
Self-Stabilizing Robots in
Highly Dynamic Environments?

Marjorie Bournat1, Ajoy K. Datta2, and Swan Dubois1

1 UPMC Sorbonne Universités, CNRS, Inria, LIP6 UMR 7606, France
2 University of Nevada Las Vegas, United States

Abstract. This paper deals with the classical problem of exploring a
ring by a cohort of synchronous robots. We focus on the perpetual version
of this problem in which it is required that each node of the ring is visited
by a robot infinitely often.
The challenge in this paper is twofold. First, we assume that the robots
evolve in a highly dynamic ring, i.e., edges may appear and disappear
unpredictably without any recurrence nor periodicity assumption. The
only assumption we made is that each node is infinitely often reach-
able from any other node. Second, we aim at providing a self-stabilizing
algorithm to the robots, i.e., the algorithm must guarantee an eventual
correct behavior regardless of the initial state and positions of the robots.
Our main contribution is to show that this problem is deterministically
solvable in this harsh environment by providing a self-stabilizing algo-
rithm for three robots.

1 Introduction

We consider a cohort of autonomous and synchronous robots that are equipped
with motion actuators and sensors, but that are otherwise unable to communi-
cate [1]. They evolve in a discrete environment, where the space is partitioned
into a finite number of locations, represented by a graph, where the nodes rep-
resent the possible locations of robots and the edges the possibility for a robot
to move from one location to another. Refer to [2] for a survey of results in this
model. One fundamental problem is the exploration of graphs by robots. Basi-
cally, each node of the graph has to be visited by at least one robot. There exist
several variants of this problem depending on whether the robots are required
to stop once they completed the exploration of the graph or not.

Typically, the environment of the robots is modeled by a static undirected
connected graph where vertices are possible locations of robots and edges rep-
resent the moving abilities of the robots. Clearly, such modeling is not suitable
for dynamic environments that we use in this paper. Numerous models dealing
with topological changes over time have been proposed in the past few decades.
There have been some attempts to unifying them as well. The evolving graphs

? This work has been partially supported by the ANR project ESTATE and was initi-
ated while the second author was visiting professor at UPMC Sorbonne Universités.

were introduced in [3]. They proposed modeling the time as a sequence of dis-
crete time instants and the dynamicity of the system by a sequence of static
graphs, one for each instant of time. More recently, another graph model, called
Time-Varying Graphs (TVG), has been introduced in [4]. In contrast with evolv-
ing graphs, TVGs allow systems evolving in continuous time. Also in [4], TVGs
are ordered into classes based on mainly two features: the quality of connectivity
of the graph and the possibility/impossibility to perform tasks.

As in other distributed systems, fault-tolerance is a central issue in robot
networks. Indeed, it is desirable that the misbehavior of some robots does not
prevent the whole system to reach its objective. Self-stabilization [5–7] is a ver-
satile technique to tolerate transient (i.e., of finite duration) faults. After the
occurrence of a catastrophic failure that may take the system to some arbitrary
global state, self-stabilization guarantees recovery to a correct behavior in fi-
nite time without external (i.e., human) intervention. In the context of robot
networks, that implies that the algorithm must guarantee an eventual correct
behavior regardless of the initial state and positions of the robots.

Our objective in this paper is to study the feasibility of the exploration of a
highly dynamic graph by a cohort of self-stabilizing deterministic robots.

Related Work. Since the seminal work of Shannon [8], exploration of graphs
by a cohort of robots has been extensively studied. There exist mainly three
variants of the problem: (i) exploration with stop, where robots are required to
detect the end of the exploration, then stop moving (e.g., [9]); (ii) exploration
with return, where robots must come back to their initial location once the
exploration completed (e.g., [10]); and (iii) perpetual exploration, where each
node has to be infinitely often visited by some robots (e.g., [11]). Even if we
restrict ourselves to deterministic approaches, there exist numerous solutions to
these problems depending on the topology of the graphs to explore (e.g., ring-
shaped [9], line-shaped [12], tree-shaped [13], or arbitrary network [14]), and the
assumptions made on robots (e.g., limited range of visibility [15], common sense
of orientation [16], etc.). But, most of the above work considered only static
graphs.

Recently, some work dealt with the exploration of dynamic graphs. The first
two papers [17, 18] focused on the exploration (with stop) of so-called periodically
varying graphs (i.e., the presence of each edge of the graph is totally periodic).
The papers [19–21] considered another restriction on dynamicity by considering
T -interval-connected graphs (i.e., the graph is always connected and there exists
a stability of this connectivity in any interval of time of length T [22]). However,
there exist no exploration algorithms for highly dynamic graphs, i.e., graphs
where edges may appear and disappear unpredictably without any recurrence,
periodicity, or stability assumption and where the only assumption made is that
each node is infinitely often reachable from any other node.

