
1

A Self-Stabilizing Memory Efficient Algorithm
for the Minimum Diameter Spanning Tree

under an Omnipotent Daemon
Lélia Blin1 Fadwa Boubekeur2 Swan Dubois3

Abstract—The diameter of a network is one of the most
fundamental network parameters. Being able to compute the
diameter is an important problem in the analysis of large
networks, and moreover this parameter has many important
practical applications in real networks. As a consequence, it is
natural to study this problem in a distributed system, and more
specifically in a distributed system tolerant to transient faults.
More specifically, we are interested in the problem to identify
one of the centers of graph. Once done, we construct a minimum
diameter spanning tree rooted in this center. Of course, the
challenging problem is to compute one center of the graph.

We present a uniform self-stabilizing algorithm for the mini-
mum diameter spanning tree construction problem in the state
model. Our protocol has several attractive features that makes it
suitable for practical purposes. It is the first algorithm for this
problem that operates under the unfair adversary (also called
unfair daemon). In other words, no restriction is made on the
distributed behavior of the system. Consequently, it is the hardest
adversary to deal with. Moreover, our algorithm needs only
O(logn) bits of memory per process (where n is the number
of processes), that improves the previous result by a factor n.
These improvements are not achieved to the detriment of the
convergence time, that stays reasonable with O(n2) rounds.

Keywords—Self-stabilization; Spanning tree; Center; Diameter;
MDST; Unfair daemon;

I. INTRODUCTION

Self-stabilization [1], [2], [3] is one of the most versatile
techniques to sustain availability, reliability, and serviceability
in modern distributed systems. After the occurrence of a
catastrophic failure that placed the system components in some
arbitrary global state, self-stabilization guarantees recovery to
a correct behavior in finite time without external (i.e. human)
intervention. This approach is particularly well-suited for self-
organized or autonomic distributed systems.

1 Université d’Evry-Val-d’Essonne F-91000, Evry, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
E-mail: lelia.blin@lip6.fr
Additional supports from the ANR project IRIS

2 Sorbonne Universités, UPMC Université Paris 6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
E-mail: fadwa.boubekeur@lip6.fr
Additional supports from the ANR project IRIS

3 Sorbonne Universités, UPMC Université Paris 6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
Inria, Équipe-projet REGAL, F-75005, Paris, France
E-mail: swan.dubois@lip6.fr

In this context, one critical task of the system is to recover
efficient communications. A classical way to deal with this
problem is to construct a spanning tree of the system and
to route messages between processes only on this structure.
Depending on the constraints required on this spanning tree
(e.g. minimal distance to a particular process, minimum flow,
...), we obtain routing protocols that optimize different metrics.

In this paper, we focus on the minimum diameter spanning
tree (MDST) construction problem [4]. The MDST prob-
lem is a particular spanning tree construction in which we
require spanning trees to minimize their diameters. Indeed,
this approach is natural if we want to optimize the worst
communication delay between any pair of processes (since this
latter is bounded by the diameter of the routing tree, that is
minimal in the case of the MDST).

The contribution of this paper is to present a new self-
stabilizing MDST algorithm that operates in any asynchronous
environment and that improves existing solutions with respect
to the memory space required per process. Namely, we de-
crease the best known space complexity for this problem by a
factor of n (where n is the number of process). Note that this
does not come at the price of degrading time performance.

a) Related works: Spanning tree construction was ex-
tensively studied in the context of distributed systems either
in a fault-free setting or in presence of faults. There is a
huge literature on the self-stabilizing construction of various
kinds of trees, including spanning trees (ST) [5], [6], breadth-
first search (BFS) trees [7], [8], [9], [10], [11], depth- first
search (DFS) trees [12], [13], minimum-weight spanning trees
(MST) [14], [15], shortest-path spanning trees [16], [17],
minimum-degree spanning trees [18], Steiner Tree [19], etc.
A survey on self-stabilizing distributed protocols for spanning
tree construction can be found in [20].

The MDST problem is closely related to the determination
of centers of the system [21]. Indeed, a center is a process
that minimizes its eccentricity (i.e. its maximum distance to
any other process of the system). Then, it is well-known that
a BFS spanning tree rooted to a center is a MDST. As there
exists many self-stabilizing solutions to BFS spanning tree
construction, we focus in the following on the hardest part
of the MDST problem : the center computation problem.

A natural way to compute the eccentricity of processes
of a distributed system (and by the way, to determine its
centers) is to solving first the all-pairs shortest path (APSP)
problem. This problem consists in computing, for any pair
of processes, the distance between them in the system. This

2

problem was extensively studied under various assumptions.
For instance, [22] provides a good survey on recent distributed
solutions to this problem and presents an almost optimal
solution in synchronous settings. Note that there exist also
some approximation results for this problem, e.g. [23], [24],
but they fall outside the scope of this work since we focus
on exact algorithms. In conclusion, this approach is appealing
since it allows to use well-known solutions to the APSP
problem but it yields automatically to a O(n log n) space
requirement per process (due to the very definition of the
problem).

In contrast, only a few works focused directly on the com-
putation of centers of a distributed system in order to reduce
space requirement as we do in this work. In a synchronous
and fault-free environment, we can cite [25] that presents the
first algorithm for computing directly centers of a distributed
system. In a self-stabilizing setting, some works [26], [27],
[28] described solutions that are specific to tree topologies. The
most related work to ours is from Butelle et al. [29]. The self-
stabilizing distributed protocol proposed in this latter makes
no assumptions on the underlying topology of the system and
works in asynchronous environments. Its main drawback lies
in its space complexity of O(n log n) bits per process, that is
equivalent to those of APSP-based solutions.

b) Our contribution: At the best of our knowledge, the
question whether it is possible to compute centers of any
distributed system in a self-stabilizing way using only a
sublinear memory per process is still open. Our main contri-
bution is to answer positively to this question by providing
a new deterministic self-stabilizing algorithm that requires
only O(log n) bits per process, that improves the existing
results by a factor n. Moreover, our algorithm is suitable for
any asynchronous environment since we do not make any
assumption on the adversary (or daemon) and has a reasonable
time of convergence in O(n2) rounds (that is comparable with
existing solutions [29]).

c) Organization of the paper: This paper is organized as
follows. In section II, we formalize the model used afterwards.
Section III is devoted to the description of our algorithm while
Section IV contains a sketch of its correctness proof. Finally,
we discuss some open questions in Section V.

