
Gracefully Degrading Gathering
in Dynamic Rings?

Marjorie Bournat, Swan Dubois, and Franck Petit

Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France
firstname.lastname@lip6.fr

Abstract. Gracefully degrading algorithms [Biely et al., TCS 2018]
are designed to circumvent impossibility results in dynamic systems by
adapting themselves to the dynamics. Indeed, such an algorithm solves a
given problem under some dynamics and, moreover, guarantees that a
weaker (but related) problem is solved under a higher dynamics under
which the original problem is impossible to solve. The underlying intuition
is to solve the problem whenever possible but to provide some kind of
quality of service if the dynamics become (unpredictably) higher.
In this paper, we apply for the first time this approach to robot networks.
We focus on the fundamental problem of gathering a squad of autonomous
robots on an unknown location of a dynamic ring. In this goal, we
introduce a set of weaker variants of this problem. Motivated by a set of
impossibility results related to the dynamics of the ring, we propose a
gracefully degrading gathering algorithm.

Keywords: Gracefully degrading algorithm · dynamic ring · gathering

1 Introduction

The classical approach in distributed computing consists in, first, fixing a set
of assumptions that captures the properties of the studied system (atomicity,
synchrony, faults, communication modalities, etc.) and, then, focusing on the
impact of these assumptions in terms of calculability and/or of complexity on
a given problem. When coming to dynamic systems, it is natural to adopt the
same approach. Many recent works focus on defining pertinent assumptions for
capturing the dynamics of those systems [8, 13, 19]. When these assumptions
become very weak, that is, when the system becomes highly dynamic, a some-
what frustrating but not very surprising conclusion emerge: many fundamental
distributed problems are impossible at least, in their classical form [2, 6, 7].

To circumvent such impossibility results, Biely et al. recently introduced the
gracefully degrading approach [2]. This approach relies on the definition of weaker
but related variants of the considered problem. A gracefully degrading algorithm
guarantees that it will solve simultaneously the original problem under some

? Work partly funded by Project ESTATE (Ref. ANR-16-CE25-0009-03), supported
by French state funds managed by the ANR (Agence Nationale de la Recherche)

2 M. Bournat et al.

assumption of dynamics and each of its variants under some other (hopefully
weaker) assumptions. As an example, Biely et al. provide a consensus algorithm
that gracefully degrades to k-set agreement when the dynamics of the system
increase. The underlying idea is to solve the problem in its strongest variant
when connectivity conditions are sufficient but also to provide (at the opposite
of a classical algorithm) some minimal quality of service described by the weaker
variants of the problem when those conditions degrade.

Note that, although being applied to dynamic systems by Biely et al. for the
first time, this natural idea is not a new one. Indeed, indulgent algorithms [1,
14] provide similar graceful degradation of the problem to satisfy with respect to
synchrony (not with respect to dynamics). Speculation [9, 12] is a related, but
somewhat orthogonal, concept. A speculative algorithm solves the problem under
some assumptions and moreover provides stronger properties (typically better
complexities) whenever conditions are better.

The goal of this paper is to apply graceful degradation to robot networks
where a cohort of autonomous robots have to coordinate their actions in order to
solve a global task. We focus on gathering in a dynamic ring. In this problem,
starting from any initial position, robots must meet on an arbitrary location in
a bounded time (that may depend on any parameter about the robots or the
ring). Note that we can classically split this specification into a liveness property
(all robots terminate in bounded time) and a safety property (all robots that
terminate do so on the same node).

Related works. Several models of dynamic graphs have been defined recently [8,
15, 19]. In this paper, we adopt the evolving graph model [19] in which a dynamic
graph is simply a sequence of static graphs on a fixed set of nodes: each graph of
this sequence contains the edges of the dynamic graph present at a given time. We
also consider the hierarchy of dynamics assumptions introduced by Casteigts et
al. [8]. The idea behind this hierarchy is to gather all dynamic graphs that share
some temporal connectivity properties within classes. This allows us to compare
the strength of these temporal connectivity properties based on the inclusion of
classes between them. We are interested in the following classes: COT (connected-
over-time graphs) where edges may appear and disappear without any recurrence
nor periodicity assumption but guaranteeing that each node is infinitely often
reachable from any other node; RE (recurrent-edge graphs) where any edge that
appears at least once does so recurrently; BRE (bounded-recurrent-edge graphs)
where any edge that appears at least once does so recurrently in a bounded time;
AC (always-connected graphs) where the graph is connected at each instant; and
ST (static graphs) where any edge that appears at least once is always present.
Note that ST ⊂ BRE ⊂ RE ⊂ COT and ST ⊂ AC ⊂ COT by definition.