To the best of our knowledge, there exist no self-stabilizing algorithm for
exploration either in a static or a dynamic environment. Note that there exist
solutions in static graphs to other problems (e.g., naming and leader election
[23]).

Our Contribution. The main contribution of this paper is to give a positive an-
swer to the open question whether self-stabilizing deterministic exploration of
highly dynamic graphs is possible or not. We answer that question by provid-
ing a self-stabilizing algorithm to perpetually explore any highly dynamic ring
with three deterministic synchronous robots. This is the first exploration algo-
rithm that deals with highly dynamic graphs. This is also the first self-stabilizing
algorithm for exploration.

Organization of the paper. This paper is organized as follows. In Section 2, we
present the formal model and state the assumptions made. In Section 3, we
describe our algorithm. Section 4 contains the proof sketch of our algorithm.

2 Model

In this section, we propose an extension of the classical model of robot networks
in static graphs introduced by [24] to the context of dynamic graphs.

Dynamic graphs. In this paper, we consider the model of evolving graphs intro-
duced in [3]. We hence consider the time as discretized and mapped to N. An
evolving graph G is an ordered sequence {G1, G2, . . .} of subgraphs of a given
static graph G = (V,E). In the following, we restrict ourselves to bidirectional
graphs. For any i ≥ 0, we have Gi = (V,Ei) and we say that the edges of Ei

are present in G at time i. The underlying graph of G, denoted UG , is the static
graph gathering all edges that are present at least once in G (i.e., UG = (V,EG)
with EG =

⋃∞
i=0Ei). An eventual missing edge is an edge of EG such that there

exists a time after which this edge is never present in G. A recurrent edge is
an edge of EG that is not eventually missing. The eventual underlying graph
of G, denoted Uω

G , is the static graph gathering all recurrent edges of G (i.e.,
Uω
G = (V,Eω

G) where Eω
G is the set of recurrent edges of G). In this paper, we

chose to make minimal assumptions on the dynamicity of our graph since we re-
strict ourselves on connected-over-time evolving graphs. The only constraint we
impose on evolving graphs of this class is that their eventual underlying graph
is connected [25] (intuitively, that means that any node is infinitely often reach-
able from any other one). For the sake of the proof, we also consider the weaker
class of edge-recurrent evolving graphs where the eventual underlying graph is
connected and matches to the underlying graph. In the following, we consider
only connected-over-time evolving graphs whose underlying graph is an anony-
mous and unoriented ring of arbitrary size. Although the ring is unoriented, to
simplify the presentation and discussion, in this paper, we, as external observers,
distinguish between the clockwise and the counter-clockwise (global) direction
in the ring.

Robots. We consider systems of autonomous mobile entities called robots mov-
ing in a discrete and dynamic environment modeled by an evolving graph G =
{(V,E1), (V,E2) . . .}, V being a set of nodes representing the set of locations

where robots may be, Ei being the set of bidirectional edges representing con-
nections through which robots may move from a location to another one at time
i. Robots are uniform (they execute the same algorithm), identified (each of them
has a distinct identifier), have a persistent memory but are unable to directly
communicate with one another by any means. Robots are endowed with local
strong multiplicity detection (i.e., they are able to detect the exact number of
robots located on their current node). They have no a priori knowledge about
the ring they explore (size, diameter, dynamicity. . .). Finally, each robot has its
own stable chirality (i.e., each robot is able to locally label the two ports of its
current node with left and right consistently over the ring and time but two
different robots may not agree on this labeling). We assume that each robot has
a variable dir that stores a direction (either left or right). At any time, we say
that a robot points to left (resp. right) if its dir variable is equal to this (local)
direction. We say that a robot considers the clockwise (resp., counter-clockwise)
direction if the (local) direction pointed to by this robot corresponds to the
(global) direction seen by an external observer.

Execution. A configuration γ of the system captures the position (i.e., the node
where the robot is currently located) and the state (i.e., the value of every
variable of the robot) of each robot at a given time. Given an evolving graph
G = {G1, G2, . . .}, an algorithm A, and an initial configuration γ0, the execution
E ofA on G starting from γ0 is the infinite sequence (G0, γ0), (G1, γ1), (G2, γ2), . . .
where, for any i ≥ 0, the configuration γi+1 is the result of the execution of a
synchronous round by all robots from (Gi, γi) as explained below.