II. MODEL AND DEFINITIONS

d) State model: We model the system as an undirected
connected graph G = (V,E) where V is a set of processes
and E is a binary relation that denotes the ability for two
processes to communicate, i.e. (u, v) ∈ E if and only if u and
v are neighbors. We consider only identified systems (i.e. there
exists a unique identifier IDv for each process v taken in the
set [0, nc] for some constant c). The set of all neighbors of v,
called its neighborhood, is denoted by Nv . In the following,
n denotes the number of processes of the network.

We consider the classical state model (see [2]) where
communications between neighbors are modeled by direct
reading of variables instead of exchange of messages. Every
process has of a set of shared variables (henceforth, referred
to as variables). A process v can write to its own variables

only, and read its own variables and those of its neighbors.
The state of a process is defined by the current value of its
variables. The state of a system (a.k.a. the configuration) is
the product of the states of all processes. We denote by Γ
the set of all configurations of the system. The algorithm
of every process is a finite set of rules. Each rule consists
of: <label>:<guard>−→<statement>. The label of a rule is
simply a name to refer the action in the text. The guard of a rule
in the algorithm of v is a boolean predicate involving variables
of v and of its neighbors. The statement of a rule of v updates
one or more variables of v. A statement can be executed only
if the corresponding guard is satisfied (i.e. it evaluates to true).
The process rule is then enabled, and process v is enabled in
γ ∈ Γ if and only if at least one rule is enabled for v in γ.

A step γ → γ′ is defined as an atomic execution of a
non-empty subset of enabled rules in γ that transitions the
system from γ to γ′. An execution of an algorithm A is a
maximal sequence of configurations ε = γ0γ1 . . . γiγi+1 . . .
such that, ∀i ≥ 0, γi → γi+1 is a step if γi+1 exists (else γi is
a terminal configuration). Maximality means that the sequence
is either finite (and no action of A is enabled in the terminal
configuration) or infinite. E is the set of all possible executions
of A. A process v is neutralized in step γi → γi+1 if v is
enabled in γi and is not enabled in γi+1, yet did not execute
any rule in step γi → γi+1.

The asynchronism of the system is modeled by an adversary
(a.k.a. daemon) that chooses, at each step, the subset of
enabled processes that are allowed to execute one of their
rules during this step (we say that such processes are activated
during the step). The literature proposed a lot of daemons
depending of their characteristics (like fairness, distribution,
...), see [30] for a taxonomy of these daemons. Note that
we assume an unfair distributed daemon in this work. This
daemon is the most challenging since we made no assumption
of the subset of enabled processes choosen by the daemon at
each step (we only require this set to be non empty if the set of
enabled processes is not empty in order to guarantee progress
of the algorithm).

To compute time complexities, we use the definition of
round [31]. This definition captures the execution rate of the
slowest process in any execution. The first round of ε ∈ E ,
noted ε′, is the minimal prefix of ε containing the execution
of one action or the neutralization of every enabled process
in the initial configuration. Let ε′′ be the suffix of ε such that
ε = ε′ε′′. The second round of ε is the first round of ε′′, and
so on.

e) Self-stabilization: Let P be a problem to solve. A spec-
ification of P is a predicate that is satisfied by every algorithm
solving P . We recall the definition of self-stabilization.

Definition 1 (Self-stabilization [1]): Let P be a problem,
and SP a specification of P . An algorithm A is self-stabilizing
for SP if and only if for every configuration γ0 ∈ Γ, for every
execution ε = γ0γ1 . . ., there exists a finite prefix γ0γ1 . . . γl
of ε such that every execution of A starting from γl satisfies
SP .

3

III. PRESENTATION OF THE ALGORITHM

In this section, we present our self-stabilizing algorithm for
the computation of centers of the distributed system, named
SSCC (for Self Stabilizing Centers Computation). We organize
this section in the following way. First, we give a global
overview of our algorithm in Section III-A. Then, Sections
III-B, III-C, III-D, and III-E are devoted to the detailed
presentation of each module of our algorithm, respectively a
leader election module, a token circulation module, an eccen-
tricity computation module, and finally the center computation
module.

A. High-level Description
Our algorithm is based on several layers, each of them

performing a specific task. Of course, these layers operate
concurrently but, for the clarity of presentation, we present
them sequentially in a “down-to-top” order.

The first layer is devoted to the construction of a rooted
spanning tree. As we have an uniform model (that is, all
processes execute the same self-stabilizing algorithm), there
is no a priori distinguished process that may take the role
of the root of the system. Therefore, we need first to elect a
leader. We use an algorithm that performs such an election and
constructs a spanning tree in the same time. To our knowledge,
only the algorithm proposed by [32] corresponds to our criteria
in terms of daemon, memory requirement and convergence
time. Indeed, Datta et al. [32] designed a self-stabilizing
algorithm to construct a BFS tree rooted at the process of
minimum identity. This algorithm self-stabilizes even under
the distributed unfair daemon, it uses O(log n) bits of memory
per process and it converges in O(n) rounds. Throughout the
rest of the paper, we call the BFS tree constructed by this first
layer the Backbone of the system.

