices of V ′ are enabled
by rule RA in γ0. Let v be an arbitrary vertex of V .

If v executes at least once the rule RA during ediam(g), let
i be the biggest integer such that v executes rule RA during
(γi, γi+1) with i < diam(g). Then, we have ri+1

v = −n. As
diam(g) − (i + 1) < n, we can deduce that v may execute
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only rule CA between γi and γdiam(g). Consequently, we

have r
diam(g)
v ∈ initX .

If v executes at least once the rule CA but never executes
rule RA during ediam(g), let i be the biggest integer such
that v executes rule CA during (γi, γi+1) with i < diam(g).
Then, we have ri+1

v ∈ initX . By construction of i, we can
deduce that v may execute only rule NA between γi and

γdiam(g). As diam(g)−(i+1) < diam(g), we have r
diam(g)
v ∈

initX ∪ {0, . . . , diam(g)− 1}.
Otherwise (v executes only rule NA during ediam(g)), let

i be the integer defined by i = min{dist(g, v, v′)|v′ ∈ V ′}.
Note that 0 < i ≤ diam(g) by construction (recall that
v /∈ V ′). We can deduce that v belongs to a zero-island in
γi (otherwise, v executes rule RA or CA during (γi, γi+1)).
By definition of a zero-island, we have then riv ∈ {(2.n −
2)(diam(g) + 1) + 3, . . . , 0, . . . diam(g)}. As v may execute
only rule NA between γi and γdiam(g) and diam(g) − i <

diam(g), we can deduce that r
diam(g)
v ∈ {(2.n−2)(diam(g)+

1) + 3, . . . , 0, . . . , 2.diam(g)− 1}.

Theorem 2. conv time(SSME, sd) ≤
⌈

diam(g)
2

⌉

Proof. By contradiction, assume that conv time(

SSME, sd) >
⌈

diam(g)
2

⌉
. This means that there exists a

configuration γ0 such that the synchronous execution e =
(γ0, γ1)(γ1, γ2) . . . of SSME satisfies: there exists an inte-

ger i ≥
⌈

diam(g)
2

⌉
and two vertices u and v such that u

and v are simultaneously privileged in γi. Let us study the
following cases (note that they are exhaustive):

Case 1:
⌈

diam(g)
2

⌉
≤ i < diam(g)

By Lemma 1, we know that u may execute only rule
NA in ei. This implies that ∀j ≤ i, rju ∈ stabX and then
dK(riu, r

0
u) ≤ i. By the same way, we can prove that

dK(riv, r
0
v) ≤ i.

If u is privileged in γi, this means that riu ∈ stabX and
dK(riu, 0) > diam(g). As u and v are simultaneously privi-
leged in γi, we have by definition that dK(riu, r

i
v) > diam(g).

This implies that γi /∈ Γ1 and that u belongs to a non-zero-
island I such that depth(I) ≥ 1 in γi. By recursive applica-
tion of Lemmas 2 and 3, we deduce that u belongs to a non-

zero-island I ′ such that depth(I ′) ≥ i + 1 ≥
⌈

diam(g)
2

⌉
+ 1

in γ0. The same property holds for v. As dist(g, u, v) ≤
diam(g), we can deduce that u and v belongs to the same
non-zero-island in γ0, that allows us to state dK(r0u, r

0
v) ≤

diam(g).
Without loss of generality, assume that idu < idv . Let us

now distinguish the following cases:
If idv − idu ≥ 2, as u and v are simultaneously privileged

in γi, we have dK(riu, r
i
v) ≥ 2.n+diam(g)+1 (if idu = n−1

and idv = 0) or dK(riu, r
i
v) ≥ 4.diam(g) (otherwise). Note

that in both cases, we have dK(riu, r
i
v) ≥ 3.diam(g). Recall

that dK is a distance. In particular, it must satisfy the tri-
angular inequality. Then, we have dK(riu, r