The round that transitions the system from (Gi, γi) to (Gi+1, γi+1) is com-
posed of three atomic and synchronous phases: Look, Compute, Move. During
the Look phase, each robot gathers information about its environment in Gi.
More precisely, each robot updates the value of the following local predicates:
(i) NumberOfRobotsOnNode() returns the exact number of robots present at
the node of the robot; (ii) ExistsEdgeOnCurrentDirection() returns true if an
edge is present at the direction currently pointed by the robot, false otherwise;
(iii) ExistsEdgeOnOppositeDirection() returns true if an edge is present in
the direction opposite to the one currently pointed by the robot, false otherwise;
(iv) ExistsAdjacentEdge() returns true if an edge adjacent to the current node
of the robot is present, false otherwise. During the Compute phase, each robot
executes the algorithm A that may modify some of its variables (in particular
dir) depending on of its current state and the values of the predicates updated
during the Look phase. Finally, the Move phase consists of moving each robot
trough one edge in the direction it points to if there exists an edge in that direc-
tion, otherwise, i.e., if the edge is missing at that time, the robot remains at its
current node. Note that the ith round is entirely executed on Gi and that the
transition from Gi to Gi+1 occurs only at the end of this round. We say that a
robot is edge-activated during a round if there exists at least one edge adjacent
to its location during that round.

Self-Stabilization. Intuitively, a self-stabilizing algorithm is able to recover in
a finite time a correct behavior from any arbitrary initial configuration (that
captures the effect of an arbitrary transient fault in the system). More formally,
an algorithm A is self-stabilizing for a problem on a class of evolving graphs C if
and only if it ensures that, for any configuration γ0, the execution of A on any
G ∈ C starting from γ0 contains a configuration γi such that the execution of
A on G starting from γi satisfies the specification of the problem. Note that, in
the context of robot networks, this definition implies that robots must tolerate
both arbitrary initialization of their variables and arbitrary initial positions (in
particular, robots may be stacked in the initial configuration).

Perpetual Exploration. Given an evolving graph G, a perpetual exploration al-
gorithm guarantees that every node of G is infinitely often visited by at least
one robot (i.e., a robot is infinitely often located at every node of G). Note that
this specification does not require that every robot visits infinitely often every
node of G.

3 Exploring a Highly Dynamic Ring with Three Robots

In this section, we present our self-stabilizing deterministic algorithm for the
perpetual exploration of any connected-over-time ring with three robots. In this
context, the difficulty to complete the exploration is twofold. First, in connected-
over-time graphs, robots must deal with the possible existence of some eventual
missing edge (without the guarantee that such edge always exists). Note that,
in the case of a ring, there is at most one eventual missing edge in any execution
(otherwise, we have a contradiction with the connected-over-time property). Sec-
ond, robots have to handle the arbitrary initialization of the system (corruption
of variables and arbitrary position of robots).

Principle of the algorithm. The main idea behind our algorithm is that a robot
does not change its direction (arbitrarily initialized) while it is isolated. This
allows robots to perpetually explore connected-over-time rings with no eventual
missing edge regardless of the initial direction of the robots.

Obviously, this idea is no longer sufficient when there exists an eventual
missing edge since, in this case, at least two robots will eventually be stuck
(i.e., they point to an eventual missing edge that they are never able to cross)
forever at one end of the eventual missing edge. When two (or more) robots
are located at the same node, we say that they form a tower. In this case, our
algorithm succeed (as we explain below) to ensure that at least one robot leaves
the tower in a finite time. In this way, we obtain that, in a finite time, a robot
is stuck at each end of the eventual missing edge. These two robots located at
two ends of the eventual missing edge play the role of “sentinels” while the third
one (we call it a “visitor”) visits other nodes of the ring in the following way.
The “visitor” keeps its direction until it meets one of these “sentinels”, they
then switch their roles: After the meeting, the “visitor” still maintains the same

direction (becoming thus a “sentinel”) while the “sentinel” robot changes its
direction (becoming thus a “visitor” until reaching the other “sentinel”).

In fact, robots are never aware if they are actually stuck at an eventual
missing edge or are just temporarily stuck on an edge that will reappear in
a finite time. That is why it is important that the robots keep consider their
directions and try to move forward while there is no meeting in order to track a
possible eventual missing edge. Our algorithm only guarantees a convergence in
a finite time towards a configuration where a robot plays the role of “sentinel”
at each end of the eventual missing edge if such an edge exists. Note that, in the
case where there is no eventual missing edge, this mechanism does not prevent
the correct exploration of the ring since it is impossible for a robot to be stuck
forever.

Our algorithm easily deals with the initial corruption of its variables. Indeed,
we use variables only to save some information about the environment of the
robots in the previous rounds and we update them at each round. Thus, their
arbitrary initial value is erased in a finite time. The main difficulty to achieve self-
stabilization is to deal with the arbitrary initial position of robots. In particular,
the robots may initially form towers. In the worst case, all robots of a tower may
be stuck at an eventual missing edge and be in the same state. They are then
unable to start the “sentinels”/“visitor” scheme explained above. Our algorithm
needs to “break” such a tower in a finite time (i.e., one robot must leave the
node where the tower is located). In other words, we tackle a classical problem
of symmetry breaking. We succeed by providing each robot with a function
that returns, in a finite number of invocations, different global directions to two
robots of the tower based on the private identifier of the robot and without
any communication among the robots. More precisely, this is done thanks to a
transformation of the robot identifier: each bit of the binary representation of
the identifier is duplicated and we add the bits “01” at the end of the sequence
of these duplicated bits. Then, at each invocation of the function, a robot reads
the next bit of this transformed identifier. If the robot reads zero, it try to
move to its left. Otherwise, it try to move to its right. Doing so, in a finite
number of invocation of this function, at least one robot leaves the tower. If
necessary, we repeat this “tower breaking” scheme until we are able to start the
“sentinels”/“visitor” scheme.