The second layer is a token circulation on the Backbone.
Along all existing self-stabilizing algorithms for token cir-
culation, we choose to slightly adapt an algorithm of Petit
and Villain [33]. The aim of this token circulation is to
synchronize the temporal multiplexing of variables of the third
layer of our algorithm that computes the eccentricity of each
process. Indeed, in order to reduce the space requirement of our
algorithm to O(log n) bits per process, all processes compute
their eccentricities using the same variables, but one at a time
and in a sequentially fashion. To avoid conflicts, we manage
this mutual exclusion by a token circulation. In more details,
we distinguish, for each process, the forward token circulation
(that is, the process gets the token from its parent in the
Backbone) and the backward token circulations (that is, the
process gets back the token from one of its children in the
Backbone).

A process starts the execution of the third layer of our
algorithm (that is, computation of process eccentricity) only on
the forward token circulation. On a backward token circulation,
the process sends the token at the following process in the
Backbone in a DFS order, without performing any extra task.
A process v computes its eccentricity in the following way.
When it receives the forward token, v starts a self-stabilizing
BFS tree construction rooted at itself. We denote this BFS by

BFS(v). Once the construction of BFS(v) is done, the leaves
of this tree start a feedback phase that consists in propagating
back to v the maximum depth of a process in BFS(v) (which
is exactly the eccentricity of v). Once process v has collected
its eccentricity, it releases the token to the following process
in the Backbone.

Finally, the fourth layer aim is the center determination.
The minimum eccentricity (computed for each process by
the third layer) is collected all the time from the leaves of
the Backbone to its root. Then, the root propagates this
minimum eccentricity to all processes along the Backbone.
The processes with the minimum eccentricity become centers.
In addition, among the centers, we elect the one with the
highest identity to be the root of the minimum diameter
spanning tree.

We claim that each layer of this algorithm stack is self-
stabilizing and that their composition self-stabilizes to a
minimum diameter spanning tree of the system under the
distributed unfair daemon within O(n2) rounds. As each layer
of our algorithm needs at most O(log n) bits per process, we
obtain the desired space complexity.

B. Leader Election and Spanning Tree Construction
The first layer of our algorithm executes a self-stabilizing

algorithm from Datta et al. [32] that elects the process of
smallest identity in the system and constructs a BFS spanning
tree rooted at this leader. This algorithm works under the
distributed unfair daemon, uses O(log n) bits of memory per
process, and stabilizes within O(n) rounds.

Since we use this algorithm as a black box, we do not need
to present it formally here. The interested reader is referred to
the original paper [32]. Remember that we call Backbone the
BFS tree built by this layer of our algorithm. For the remainder
of the presentation, we denote the parent of any process v in the
Backbone by pv , the set of children of v in the Backbone by
child(v), and the set of neighbors of v in the Backbone by
NBackbone(v). That is, if the Backbone is defined by the 1-
factor {(v,pv), v ∈ V }, then we have child(v) = {u ∈
V : pu = v} and NBackbone(v) = child(v) ∪ {pv}. We also
define the predicate Root(v) over variables of this layer. This
predicate is true if and only if the process v is the root of the
Backbone.

It is important to note that the construction of the backbone
has higher priority than the other layers of our algorithm
(that is, token circulation, eccentricity computation, and centers
determination). In other words, if a process v has a neighbor
with a different root in the Backbone or a neighbor with
an incoherent distance in the Backbone, v cannot execute a
rule related to any other layer. This priority is needed for our
algorithm to operate under an unfair daemon.

C. Token Circulation

The second layer of our algorithm is a slight adaptation of a
self-stabilizing token circulation algorithm by Petit and Villain
[33]. The (eventually unique) token circulates infinitely often
over the Backbone in a DFS order. This algorithm operates

4

D

D

D

D

D

⊥

⊥

⊥

⊥

⊥

D

⊥⊥

Fig. 1. Illustration of the variable next of the token circulation layer. The gray process is the root of the Backbone. D stands
for the value done.

Next(v) =

{
u if ∃u ∈ child(v), IDu = min{IDw | w ∈ child(v) ∧ (IDw � nextv)}
⊥ if Root(v) ∧ nextv ∈ child(v) ∧ (∀u ∈ child(v),nextv � IDu ∨ nextv = IDu)
done otherwise

ErValues(v) ≡ nextv 6∈ child(v) ∪ {⊥, done}
PermR(v) ≡ (Next(v) = ⊥) ∨ (nextNext(v) = ⊥)

PermNd(v) ≡ (Next(v) = done) ∨ (nextNext(v) = ⊥)

BackR(v) ≡ Root(v) ∧ (nextv = u) ∧ (nextu = done) ∧ PermR(v)

BackNd(v) ≡ ¬Root(v) ∧ (nextp
v

= v) ∧ (nextv ∈ child(v)) ∧ (nextNext(v) = done) ∧ PermNd(v)

TokenD(v) ≡ (nextv = ⊥) ∧
(
(Root(v) ∧ PermR(v)) ∨ (¬Root(v) ∧ (nextp

v
= v) ∧ PermNd(v)

)
Fig. 2. Predicates and fonction dedicated to the token circulation.

under the distributed unfair daemon, it uses O(log n) bits of
memory per process and converges in O(n) rounds.

This algorithm uses only one variable for each process v:
nextv ∈ {⊥, done, Nv}. This variable stores the state of the
process with respect to the current token circulation. The value
⊥ means that the process has not already been visited by the
token. When nextv points to a children of v in the Backbone,
that means that v has been visited by the token and that v sent
the token to its child pointed by nextv . The value done means
that the process and all its children in the Backbone have
already been visited by the token. In other words, the token
is held by the first process v with nextv = ⊥ along the path
issued from the root of the Backbone following (non-⊥ and
non-done) next variables. Refer to Figure 1 for an illustration.
We define a total order � over the values of variable next by
extending the natural order > over identities with the following
assumption: for any process v, we have done � IDv � ⊥.

The formal presentation of this layer is provided by Algo-
rithm 1 and Figure 2 sums up the function and predicates used
by this algorithm. This algorithm consists of two rules. The
first one, RErToken, is used to perform the convergence towards
a unique token while the second one, RBackward, performs

the backward circulation of the token. Note that the forward
circulation rule is left to the next layer of our protocol (see
below for more explanations on the relationship between these
two layers).