In robot networks, the gathering problem was extensively studied in the
context of static graphs, e.g., [10, 11, 18]. The main motivation of this vein of
research is to characterize the initial positions of the robots allowing gathering in
each studied topology in function of the assumptions on the robots as identifiers,
communication, vision range, memory, etc. On the other hand, few algorithms
have been designed for robots evolving in dynamic graphs. The majority of them

Gracefully Degrading Gathering in Dynamic Rings 3

G GE GW GEW

COT Impossible (Cor. 2 & 3) Impossible (Cor. 1) Impossible (Cor. 3) Possible (Th. 2)
AC Impossible (Cor. 2) Impossible (Th. 1) Possible (Th. 3) —
RE Impossible (Cor. 3) Possible (Th. 4) Impossible (Cor. 3) —
BRE Possible (Th. 5) — — —
ST Possible (Cor. 4) — — —

Table 1. Summary of our results. The symbol — means that a stronger variant of the
problem is already proved solvable under the dynamics assumption.

deals with the problem of exploration [3, 4, 16] (robots must visit each node
of the graph at least once or infinitely often depending on the variant of the
problem). In the most related work to ours [17], Di Luna et al. study the gathering
problem in dynamic rings. They first note the impossibility of the problem in
the AC class and consequently propose a weaker variant of the problem, the
near-gathering: all robots must gather in finite time on two adjacent nodes. They
characterize the impact of chirality (ability to agree on a common orientation)
and cross-detection (ability to detect whenever a robot cross the same edge in
the opposite direction) on the solvability of the problem. All their algorithms are
designed for the AC class and are not gracefully degrading.

Contributions. By contrast with the work of Di Luna et al. [17], we keep
unchanged the safety of the classical gathering problem (all robots that terminate
do so on the same node) and, to circumvent impossibility results, we weaken only
its liveness: at most one robot may not terminate or (not exclusively) all robots
that terminate do so eventually (and not in a bounded time as in the classical
specification). This choice is motivated by the approach of indulgent algorithms
[1, 14]: the safety captures the “essence” of the problem and should be preserved
even in degraded variants of the problem. Namely, we obtain the four following
variants of the gathering problem: G (gathering) all robots terminate on the same
node in bounded time; GE (eventual gathering) all robots terminate on the same
node in finite time; GW (weak gathering) all robots but (at most) one terminate
on the same node in bounded time; and GEW (eventual weak gathering) all robots
but (at most) one terminate on the same node in finite time.

We present then a set of impossibility results, summarized in Table 1, for
these specifications for different classes of dynamic rings. Motivated by these
impossibility results, our main contribution is a gracefully degrading gathering
algorithm. For each class of dynamic rings we consider, our algorithm solves
the strongest possible of our variants of the gathering problem (see Table 1).
This challenging property is obtained without any knowledge or detection of the
dynamics by the robots that always execute the same algorithm. Our algorithm
needs that robots have distincts identifiers, chirality, strong multiplicity detection
(i.e. ability to count the number of colocated robots), memory (of size sublinear
in the size of the ring and identifiers), and communication capacities but deals
with (fully) anonymous ring. These assumptions (whose necessity is left as an
open question here) are incomparable with those of Di Luna et al. [17] that
assume anonymous but home-based robots (i.e. non fully anonymous rings). This
algorithm brings two novelties with respect to the state-of-the-art: (i) it is the

4 M. Bournat et al.

first gracefully degrading algorithm dedicated to robot networks; and (ii) it is
the first algorithm solving (a weak variant of) the gathering problem in the class
COT (the largest class guaranteeing an exploitable recurrent property).

Roadmap. The organization of the paper follows. Section 2 presents formally
the model we consider. Section 3 sums up impossibility results while Section 4
presents our gracefully degrading algorithm. Section 5 concludes the paper.