The main difficulty in designing this algorithm is to ensure that these two
mechanisms (“sentinels”/“visitor” and “tower breaking”) do not interfere with
each other and prevent the correct exploration. We solve this problem by adding
some waiting at good time, especially before starting the procedure of tower
breaking by identifier to ensure that robots do not prematurely turn back and
“forget” to explore some parts of the ring.

Formal presentation of the algorithm. Before presenting formally our algorithm,
we need to introduce the set of constants (i.e., variables assumed to be not
corruptible) and the set of variables of each robot. We also introduce three
auxiliary functions.

Algorithm 1 Function Update

1: function Update
2: if ExistsAdjacentEdge() then
3: NumberRobotsPreviousEdgeActivation← NumberOfRobotsOnNode()
4: HasMovedPreviousEdgeActivation← ExistsEdgeOnCurrentDirection()
5: end if
6: end function

As stated in the model, each robot has an unique identifier. We denote it
by id and represent it in binary as b0b1 . . . b|id|−1. We define, for the purpose
of the “breaking tower” scheme, the constant TransformedIdentifier by its
binary representation b0b0b1b1 . . . b|id|−1b|id|−101 (each bit of id is duplicated
and we add the two bits 01 at the end). We store the length of the binary
representation of TransformedIdentifier in the constant ` and we denote its
ith bit by TransformedIdentifier[i] for any 0 ≤ i ≤ `− 1.

In addition to the variable dir defined in the model, each robot has the fol-
lowing three variables: (i) the variable i ∈ N corresponds to an index to store
the position of the last bit read from TransformedIdentifier; (ii) the vari-
able NumberRobotsPreviousEdgeActivation ∈ N stores the number of robots
that were present at the node of the robot during the look step of the last
round where it was edge-activated; and (iii) the variable HasMovedPrevious-
EdgeActivation ∈ {true, false} indicates if the robot has crossed an edge during
its last edge-activation.

Our algorithm makes use of a function Update that updates the value of the
two last variables according to the current environment of the robot each time
it is edge-activated. We provide the pseudo-code of this function in Algorithm
1. Note that this function also allows us to deal with the initial corruption of
the two last variables since it resets them in the first round where the robot is
edge-activated.

We already stated that, whenever robots are stuck forming a tower, they
make use of a function to “break” the tower in a finite time. The pseudo-code
of this function GiveDirection appears in Algorithm 2. It assigns the value
left or right to the variable dir of the robot depending on the the ith bit of the
value of TransformedIdentifier. The variable i is incremented modulo ` (that
implicitly resets this variable when it is corrupted) to ensure that successive
calls to GiveDirection will consider each bit of TransformedIdentifier in a
round-robin way. As shown in the next section, this function guarantees that, if
two robots are stuck together in a tower and invoke repeatedly their own function
GiveDirection, then two distinct global directions are given in finite time to
the two robots regardless of their chirality. This property allows the algorithm to
“break” the tower since at least one robot is then able to leave the node where
the tower is located.

Finally, we define the function OppositeDirection that simply affects the
value left (resp. right) to the variable dir when dir = right (resp. dir = left).

Algorithm 2 Function GiveDirection

1: function GiveDirection
2: i ← i + 1 (mod `)
3: if TransformedIdentifier[i] = 0 then
4: dir ← left
5: else
6: dir ← right
7: end if
8: end function

There are two types of configurations in which the robots may change the
direction they consider. So, our algorithm needs to identify them. We do so by
defining a predicate that characterizes each of these configurations.