We modify the original algorithm of [33] in the following
way. When a process v receives the token, this latter is
blocked by v until the third layer of our protocol computes the
eccentricity of this process. This is done by the construction of
a BFS tree rooted at v and by the gathering of the maximum
distance between v and any other process in the system (refer
to Section III-D for more details on this layer). This is the
reason why the forward token circulation is not performed by a
rule of Algorithm 1 but by the rule REndBFS in Algorithm 2 (that
described the third layer of our algorithm). Communication
between these two layers on the state of the token is performed
using the predicate TokenD(v). When the token circulation
layer gives the token to process v, this predicate becomes true,
that allows the eccentricity computation layer to start. Once the
eccentricity of process v is computed, this latter updates nextv
(see REndBFS in Algorithm 2) that performs the forward token
circulation (exactly as in the original algorithm of [33]).

We also slightly modify the backward token circulation in

5

Algorithm 1 Token circulation for process v

RErToken : ErValues(v) ∨
(
¬Root(v) ∧ (nextp

v
6= v) ∧ (nextv ∈ child(v) ∪ {done})

)
→ nextv := ⊥;

RBackward : ¬ErValues(v) ∧ (BackNd(v) ∨ BackR(v)) ∧ (RbfsNext(v) 6= ID(Next(v))) → nextv := Next(v);

order to ensure the converge of the eccentricity computation
layer. If the process v wants to send the token in a backward
circulation to a neighbor u, v has to wait in the case where
u is currently computing its own eccentricity (this situation
is possible if u wrongly believes to have the token). We
perform this waiting using a variable Rbfsu dedicated to the
BFS construction (see Section III-D for the definition of this
variable). This variable stores the identity of the root of the
BFS tree construction in which u is currently involved. Then, v
postpones its backward circulation to u until Rbfsu is equal to
u. If u wrongly believes to have the token, it is able to detect
it locally and to correct this error within a finite time (see
Section III-D), that ensures us the token to be never infinitely
blocked by v.

The composition between the backbone construction layer
and the token circulation layer of our algorithm must withstand
the unfairness of the daemon. Indeed, we have to ensure that
the daemon cannot choose exclusively processes enabled only
for the token circulation (recall that we assume that the back-
bone construction has priority over the token circulation) since
this may lead to a starvation of the backbone construction. To
deal with this issue, we choose to block the token circulation
at process v if v has a neighbor that do not belong to the
backbone or if v detects an inconsistency between distances
in the backbone (refer to the definition and the use of predicate
ErValues). Since, before the stabilization of the backbone, the
overlay structure induced by variables pv for all v ∈ V may
be composed only of subtrees or cycles, we can ensure the
starvation-freedom of the backbone construction. Indeed, the
daemon cannot activate infinitely the token circulation rules
of processes in a given subtree because at least one of them
has a neighbor that does not belong to the same subtree, that
blocks the token at this process. Similarly, the daemon cannot
activate infinitely the token circulation rules of processes in a
given cycle because the token detects an inconsistency with
distances in the backbone and then gives the priority to the
backbone construction.

D. Eccentricity Computation
The third layer of our algorithm is devoted to the computa-

tion of the eccentricity of each process. Recall that the token
circulation performed by the second layer eventually ensures
that at most one process computes its eccentricity at a time
(that allows us to re-use the same variables). Roughly speaking,
the eccentricity of each process is computed as follows. First,
the process starts the construction of a BFS spanning tree
rooted at itself. Once done, we gather the maximum distance
in this tree (namely, the eccentricity of its root) from its
leaves. Then, the process obtains its eccentricity and releases
the token. This algorithm works under the distributed unfair

daemon, uses O(log n) bits of memory per process, and
stabilizes within O(n) rounds (for the computation of the
eccentricity of one process).

For the clarity of the presentation, let us denote by r
a process that obtains the token at a given time (that is,
TokenD(r)=true from this time up to the release of the token
by this process). Then, our algorithm starts the construction of
BFS(r) (the BFS spanning tree rooted at r). The first step is to
inform all processes of the identity of r in order to synchronize
their eccentricity computation algorithms. We do that by broad-
casting the identity of r along the Backbone (we perform this
broadcast by re-orienting temporarily the Backbone towards
r) Then, we use a classical BFS spanning tree construction
borrowed from [11] that consists, for each process, to choose
as its parent in the tree the process among its neighbors
that proposes the smallest distance to the root (obviously, the
process updates then its own distance to be consistent with the
one of its new parent).

The delicate part is to collect the maximum distance to
the root after the stabilization of BFS(r) (and not earlier).
As we already said, this gathering is made by a wave from
the leaves to the root of BFS(r). Each leave of BFS(r)
propagates to its parent its own eccentricity value while other
processes propagate to their parent the maximum between the
eccentricity values of their children in BFS(r). Due to the
asynchrony of the system, some difficulties may appear during
this process. Indeed, if we collect an eccentricity value in a
branch of BFS(r) whereas this branch is not yet stabilized
(that is, some processes may still join it), we can obtain a
wrong eccentricity for the process r. In this case, r may release
the token earlier than expected. To prevent that, we manage
the gathering of the maximum distance in the following way.
When a process v changes its distance in BFS(r), this process
“cleans” its eccentricity variable (that is, it erases the current
value of this variable and replaces it by a specific value).
Then, all processes on the path of BFS(r) between r and v
clean their eccentricity variables in a upward process. In other
words, we maintain at least one path in BFS(r) in which all
the eccentricity variables are cleaned until BFS(r) is stabilized.
The existence of this path ensures us that r does not obtain its
eccentricity and release the token precociously.