2 Model

Dynamic graphs. We consider the model of evolving graphs [19]. Time is
discretized and mapped to N. An evolving graph G is an ordered sequence
{G0, G1, . . .} of subgraphs of a given static graph G = (V,E) such that, for
any i ≥ 0, we call Gi = (V,Ei) the snapshot of G at time i. Note that V is
static and |V | is denoted by n. We say that the edges of Ei are present in G
at time i. G is the footprint of G. The underlying graph of G, denoted by UG ,
is the static graph gathering all edges that are present at least once in G (i.e.
UG = (V,EG) with EG =

⋃∞
i=0Ei). An eventual missing edge is an edge of E such

that there exists a time after which this edge is never present in G. A recurrent
edge is an edge of E that is not eventually missing. The eventual underlying
graph of G, denoted Uω

G , is the static graph gathering all recurrent edges of G
(i.e. Uω

G = (V,Eω
G) where Eω

G is the set of recurrent edges of G). We only consider
graphs whose footprints are anonymous and unoriented rings of size n ≥ 4. The
class COT (connected-over-time) contains all evolving graphs such that their
eventual underlying graph is connected (note that there is at most one eventual
missing edge in any ring of class COT). The class RE (recurrent-edges) gathers
all evolving graphs whose footprint contains only recurrent edges. The class
BRE (bounded-recurrent-edges) includes all evolving graphs in which there exists
a δ ∈ N such that each edge of the footprint appears at least once every δ units
of time. The class AC (always-connected) collects all evolving graphs where the
graph Gi is connected for any i ∈ N. The class ST (static) encompasses all
evolving graphs where the graph Gi is the footprint for any i ∈ N.

Robots. We consider systems of R ≥ 4 autonomous mobile entities called robots
moving in a discrete and dynamic environment modeled by an evolving graph
G = {(V,E0), (V,E1) . . .}, V being a set of nodes representing the set of locations
where robots may be, Ei being the set of bidirectional edges through which robots
may move from a location to another one at time i. Each robot knows n and R.
Each robot r possesses a distinct (positive) integer identifier idr strictly greater
than 0. Initially, a robot only knows the value of its own identifier. Robots have
a persistent memory so they can store local variables.

Each robot r is endowed with strong local multiplicity detection, meaning
that it is able to count the exact number of robots that are co-located with it
at any time t. When this number equals 1, the robot r is isolated at time t. By
opposition, we define a tower T as a couple (S, θ), where S is a set of robots
with |S| > 1 and θ = [ts, te] is an interval of N, such that all the robots of S
are located at a same node at each instant of time t in θ and S or θ is maximal

Gracefully Degrading Gathering in Dynamic Rings 5

for this property. We say that the robots of S form the tower at time ts and
that they are involved in the tower between time ts and te. Robots are able to
communicate (by direct reading) the values of their variables to each others only
when they are involved in the same tower.

Finally, all the robots have the same chirality, i.e. each robot is able to locally
label the two ports of its current node with left and right consistently over the
ring and time and all the robots agree on this labeling. Each robot r has a
variable dirr that stores the direction it currently considers (right, left or ⊥).

Algorithms and execution. The state of a robot at time t corresponds to the
values of its local variables at time t. The configuration γt of the system at time
t gathers the snapshot at time t of the evolving graph, the positions (i.e. the
nodes where the robots are currently located) and the state of each robot at time
t. The view of a robot r at time t is composed of the state of r at time t, the
state of all robots involved in the same tower as r at time t if any, and of the
following local functions: ExistsEdge(dir, round), with dir ∈ {right, left} and
round ∈ {current, previous} which indicates if there exists an adjacent edge to
the location of r at time t and t− 1 respectively in the direction dir in Gt and in
Gt−1 respectively; NodeMate() which gives the set of all the robots co-located
with r (r is not included in this set); NodeMateIds() which gives the set of
all the identifiers of the robots co-located with r (excluded the one of r); and
HasMoved() which indicates if r has moved between time t−1 and t (see below).

The algorithm of a robot is written in the form of an ordered set of guarded
rules (label) :: guard −→ action where label is the name of the rule, guard is
a predicate on the view of the robot, and action is a sequence of instructions
modifying its state. Robots are uniform in the sense they share the same algorithm.
Whenever a robot has at least one rule whose guard is true at time t, we say that
this robot is enabled at time t. The local algorithm also specifies the initial value
of each variable of the robot but cannot restrict its arbitrary initial position.