The first one, called WeAreStuckInTheSameDirection(), is dedicated to
the detection of configurations in which the robot must invoke the “tower break-
ing” mechanism. Namely, the robot is stuck since at least one edge-activation
with at least another robot and the edge in the direction opposite to the one
considered by the robot is present. More formally, this predicate is defined as
follows:

WeAreStuckInTheSameDirection() ≡
(NumberOfRobotsOnNode() > 1)

∧ (NumberOfRobotsOnNode() = NumberRobotsPreviousEdgeActivation)
∧ ¬ExistsEdgeOnCurrentDirection()
∧ ExistsEdgeOnOppositeDirection()
∧ ¬HasMovedPreviousEdgeActivation

The second predicate, called IWasStuckOnMyNodeAndNowWeAreMore-
Robots(), is designed to detect configurations in which the robot must transition
from the “sentinel” to the “visitor” role in the “sentinel”/“visitor” scheme. More
precisely, such configuration is characterized by the fact that the robot is edge-
activated, stuck during its previous edge-activation, and there are strictly more
robots located at its node than at its previous edge-activation. More formally,
this predicate is defined as follows:

IWasStuckOnMyNodeAndNowWeAreMoreRobots() ≡
(NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation)
∧ ¬HasMovedPreviousEdgeActivation
∧ ExistsAdjacentEdge()

Now, we are ready to present the pseudo-code of the core of our algorithm
(see Algorithm 3). The basic idea of the algorithm is the following. The function
GiveDirection is invoked when WeAreStuckInTheSameDirection() is true
(to try to “break” the tower after the appropriate waiting), while the function
OppositeDirection is called when IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() is true (to implement the “sentinel”/“visitor” scheme). After-

Algorithm 3 Self-stabilizing perpetual exploration

1: if WeAreStuckInTheSameDirection() then
2: GiveDirection
3: end if
4: if IWasStuckOnMyNodeAndNowWeAreMoreRobots() then
5: OppositeDirection
6: end if
7: Update

wards, the function Update is called (to update the state of the robot according
to its environment).

4 Proof Sketch

Due to the lack of space, we present only a sketch of the proof of our algo-
rithm in this paper. This section captures the main ideas behind the proof and
summarizes its main steps. The detailed proof of our algorithm is available in a
companion technical report [26].

Preliminaries. First, we introduce some definitions and preliminary results that
are extensively used in the proof.

We saw previously that the notion of tower is central in our algorithm. Intu-
itively, a tower captures the simultaneous presence of all robots of a given set on
a node at each time of a given interval. We require either the set of robots or the
time interval of each tower to be maximal. Note that the tower is not required
to be on the same node at each time of the interval (robots of the tower may
move together without leaving the tower).

We distinguish two kinds of towers according to the agreement of their robots
on the global direction to consider at each time there exists an adjacent edge to
their current location (excluded the last one). If they agreed, the robots form a
long-lived tower while they form a short-lived tower in the contrary case. This
implies that a short-lived tower is broken as soon as the robots forming the tower
are edge-activated, while the robots of a long-lived tower move together at each
edge activation of the tower (excluded the last one).

Definition 1 (Tower). A tower T is a couple (S, θ), where S is a set of robots
(|S| > 1) and θ = [ts, te] is an interval of N, such that all the robots of S are
located at a same node at each instant of time t in θ and S or θ are maximal for
this property. Moreover, if the robots of S move during a round t ∈ [ts, te[, they
are required to traverse the same edge.

Definition 2 (Long-lived tower). A long-lived tower T = (S, [ts, te]) is a
tower such that there is at least one edge-activation of all robots of S in the time
interval [ts, te[.

Definition 3 (Short-lived tower). A short-lived tower T is a tower that is
not a long-lived tower.

For k > 1, a long-lived (resp., a short-lived) tower T = (S, θ) with |S| = k is
called a k-long-lived (resp., a k-short-lived) tower.

In the remainder of this section, we consider an execution E of Algorithm 3
executed by three robots r1, r2, and r3 on a connected-over-time ring G of size
n ∈ N∗ starting from an arbitrary configuration.

For the sake of clarity, the value of a variable or a predicate name of a given
robot r at the end of the Look phase of a given round t is denoted by the notation
name(r, t).

We say that a robot r has a coherent state at time t, if during the Look phase
of round t, the value of its variable NumberRobotsPreviousEdgeActivation(r, t)
corresponds to the value of its predicate NumberOfRobotsOnNode() at its pre-
vious edge-activation and the value of its variable HasMovedPreviousEdge-
Activation(r, t) corresponds to the value of its predicate ExistsEdgeOnCurrent-
Direction() at its previous edge-activation. The following lemma states that, for
each robot, there exists a suffix of the execution in which the robot is coherent.

Lemma 1. For any robot, there exists a time from which its state is always
coherent.

Let t1, t2, and t3 be respectively the time at which the robot r1, r2, and r3,
respectively are in a coherent state. Let tmax = max{t1, t2, t3}. From Lemma
1, the three robots are in a coherent state from tmax. In the remaining of the
proof, we focus on the suffix of the execution after tmax.

The two following lemmas show that, regardless of the chirality of the robots
and the initial values of their variables i, a finite number of synchronous invoca-
tions of the function GiveDirection by two robots of a tower returns them a
distinct global direction. To prove that, we need to take a close look at properties
granted by the transformed identifiers of the robots.