We are now in measure to present formally our eccen-
tricity computation algorithm. First, recall that, in order to
broadcast the identity of the process that the algorithm cur-
rently computes the eccentricity, we need to re-orientate the
Backbone to root it at the process r with TokenD(r)=true.
We call this oriented tree Backbone(r). For this purpose, we
introduce the function p next(v) for each process v. This
function returns the identity of the neighbor of v that belongs
to the path of Backbone from v to r. More precisely, p next

6

RootBFS(v) ≡ (Rbfsv,Pbfsv,dbfsv) = (ID(v),⊥, 0)

On(v) ≡ {u | u ∈ N(v) ∧ (Rbfsu = Rbfsv)} = N(v)

ChBFS(v) = {u | u ∈ N(v) ∧ (Pbfsu,Rbfsu,dbfsu) = (v,Rbfsv,dbfsv + 1)}
Cand(v) = {u | u ∈ N(v) \ ChBFS(v)}

Best(v) =

{
min{ID(u) | dbfsu = min{dbfsw | w ∈ Cand(v)}} if dbfsu < dbfsv + 1
⊥ otherwise

Fig. 3. Predicates and functions dedicated to the BFS construction

MaxE(v) = max{dbfsv,max{Dbfsu | u ∈ ChBFS(v)}}
GoodEN(v) ≡ (∀u ∈ ChBFS(v),Dbfsu ∈ N) ∧ (Dbfsv = MaxE(v)) ∧ (DbfsPbfsv

∈ {↓,N})
GoodC(v) ≡ (Dbfsv ∈ {↑, ↓}) ∧ (∀u ∈ ChBFS(v),Dbfsu 6= ⊥)

GoodE(v) ≡ [(Dbfsv,DbfsPbfsv
) ∈ {(⊥,⊥), (↑,⊥)(↑, ↑), (↑, ↓), (↓, ↓)} ∧GoodC(v)] ∨GoodEN(v)

Ecc(v) =


⊥ if ¬GoodE(v)
↑ if GoodE(v) ∧ (Dbfsv = ⊥) ∧ (∀u ∈ ChBFS(v),Dbfsu =↑)
↓ if GoodE(v) ∧ (Dbfsv =↑) ∧ (DbfsPbfsv

=↓)
MaxE(v) if GoodE(v) ∧ (Dbfsv =↓) ∧ (∀u ∈ ChBFS(v),Dbfsu ∈ N)

Fig. 4. Predicates and function related to eccentricity computation

is defined as follow:

p next(v) =


pv if TokenD(v) = false

∧ nextv ∈ {⊥, done}
⊥ if TokenD(v) = true
nextv otherwise

We define also the function chNext(v) that returns the set of
children of v in Backbone(r), i.e. neighbors u of v satisfying
p next(u) = v.

Our algorithm uses the following variables for each process
v in order to construct BFS(r) and to compute the eccentricity
of r:
− Eccv ∈ N ∪ {⊥} is the eccentricity of process v;
− Rbfsv ∈ N is the identity of the root in BFS(r);
− Pbfsv ∈ N ∪ {⊥} is the identity of the parent of v in
BFS(r);
− dbfsv ∈ N ∪ {⊥,∞} is the distance between v and the

root in BFS(r);
− Dbfsv ∈ N∪{⊥, ↓, ↑} is the maximum distance between

the root r and the farthest leaf in the sub-tree of v in
BFS(r);

Now, we can present rules of the third layer of our algorithm.
These rules make use of some predicates and functions that are
defined in Figures 3 (for those regarding BFS spanning tree
construction) and 4 (for those that are related to eccentricity
computation). For the clarity of presentation, we split the rules
of our algorithm in two sets. The first one (refer to Algorithm
2) contains rules enabled for a process that holds the token
(that is, a process v such that TokenD(v) = true) while the
second one (refer to Algorithm 3) described rules for a process
that does not hold the token

We discuss first of rules enabled only when the process holds
the token presented in Algorithm 2. Recall that these rules are
applied only when the process receives the token in a forward
circulation (refer to Section III-C). Once the process r received
the token, its predicate TokenD(r) becomes true. In this state,
the process r can applied only three rules.

The rule RStartBFS starts the computation of BFS(r) since
r takes a state indicating that it is the the root of the current
BFS spanning tree. The rule RStartEcc cleans the eccentricity
variable of r when needed (that is, after a fake computation of
eccentricity due to the asynchrony of the system). Finally, the
rule REndBFS is executed when the leaves-to-root propagation
of the eccentricity is over. This rule computes the eccentricity
of r, releases the token by updating the variable nextr of the
token circulation layer (see Section III-C), and updates one
variable for communicating the new eccentricity to the centers
determination layer (see Section III-E for more details on the
use of this variable).

We then focus on rules enabled when the process does
not hold the token presented in Algorithm 3. The first rule
RTree is dedicated to flood the identity of the root r of the
current BFS spanning tree along the Backbone. This flooding
is possible since we re-orientate the Backbone (refer to the
definition of p next above). In the same time, the rule RTree

also detects some local errors. As an example, the variable
Dbfsv of a process (used to collect the eccentricity of r)
must not have an integer value if one of the children (in
BFS(r)) of this process is not in the same case. The rule
RBFS performs the BFS construction in itself. Details of this
construction are managed throughout predicates and functions
defined in Figure 3. Finally, the rule REcc deals with the tricky

7

Algorithm 2 Computation of BFS and eccentricity for a process v such that TokenD(v) = true

RStartBFS : ¬RootBFS(v) −→ (Rbfsv,dbfsv,Dbfsv) := (IDv, 0,⊥)

RStartEcc: RootBFS(v) ∧On(v) ∧ (∀u ∈ ChBFS(v),Dbfsu =↑) −→ Dbfs =↓

REndBFS : RootBFS(v) ∧On(v) ∧ (∀u ∈ ChBFS(v),Dbfsu ∈ N) −→ Eccv := Ecc(v),nextv := Next(v);
MinEUPv := MinEcc(v);

Algorithm 3 Computation of BFS and eccentricity for process v with TokenD(v) = false

RTree: (Rbfsv 6= Rbfsp next(v)) −→ (Rbfsv,Pbfsv, dbfsv,Dbfsv) := (Rbfsp next(v),⊥,∞,⊥)

RBFS : (Rbfsv = Rbfsp nextv) ∧On(v) ∧ (Best(v) 6= ⊥)−→ (Pbfsv, dbfsv,Dbfsv) := (Best(v), dbfsBest(v) + 1,⊥);

REcc : (Rbfsv = Rbfsp nextv) ∧On(v) ∧ (Best(v) = ⊥) ∧ (Dbfsv 6= Ecc(v)) −→ Dbfsv := Ecc(v)

phase of eccentricity leaves-to-root gathering with the cleaning
mechanism explained above. This task is implemented with the
help of predicates and functions defined in Figure 4.