i
v) ≤ dK(riu, r

0
u)+

dK(r0u, r
0
v) + dK(r0u, r

i
v). By previous result, we obtain that

dK(riu, r
i
v) ≤ diam(g) + 2.i < 3.diam(g), that is contradic-

tory.
If idv − idu = 1, by construction of γi, we have riu =

2.n+2.diam(g).idu > 0 and riv = 2.n+2.diam(g). (idu+1).
Then, we obtain riv − riu = 2.diam(g). Hence, we have 0 <
r0u ≤ riu < r0v ≤ riv. Then, we can deduce from riv − riu =
2.diam(g) and riu−rou ≥ 0 that riv−r0u ≥ 2.diam(g). On the

other hand, previous results show us that r0v−r0u ≤ diam(g)
and riv − r0v < diam(g). It follows riv − r0u < 2.diam(g), that
is contradictory.
Case 2: diam(g) ≤ i < 2.n+ diam(g)

As u and v are simultaneously privileged in γi, we have by
definition that dK(riu, r

i
v) > diam(g). This implies that γi /∈

Γ1 and then γ0 /∈ Γ1 (otherwise, we obtain a contradiction
with the closure of specAU).

By Lemma 4, for any vertex w, r
diam(g)
w ∈ initX ∪{(2.n−

2)(diam(g) + 1) + 3, . . . , 0, . . . , 2.diam(g) − 1}. As w may
execute at most i− diam(g) < 2.n actions between γdiam(g)

and γi, we can deduce that riw ∈ initX∪{(2.n−2)(diam(g)+
1) + 3, . . . , 0, . . . , 2.n+ 2.diam(g)− 1} for any vertex w.

By construction of the clock and the definition of the pred-
icate privileged, we can conclude that there is at most one
privileged vertex (the one with identity 0) in γi, that is con-
tradictory.
Case 3: i ≥ 2.n+ diam(g)

By [3], we know that SSME stabilizes to specAU in at
most α+ lcp(g)+diam(g) steps under the synchronous dae-
mon where lcp(g) denotes the length of the longest elemen-
tary chordless path of g. As we have α = n by construction
and lcp(g) ≤ n by definition, we can deduce that SSME
stabilizes to specAU in at most 2.n + diam(g) steps under
the synchronous daemon.

In particular, this implies that γi ∈ Γ1. Then, using proof
of Theorem 1, we obtain a contradiction with the fact that
u and v are simultaneously privileged in γi.

We thus obtain that conv time(SSME, sd) ≤
⌈

diam(g)
2

⌉
.

Unfair distributed daemon.
We now interested in the stabilization time of our mutual

exclusion protocol under the unfair distributed daemon. Us-
ing a previous result from [7], we have the following upper
bound:

Theorem 3. conv time(SSME, ud) ∈ O(diam(g).n3)

Proof. Remind that the stabilization time of SSME for
specAU is an upper bound for the one for specME whatever
the daemon is. The step complexity of this protocol is tricky
to exactly compute. As the best of our knowledge, [7] pro-
vides the best known upper bound on this step complexity.

The main result of [7] is to prove that SSME stabilizes in
at most 2.diam(g).n3+(α+1).n2+(α− 2.diam(g)).n steps
under ud. Since we chose α = n, we have the result.

5. SYNCHRONOUS LOWER BOUND
We prove here a lower bound on the stabilization time

of mutual exclusion under a synchronous daemon, showing
hereby that our speculatively stabilizing protocol presented
in Section 4.1 is in this sense optimal. We introduce some
definitions and a lemma.

Definition 7 (Local state). Given a configuration γ,
a vertex v and an integer 0 ≤ k ≤ diam(g), the k-local state
of v in γ (denoted by γv,k) is the configuration of the com-
munication subgraph g′ = (V ′, E′) induced by V ′ = {v′ ∈
V |dist(g, v, v′) ≤ k} defined by ∀v′ ∈ V ′, γv,k(v′) = γ(v′).

Note that γv,0 = γ(v) by definition.
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Definition 8 (Restriction of an execution).
Given an execution e = (γ0, γ1)(γ1, γ2) . . . and a vertex v,
the restriction of e to v (denoted by ev) is defined by ev =
(γ0(v), γ1(v))(γ1(v), γ2(v)) . . ..