Lemma 2. Let tl1 and tl2 be two transformed identifiers, such that tl1 6= tl2.
Let i and j be two integers such that i ∈ [0, |tl1| − 1] and j ∈ [0, |tl2| − 1]. If
tl1[i] = tl2[j], then there exists an integer k such that tl1[(i + k) (mod |tl1|)] 6=
tl2[(j + k) (mod |tl2|)].

Lemma 3. Let tl1 and tl2 be two transformed identifiers, such that tl1 6= tl2.
Let i and j be two integers such that i ∈ [0, |tl1| − 1] and j ∈ [0, |tl2| − 1]. If
tl1[i] 6= tl2[j], then there exists an integer k such that tl1[(i + k) (mod |tl1|)] =
tl2[(j + k) (mod |tl2|)].

Technical lemmas on towers. We are now able to state a set of lemmas that
show some interesting technical properties of towers under specific assumptions
during the execution of our algorithm. These properties are extensively used in
the main proof of our algorithm. Their proofs are very technical, hence omitted
due to lack of space.

Lemma 4. The robots of a long-lived tower T = (S, [ts, te]) consider a same
global direction at each time between the Look phase of round ts and the Look
phase of round te included.

Lemma 5. If there exists an eventual missing edge, then all long-lived towers
have a finite duration.

Lemma 6. Every execution containing only configurations without any long-
lived tower cannot reach a configuration with a 3-short-lived tower.

Lemma 7. Every execution starting from a configuration without a 3-long-lived
tower cannot reach a configuration with a 3-long-lived tower.

Lemma 8. Let γ be a configuration such that all but one robots consider the
same global direction. Then starting from γ, no execution without any long-
lived towers can reach a configuration where all robots consider the same global
direction.

Lemma 9. Consider an execution containing no 3-long-lived towers. If a 2-
long-lived tower T = (S, [ts, te]) is located at a node u at round te, then the robot
that does not belong to S cannot be located at node u during the Look phase of
round te. Moreover during the Look phase of round te + 1, one robot of S located
at u considers a global direction opposite to the one considered by the other robot
of S (which is not on u).

The following lemma is used to prove, in combination with Lemmas 2 and
3, the “tower breaking” mechanism since it proves that robots of a long-lived
tower synchronously invoke their GiveDirection function after their first edge-
activation.

Lemma 10. For any long-lived tower T = (S, [ts, te]), any (ri, rj) in S2, and
any t less or equal to te, we have WeAreStuckInTheSameDirection()(ri, t)
= WeAreStuckInTheSameDirection()(rj , t) if all robots of S have been edge-
activated between ts (included) and t (not included).

The next two lemmas show that the whole ring is visited between two con-
secutive 2-long-lived towers if these two towers satisfy some properties. They are
used in the proof of the “sentinels”/“visitor” scheme.

Lemma 11. Consider an execution E without any 3-long-lived tower but con-
taining a 2-long-lived tower T = (S, [ts, te]). If there exists another 2-long-lived
tower T ′ = (S′, [t′s, t

′
e]) after T in E and if T ′ is the first 2-long-lived tower in E

such that t′s > te + 1, then all the edges of G have been crossed by at least one
robot between time te and time t′s.

Lemma 12. Consider that there are no 3-long-lived towers in E, and let Ti =
(Si, [ts i, te i]) be the ith 2-long-lived tower of E (with i ≥ 2). If Ti+1 = (Si+1,
[ts i+1, te i+1]) exists such that ts i+1 = te i + 1, then all the edges of G have been
crossed by at least one robot between time ts i − 1 and time ts i+1.

Main lemmas. Upon establishing all the above properties of towers, we are now
ready to state the main lemmas of our proof. Each of these three lemmas below
shows that our algorithm performs the perpetual exploration in a self-stabilizing
way for a specific subclass of connected-over-time rings. We only sketch the proof
of these lemmas due to space constraints.

Lemma 13. Algorithm 3 is a self-stabilizing perpetual exploration algorithm for
the class of static rings of arbitrary size using three robots.

Sketch of proof. Assume that G is a static ring. The robots executing our algo-
rithm consider a direction in each round. Moreover, in our algorithm, the robots
do not change the direction they consider if there exists an adjacent edge to their
current location in the direction they consider. As G is static, this implies that
in each round all the edges of G are present. Thus, the robots never change their
directions.

As (i) the robots have a stable direction, (ii) they always consider the same
global direction, and (iii) there always exists an adjacent edge to their current
locations in the global direction they consider, the robots move infinitely often
in the same global direction. Moreover, as G has a finite size, this implies that
all the robots visit infinitely often all the nodes of G. ut

Lemma 14. Algorithm 3 is a self-stabilizing perpetual exploration algorithm for
the class of edge-recurrent but non static rings of arbitrary size using three robots.

Sketch of proof. Assume that G is an edge-recurrent but non static ring. Let us
study the following cases.