E. Centers Computation
The fourth and last layer of our algorithm aims to identify

the centers of the system. As each process computes its own
eccentricity with the three first layers of our algorithm, it
remains only to compute the minimal one. In this goal, we
use the Backbone (oriented towards the leader elected by the
first layer). First, the root gathers the minimal eccentricity in
the system in a leaves-to-root wave. Then, the root floods the
Backbone with in a root-to-leaves wave containing this min-
imum eccentricity. This algorithm works under the distributed
unfair daemon, uses O(log n) bits of memory per process, and
stabilizes within O(n) rounds.

This layer makes use of the following variables. The variable
Eccv (maintained by the third layer, refer to Section III-D)
stores the eccentricity of the process v. The variable MinEUPv

is used to collect the minimal eccentricity in the leave-to-root
wave while the variable MinEv is used to store the minimal
eccentricity of the system and to broadcast it in the root-to-
leaves wave. We define the following predicate: MinEcc(v) ≡
min{Eccv,min{MinEu | u ∈ child(v)}.

Formal presentation of this algorithm is done in Algo-
rithm 4. The rule RMinEUp manages the leaves-to-root gathering
of minimal eccentricity while rules RMinERoot and RMinEDown

ensures its root-to-leaves propagation (respectively for the root
of Backbone and for other processes).

Once this algorithm stabilizes, each process knows its eccen-
tricity (thanks to the third layer) and the minimal eccentricity
in the system (thanks to the fourth layer). Then, it is trivial for
a process to decide if it is a center or not. As we assume that
the system is identified, it is easy to elect the center with the
minimal identity in the case where the system admits more than
one center in order to construct a single minimum diameter
spanning tree (note that this phase requires O(log n) bits of
memory per process and stabilizes within O(n) rounds).

In conclusion, the composition of these four layers provides
us a self-stabilizing algorithm for centers computation or mini-
mum diameter spanning tree construction under the distributed
unfair daemon that needs O(log n) bits of memory per process
and stabilizes within O(n) rounds.

IV. SKETCH OF PROOF OF THE ALGORITHM

Due to space limitation, we present only a sketch of the
formal proof of our self-stabilizing algorithm that aims to
provide all main arguments of the formal proof in a nutshell1.

Our objective is to prove the following result.
Theorem 1: The algorithm SSCC presented in Section III is

a self-stabilizing algorithm that computes the center(s) of the
system under the distributed unfair daemon. It uses O(log n)
bits of memory per process and stabilizes within O(n2) rounds.

The proof of this theorem is done thourough four main steps
that are described by the following lemmas. Note that the
O(log n) bits of memory requirement follows directly from the
definition of the variables of SSCC. Before presenting these
results and their proofs, we need to introduce some definitions
and notations.

A classical way to prove the self-stabilization of an al-
gorithm is to prove that the set of legitimate configurations
(i.e. configurations satisfying the specification of the problem)
is an attractor of Γ for this algorithm. Given two sets of
configurations Γ2 ⊆ Γ1 ⊆ Γ, we say that Γ2 is an attractor
of Γ1 for algorithm A (denoted by Γ1 B Γ2) if any execution
of A starting from any configuration of Γ1 reaches in a finite
time a configuration of Γ2 and if Γ2 is closed under A.

Let us now define some configurations sets used in our
proof. Γ1−Token ⊆ Γ is the set of configurations in which
there exists exactly one token (i.e. no process is enabled by
rule RErToken). ΓEcc ⊆ Γ1−Token is the set of configurations
of Γ1−Token where each process has correctly computed its
own eccentricity (that is each process v ∈ V satisfies Eccv =

1 Note that a full version of this proof is available at:
http://pagesperso-systeme.lip6.fr/Swan.Dubois/proofIPDPS2015.pdf.

8

Algorithm 4 Computation of the minimum eccentricity for process v

RMinEUp : MinEUPv 6= MinEcc(v) −→ MinEUPv := MinEcc(v);

RMinERoot : Root(v) ∧ (MinEv 6= MinEUPv) −→ MinEv := MinEUPv;

RMinEDown : ¬Root(v) ∧ (MinEv 6= MinEp
v
)) −→ MinEv := MinEp

v
;

e∗(v) where e∗(v) is the eccentricity of process v). Finally,
ΓCenters ⊆ ΓEcc is the set of configurations of ΓEcc such that
each process knows the minimal eccentricity of the system (i.e.
MinEv = E∗ for all v in V where E∗ denotes the minimal
eccentricity of a process in the system) and knows hence if it
is a center or not.

Now, we are able to present the four milestones of our proof
and the key concepts of their proofs.

Lemma 1: Γ B Γ1−Token in O(n2) rounds for SSCC under
the distributed unfair daemon.

Intuitively, this lemma means that, starting from any con-
figuration, any execution of SSCC reaches in O(n2) rounds a
configuration in which exactly one token is present and that
this property remains forever true afterwards.