Lemma 5. For any self-stabilizing distributed protocol π
for specME under the synchronous daemon and any pair of
configuration (γ, γ′) such that there exists a vertex v and
an integer 1 ≤ k ≤ diam(g) satisfying γv,k = γ′

v,k, the
restrictions to v of the prefixes of length k of executions of
π starting respectively from γ and γ′ are equals.

Proof. Let π be a self-stabilizing distributed protocol
for specME under the synchronous daemon and (γ, γ′) two
configurations such that there exists a vertex v and an inte-
ger 1 ≤ k ≤ diam(g) satisfying γv,k = γ′

v,k. We denote by
e = (γ, γ1)(γ1, γ2) . . . (respectively e′ = (γ′, γ′

1)(γ
′
1, γ

′
2) . . .)

the synchronous execution of π starting from γ (respectively
γ′). We are going to prove the lemma by induction on k.

For k = 1, we have γv,1 = γ′
v,1, that is the state of v and

of its neighbors are identical in γ and γ′. As the daemon is
synchronous, we have (e1)v = (e′1)v, that implies the result.

For k > 1, assume that the lemma is true for k − 1.
The induction assumption and the synchrony of the dae-
mon allows us to deduce that (ek−1)v = (e′k−1)v and ∀u ∈
neig(v), (ek−1)u = (e′k−1)u. Hence, we have (γk−1)v,1 =
(γ′

k−1)v,1. Then, by the same argument than in the case
k = 1, we deduce that (γk)v,0 = (γ′

k)v,0, that implies the
result.

Theorem 4. Any self-stabilizing distributed protocol π for

specME satisfies conv time(π, sd) ≥
⌈

diam(g)
2

⌉
.

Proof. By contradiction, assume that there exists a self-
stabilizing distributed protocol π for specME such that

conv time(π, sd) <
⌈

diam(g)
2

⌉
. For the sake of notation,

let us denote t = conv time(π, sd).
Given an arbitrary communication graph g, choose two

vertices u and v such that dist(g, u, v) = diam(g) and an
arbitrary configuration γ0. Denote by e = (γ0, γ1)(γ1, γ2) . . .
the synchronous execution of π starting from γ0.

By definition, e contains an infinite suffix in which u (re-
spectively v) executes infinitely often its critical section.
Hence, there exists a configuration γi (respectively γj) such
that u (respectively v) is privileged in γi (respectively γj)
and i > t (respectively j > t).

As t <
⌈

diam(g)
2

⌉
and dist(g, u, v) = diam(g), there exists

at least one configuration γ′
0 such that (γ′

0)u,t = (γi−t)u,t
and (γ′

0)v,t = (γj−t)v,t. Let e′ = (γ′
0, γ

′
1)(γ

′
1, γ

′
2) . . . be the

synchronous execution of π starting from γ′
0.

By Lemma 5, we can deduce that the restriction to u of
the prefix of length t of e′ is the same as the one of the suffix
of e starting from γi−t. In particular, u is privileged in γ′

t.
By the same way, we know that v is privileged in γ′

t. This
contradiction leads to the result.

6. CONCLUSION
This paper studies explicitly for the first time the notion

of speculation in self-stabilization. As the main measure in
this context is the stabilization time, we naturally consider
that a speculatively stabilizing protocol is a self-stabilizing
protocol for a given adversary that exhibits moreover a bet-
ter stabilization time under another (and weaker) adversary.

This weaker adversary captures a subset of most probable
executions for which the protocol is optimized.

To illustrate this approach, we consider the seminal prob-
lem of Dijkstra on self-stabilization: mutual exclusion. We
provide a new self-stabilizing mutual exclusion protocol. We
prove then that this protocol has an optimal stabilization
time in synchronous executions.

Our paper opens a new path of research in self-stabilization
by considering the stabilization time of a protocol as a func-
tion of the adversary and not as a single value. As a contin-
uation, one could naturally apply our new notion of specu-
lative stabilization to other classical problems of distributed
computing and provide speculative protocols for other ad-
versaries than the synchronous one. It may also be interest-
ing to study a composition tool that automatically ensures
speculative stabilization.
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