Case 1: There exists at least one 3-long-lived tower in E .

Case 1.1: One of the 3-long-lived towers of E has an infinite duration.

Denote by T the 3-long-lived tower of E that has an infinite duration.
According to the definition of the predicate WeAreStuckInTheSame-
Direction(), Lemmas 10, 2, and 3, T is eventually not stuck during
two consecutive edge-activations. Thus, after the formation of T , the
robots see infinitely often an adjacent edge in the direction they con-
sider. Moreover, as there are three robots in the system, the predicate
IWasStuckOnMyNodeAndNowWeAreMoreRobots() is not true for
these robots. Thus, the three robots eventually consider the same global
direction. This implies that the three robots are able to move infinitely
often in the same global direction. Moreover, as G has a finite size, all
the robots visit infinitely often all the nodes of G.

Case 1.2: Any 3-long-lived tower of E has a finite duration.

By Lemma 7, once a 3-long-lived tower is broken, it is impossible to have
another 3-long-lived tower in E . Then, E admits an infinite suffix that
matches either case 2 or 3.

Case 2: There exists at least one 2-long-lived tower in E .

Case 2.1: There exists a finite number of 2-long-lived towers in E .
If the last 2-long-lived tower of E has a finite duration, then E admits an
infinite suffix with no long-lived towers thus matching Case 3.
Otherwise, (i.e., the last 2-long-lived tower T of E has an infinite dura-
tion), as in Case 1.1, the robots of the 2-long-lived tower eventually see
infinitely often an adjacent edge in the direction they consider since they
are eventually not stuck. The only case when the robots of the 2-long-
lived tower change their direction is when they meet the third robot of
the system.
Case 2.1.1: The robots of T meet the third robot finitely often.

After the last meeting with the third robot in the system, the robots
of T have their predicates IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() always false. Thus, after the last meeting, the robots
of T always consider the same global direction. This implies that
they are able to move infinitely often in the same global direction.
Moreover, as G has a finite size, this implies that all the robots visit
infinitely often all the nodes of G.

Case 2.1.2: The robots of T meet the third robot infinitely often.
The third robot does not change its direction while it is isolated. Sim-
ilarly, the robots of T maintain their directions until they meet the
third robot. Moreover, we can prove that, after a meeting, the third
robot and the robots of T consider two opposite global directions.
Then, we can deduce that all the nodes of G are visited between two
consecutive meetings of T and the third robot. As T and the third
robot infinitely often meet, the nodes of G are infinitely often visited.

Case 2.2: There exist an infinite number of 2-long-lived towers in E .
By Lemmas 11 and 12, we know that between two consecutive 2-long-
lived towers (from the second one), all the edges, and thus all the nodes
of G are visited. As there is an infinite number of 2-long-lived towers,
the nodes of G are infinitely often visited.

Case 3: There exist no long-lived towers in E .
Then, we know, by Lemma 6, that E contains only configurations with either
three isolated robots or one 2-short-lived tower and one isolated robot. The
robots can then start the “sentinels”/“visiting” scheme which permits the
perpetual exploration of G even when there is no eventual missing edge. Note
that, as there is no eventual missing edge, it is possible that no 2-short-lived
towers are formed. In this case, all the robots maintain their directions.

Thus, we obtain the desired result in every cases. ut

Lemma 15. Algorithm 3 is a self-stabilizing perpetual exploration algorithm for
the class of connected-over-time but not edge-recurrent rings of arbitrary size
using three robots.

Sketch of proof. Consider a connected-over-time but not edge-recurrent ring.
This implies that there exists exactly one eventual missing edge in E . Denote by
E1 the suffix of E in which the eventual missing edge never appears.

Assume that there exists a 3-long-lived tower in E1. According to Lemma 5,
this 3-long-liver tower is broken in finite time. Moreover, once this tower is
broken, according to Lemma 7, it is impossible to have a configuration containing
a 3-long-lived tower. Then, E1 admits an infinite suffix E2 without a 3-long-lived
tower.

Assume that there exists a 2-long-lived tower in E2. According to Lemma 5,
this 2-long-lived tower is broken in finite time. Once this tower is broken, in the
remainder of E2, there exists at most one 2-long-lived tower Tsecond. Indeed, ac-
cording to Lemma 5, if Tsecond exists, it is broken in finite time. Moreover, Tsecond
cannot be the first 2-long-lived tower of the execution. Then, by Lemmas 11 and
12, E2 admits an infinite suffix E3 without a 2-long-lived tower.