The proof of this lemma is based on the ones of [32] (for the
leader election and Backbone construction) and of [33] (for
the token circulation). Indeed, note that we do not modifiy at
all the first algorithm. Although we slightly modify the second
one, these modifications have no effect on this part of the
proof since we do not modify the correction rule that ensures
the “cleaning” of overnumerous tokens. Indeed, note that the
token circulation algorithm from [33] ensures this cleaning
phase completes even if tokens do not move (that may be
possible in our case since we modify the release condition to
wait after the completion of the second layer). The closure
property follows directly from the one of [33].

Lemma 2: Any execution of SSCC under the distributed un-
fair daemon starting from a configuration of Γ1−Token contains
an execution of REndBFS by some process.

In other words, this lemma says that no process may hold
the token during an infinite time without releasing it infinitely
often. This part of the proof is the more tricky since it consists
to prove the correctness of the interaction between two layers
of our algorithm. Indeed, we delegate the release of the token
to the eccentricity computation layer (refer to Section III-D).
Then, we have to prove, for any process that holds the token,
that the construction of its BFS spanning tree and the gathering
of its eccentricity end in a finite time (we do not care about
the correctness of the result here).

This proof is performed by exhibiting a potential function.
A potential function is a bounded function that associates to
each configuration of the system a value that strictly decreases
at each application of a rule by the algorithm. Hence, if the
minimal value of the function is associated to a legitimate
configuration of the system, the existence of such a function
is sufficient to prove the convergence of the algorithm. The
difficulty is obviously to exhibit the potential function that cap-
tures precisely the behavior of the self-stabilizing algorithm.

Regarding the BFS spanning tree construction algorithm we
use here, [11] proposed a potential function but this one is not
suitable in our case (because of a too weak characterization
of algorithm’s effects on configurations and of the use of a
a priori knowledge of processes). It is why we propose a
more involved potential function for our algorithm to prove
this lemma.

Lemma 3: If a process v executes RStartBFS in any execu-
tion of SSCC under the distributed unfair daemon starting from
a configuration of Γ1−Token, then Eccv = e∗(v) within a finite
time.

Roughly speaking, this lemma ensures that, when a process
obtains the token in a forward circulation, the result returned
by the eccentricity computation layer (that completes within a
finite time by the previous lemma) is correct.

The proof of this lemma is the second difficult one. Indeed,
we have to prove that, if the eccentricity computation has
been effectively started by a process (contrarily to the previous
lemma, we do not care about fake computations due to memory
corruption in the initial configuration), then this computation
gives the correct eccentricity. As the eccentricity computation
is a quite simple process, we have only to prove that the ec-
centricity computation cannot terminate precociously (that is,
before the stabilization of the BFS spanning tree construction).
For that, we prove that our algorithm maintains a particular
structure, that we call a blocking path, in the BFS under
construction until this one is not stabilized. A blocking path is
one of the longest path from the root to another process in the
tree such that each process on this path has a non-numerical
value for its Dbfs variable. We prove that the existence of such
a blocking path prevents the root of the BFS spanning tree to
release the token. Then, as our algorithm ensures the existence
of a blocking path until the stabilization of the BFS spanning
tree construction, we obtain the lemma.

Lemma 4: Γ1−Token B ΓEcc and ΓEcc B ΓCenters in O(n2)
rounds for SSCC under the distributed unfair daemon.

Intuitively, this lemma states that, starting from a config-
uration where only one token exists, the algorithm SSCC
computes correctly the eccentricity of each process and then
determines the correct minimal eccentricity within O(n2)
rounds.

The proof of this lemma is quite simple. Indeed, it is
sufficient to apply inductively the results of the two previous
lemmas to ensures the correct process eccentricity computation
(the token visits infinitely often each node and the eccentricity
computation is correct after the first release of the token). The
last part of the proof does not contains any particular difficulty
since it consists to prove the correctness of the gathering of

9

the minimal eccentricity by the root and its diffusion along a
stabilized tree.

Once these four lemmas proved, it is straightforward to
deduce the main theorem and hence, to conclude the proof.

V. CONCLUSION

In this paper, we present the first self-stabilizing algorithm
for the minimum diameter spanning tree construction that
tolerates any asynchronous environment (captured by a dis-
tributed unfair daemon) and uses O(log n) bits of memory per
process. Our algorithm achieves a stabilization time in O(n2)
rounds. This contribution improves the existing results by a
factor n regarding the memory requirement.

This work opens some challenging questions that follow.
These questions are focused on the optimality of memory
requirement. The answer depends whether we want to obtain a
silent self-stabilizing algorithm or not. A silent self-stabilizing
algorithm is a self-stabilizing algorithm such that processes
are enabled only on a finite prefix of any execution. As our
algorithm is based on a token circulation, it is not a silent
self-stabilizing algorithm. The first open question is to decide if
our non silent self-stabilizing algorithm is optimal with respect
to memory requirement. A recent work [34], that presents a
non silent BFS-based leader election self-stabilizing algorithm
requiring O(log log n) bits of memory per process, leads us to
think that we can improve the memory requirement of our
algorithm. This naturally opens another question about the
optimality of a silent self-stabilizing algorithm for minimum
diameter spanning tree construction. An appealing way to
answer this question is suggested in [35]. Using their solution,
the question is reduced to provide a proof-labeling scheme for
this problem requiring O(log n) bits of memory per process.
If such a labeling scheme exists, a straightforward adaptation
of our self-stabilizing algorithm would be an optimal silent
self-stabilizing algorithm for the minimum diameter spanning
tree construction.

REFERENCES

[1] E. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Communication of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] S. Dolev, Self-stabilization. MIT Press, March 2000.
[3] S. Tixeuil, Algorithms and Theory of Computation Handbook, ser.

Chapman & Hall. CRC Press, Taylor & Francis Group, November
2009, ch. Self-stabilizing Algorithms, pp. 26.1–26.45.

[4] J.-M. Ho, D. Lee, C.-H. Chang, and C. Wong, “Minimum diameter
spanning trees and related problems,” SIAM Journal of Computing,
vol. 20, no. 5, pp. 987–997, 1991.

[5] A. Cournier, “A new polynomial silent stabilizing spanning-tree con-
struction algorithm,” in SIROCCO’09, 2009, pp. 141–153.

[6] A. Kosowski and L. Kuszner, “A self-stabilizing algorithm for finding
a spanning tree in a polynomial number of moves,” in PPAM’05, 2005,
pp. 75–82.

[7] Y. Afek and A. Bremler-Barr, “Self-stabilizing unidirectional network
algorithms by power supply,” Chicago J. Theor. Comput. Sci., vol. 1998,
1998.

[8] J. Burman and S. Kutten, “Time optimal asynchronous self-stabilizing
spanning tree,” in DISC’07, 2007, pp. 92–107.

[9] A. Cournier, S. Rovedakis, and V. Villain, “The first fully polynomial
stabilizing algorithm for BFS tree construction,” in OPODIS’11, 2011,
pp. 159–174.

[10] S. Dolev, A. Israeli, and S. Moran, “Uniform dynamic self-stabilizing
leader election,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 4, pp.
424–440, 1997.

[11] S.-T. Huang and N.-S. Chen, “A self-stabilizing algorithm for construct-
ing breadth-first trees,” Information Processing Letters, vol. 41, no. 2,
pp. 109–117, 1992.

[12] Z. Collin and S. Dolev, “Self-stabilizing depth-first search,” Information
Processing Letters, vol. 49, no. 6, pp. 297–301, 1994.

[13] S. Huang and N. Chen, “Self-stabilizing depth-first token circulation on
networks,” Distributed Computing, vol. 7, no. 1, pp. 61–66, 1993.

[14] A. Korman, S. Kutten, and T. Masuzawa, “Fast and compact self
stabilizing verification, computation, and fault detection of an MST,”
in PODC’11, 2011, pp. 311–320.

[15] L. Blin, S. Dolev, M. Potop-Butucaru, and S. Rovedakis, “Fast self-
stabilizing minimum spanning tree construction,” in DISC’10, 2010,
pp. 480–494.

[16] S. Gupta, A. Bouabdallah, and P. Srimani, “Self-stabilizing protocol for
shortest path tree for multi-cast routing in mobile networks (research
note),” in Euro-Par’00, 2000, pp. 600–604.

[17] T. Huang, “A self-stabilizing algorithm for the shortest path problem
assuming read/write atomicity,” J. Comput. Syst. Sci., vol. 71, no. 1, pp.
70–85, 2005.

[18] L. Blin, M. Potop-Butucaru, and S. Rovedakis, “Self-stabilizing mini-
mum degree spanning tree within one from the optimal degree,” J. of
Parallel and Distributed Computing, vol. 71, no. 3, pp. 438–449, 2011.

[19] ——, “A superstabilizing log (n)-approximation algorithm for dynamic
steiner trees,” in SSS’09, 2009, pp. 133–148.

[20] F. Gärtner, “A survey of self-stabilizing spanning-tree construction
algorithms,” EPFL, Technical Report IC/2003/38, 2003.

[21] R. Hassin and A. Tamir, “On the minimum diameter spanning tree
problem,” Information Processing Letters, vol. 53, no. 2, pp. 109–111,
1995.

[22] S. Holzer and R. Wattenhofer, “Optimal distributed all pairs shortest
paths and applications,” in PODC’12, 2012, pp. 355–364.

[23] D. Peleg, L. Roditty, and E. Tal, “Distributed algorithms for network
diameter and girth,” in ICALP’12, 2012, pp. 660–672.

[24] L. Roditty and V. Williams, “Fast approximation algorithms for the
diameter and radius of sparse graphs,” in STOC’13, 2013, pp. 515–524.

[25] E. Korach, D. Rotem, and N. Santoro, “Distributed algorithms for
finding centers and medians in networks,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 6, no. 3, pp. 380–401, 1984.

[26] G. Antonoiu and P. Srimani, “A self-stabilizing distributed algorithm to
find the center of a tree graph,” Parallel Algorithms and Applications,
vol. 10, no. 3-4, pp. 237–248, 1997.

[27] S. Bruell, S. Ghosh, M. Karaata, and S. Pemmaraju, “Self-stabilizing
algorithms for finding centers and medians of trees,” SIAM Journal of
Computing, vol. 29, no. 2, pp. 600–614, 1999.

[28] A. Datta and L. Larmore, “Leader election and centers and medians in
tree networks,” in SSS’13, 2013, pp. 113–132.

[29] F. Butelle, C. Lavault, and M. Bui, “A uniform self-stabilizing minimum
diameter tree algorithm (extended abstract),” in WDAG’95, 1995, pp.
257–272.

[30] S. Dubois and S. Tixeuil, “A taxonomy of daemons in self-stabilization,”
ArXiv eprint, Tech. Rep. 1110.0334, October 2011.

[31] S. Dolev, A. Israeli, and S. Moran, “Resource bounds for self-stabilizing
message-driven protocols,” SIAM J. Comput., vol. 26, no. 1, pp. 273–
290, 1997.

[32] A. Datta, L. Larmore, and P. Vemula, “An o(n)-time self-stabilizing
leader election algorithm,” J. Parallel Distrib. Comput., vol. 71, no. 11,
pp. 1532–1544, 2011.

10

[33] F. Petit and V. Villain, “Time and space optimality of distributed depth-
first token circulation algorithms,” in WDAS’99, 1999, pp. 91–106.

[34] L. Blin and S. Tixeuil, “Compact deterministic self-stabilizing leader
election - the exponential advantage of being talkative,” in DISC’13,
2013, pp. 76–90.

[35] L. Blin, P. Fraigniaud, and B. Patt-Shamir, “On proof-labeling schemes
versus silent self-stabilizing algorithms,” in SSS’14, 2014, pp. 18–32.