In other words, there are no long-lived towers in E3. By Lemma 6, all config-
urations in E3 contain either three isolated robots or one 2-short-lived tower and
one isolated robot. The robots can then start the “sentinels”/“visiting” scheme
which permits the perpetual exploration of G and proves the result. ut

The end of the road. To conclude the proof, it is sufficient to observe that a
connected-over-time ring is by definition either static, edge-recurrent but non
static, or connected-over-time but not edge-recurrent. As we prove the self-
stabilization of our algorithm in these three cases in Lemmas 13, 14, and 15,
we can claim the following final result.

Theorem 1. Algorithm 3 is a self-stabilizing perpetual exploration algorithm for
the class of connected-over-time rings of arbitrary size using three robots.

5 Conclusion

In this paper, we addressed the open question: “Is it possible to achieve self-
stabilization for swarm of robots evolving in highly dynamic graphs?”. We an-
swered positively to this question by providing a self-stabilizing algorithm for
three synchronous robots that perpetually explore any connected-over-time ring,
i.e., any dynamic ring with very weak assumption on connectivity: every node
is infinitely often reachable from any another one without any recurrence, peri-
odicity, nor stability assumption.

In addition to the above contributions, our algorithm overcomes the robot
networks state-of-the-art in a couple of ways. First, it is the first algorithm deal-
ing with highly dynamic graphs. All previous solutions made some assumptions
on periodicity or on all-time connectivity of the graph. Second, it is the first
self-stabilizing algorithm for the problem of exploration, either for static or for
dynamic graphs.

This work opens an interesting field of research with numerous open ques-
tions. First, we should investigate the necessity of every assumption made in this
paper. For example, we assumed that robots are synchronous. Is this problem
solvable with asynchronous robots? Second, we can investigate the issue of the
number of robots. What are the minimal/maximal number of robots to solve

the problem? It would be worthwhile to explore other problems in this rather
complicated environment, e.g., gathering, leader election, etc.. It may also be in-
teresting to consider other classes of dynamic graphs and other classes of faults,
e.g., crashes of robots, Byzantine failures, etc..

References

1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computers 28(4) (1999) 1347–1363

2. Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile
robots: An introductory survey. In: International Conference on Network-Based
Information Systems (NBiS). (2011) 318–324

3. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost jour-
neys in dynamic networks. International Journal of Foundations of Computer
Science 14(02) (2003) 267–285

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems 27(5) (2012) 387–408

5. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Communication
of the ACM 17(11) (1974) 643–644

6. Dolev, S.: Self-stabilization. MIT Press (2000)

7. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall. In: Algorithms and
Theory of Computation Handbook. CRC Press, Taylor & Francis Group (2009)
26.1–26.45

8. Shannon, C.: Presentation of a maze-solving machine. 8th Conference of the Josiah
Macy, Jr. Foundation (1951) 173–180

9. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without commu-
nicating: Ring exploration by asynchronous oblivious robots. In: International
Conference on Principles of Distributed Systems (OPODIS). (2007) 105–118

10. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51(1) (2004) 38–63

11. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anony-
mous partial grids exploration by mobile robots. In: International Conference on
Principles of Distributed Systems (OPODIS). (2008) 428–445

12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can
explore a line. Information Processing Letters 111(20) (2011) 1027–1031

13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. Theoretical Computer Science
411(14-15) (2010) 1583–1598

14. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Workshop on Graph-Theoretic Concepts in Computer
Science (WG). (2010) 208–219

15. Datta, A., Lamani, A., Larmore, L., Petit, F.: Ring exploration by oblivious agents
with local vision. In: IEEE International Conference on Distributed Computing
Systems (ICDCS). (2013) 347–356

16. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: International Symposium on Distributed Com-
puting (DISC). (2010) 312–327

17. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs.
In: International Symposium on Algorithms and Computation (ISAAC). (2009)
534–543

18. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public trans-
portation systems. In: International Conference on Principles of Distributed Sys-
tems (OPODIS). (2011) 451–464

19. Ilcinkas, D., Wade, A.M.: Exploration of the t-interval-connected dynamic graphs:
The case of the ring. In: Colloquium on Structural Information & Communication
Complexity (SIROCCO). (2013) 13–23

20. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dy-
namic graphs based on cactuses. In: Colloquium on Structural Information &
Communication Complexity (SIROCCO). (2014) 250–262

21. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic
rings. In: IEEE International Conference on Distributed Computing Systems
(ICDCS). (2016) 570–579

22. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Symposium on the Theory of Computing (STOC). (2010) 513–522

23. Blin, L., Potop-Butucaru, M., Tixeuil, S.: On the self-stabilization of mobile
robots in graphs. In: International Conference on Principles of Distributed Systems
(OPODIS). (2007) 301–314

24. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. In: International Symposium on Algorithms and Computation (ISAAC).
(2006) 744–753

25. Dubois, S., Kaaouachi, M., Petit, F.: Enabling minimal dominating set in highly
dynamic distributed systems. In: International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS). (2015) 51–66

26. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. Technical report, arXiv:1609.06161 (2016)