Given an evolving graph G = {G0, G1, . . .} and an initial configuration γ0,
the execution σ in G starting from γ0 of an algorithm is the maximal sequence
(γ0, γ1)(γ1, γ2)(γ2, γ3) . . . where, for any i ≥ 0, the configuration γi+1 is the result
of the execution of a synchronous round by all robots from γi that is composed
of three atomic and synchronous phases: Look, Compute, Move. During the Look
phase, each robot captures its view at time i. During the Compute phase, each
enabled robot executes the action associated to the first rule of the algorithm
whose guard is true in its view. In the case the direction dirr of a robot r is in
{right, left}, the Move phase consists of moving r in the direction it considers if
there exists an adjacent edge in that direction to its current node, otherwise (i.e.
the adjacent edge is missing) r is stuck and hence remains on its current node.
In the case where its direction is ⊥, the robot remains on its current node.

3 Impossibility Results

This section presents a set of impossibility results (refer to Table 1) showing
that some variants of the gathering problem cannot be solved depending on
the dynamics of the ring in which the robots evolve and hence motivating our

6 M. Bournat et al.

gracefully degrading approach. First, we recall a result from Di Luna et al.. Note
that differences between the considered models do not interfere with the proof.

Theorem 1 ([17]). There exists no deterministic algorithm that satisfies GE in
rings of AC with size 4 or more for 4 robots or more.

Note that Di Luna et al. provide only informal arguments for this impossibility
result while we provide in the companion report [5] its full formal proof. It is
possible to derive some other impossibility results from Theorem 1. Indeed, the
inclusion AC ⊂ COT allows us to state that GE is also impossible under COT .

Corollary 1. There exists no deterministic algorithm that satisfies GE in rings
of COT with size 4 or more for 4 robots or more.

From the very definitions of G and GE , it is straightforward to see that the
impossibility of GE under a given class implies the one of G under the same class.

Corollary 2. There exists no deterministic algorithm that satisfies G in rings
of COT or AC with size 4 or more for 4 robots or more.

Finally, impossibility results for bounded variants of the gathering problem
(i.e. the impossibility of G underRE and of GW under COT andRE) are obtained
as follows. The definition of COT and RE does not exclude the ability for all
edges of the graph to be missing initially and for any arbitrary long time, hence
preventing the gathering of robots for any arbitrary long time if they are initially
scattered. This observation is sufficient to prove a contradiction with the existence
of an algorithm solving G or GW in these classes.

Corollary 3. There exists no deterministic algorithm that satisfies G or GW in
rings of COT or RE with size 4 or more for 4 robots or more.

4 Gracefully Degrading Gathering

This section presents GDG, our gracefully degrading gathering algorithm, that
aims to solve different variants of the gathering under various dynamics (refer to
Table 1). In the following, we informally describe our algorithm clarifying which
variant of gathering is satisfied within which class of evolving graphs. Next, we
present formally the algorithm and sketch its correctness proof.

Overwiew. Our algorithm has to overcome various difficulties. First, robots are
evolving in an environment in which no node can be distinguished. So, the trivial
algorithm in which the robots meet on a particular node is impossible. Moreover,
since the footprint of the graph is a ring, (at most) one of the n edges may be
an eventual missing edge. This is typically the case of classes COT and AC. In
that case, no robot is able to distinguish an eventual missing edge from a missing
edge that will appear later in the execution. In particular, a robot stuck by a
missing edge does not know whether it can wait for the missing edge to appear
again or not. Finally, despite the fact that no robot is aware of which class of

Gracefully Degrading Gathering in Dynamic Rings 7

dynamic graphs robots are evolving in, the algorithm is required to meet at least
the specification of the gathering according to the class of dynamic graphs in
which it is executed or a better specification than this one.

The overall scheme of the algorithm consists in first detecting rmin, the robot
having the minimum identifier so that the R robots eventually gather on its node
(i.e., satisfying specification GE). Of course, depending on the particular evolving
graph in which our algorithm is executed, GE may not achieved. In class COT
and the “worst” possible evolving graph, one can expect specification GEW only,
i.e., at least R− 1 robots gathered.

The algorithm proceeds in four successive phases: M (for “am I the Min?”),
K (for “min wait to be Known”), W (for “Walk”), and T (for “wait Termination”).
Actually, again depending on the class of graphs and the evolving graph in which
our algorithm is executed, we will see that the four phases are not necessarily
all executed since the execution can be stopped prematurely, especially in case
where GE (or G) is achieved. By contrast, they can also never be completed in
some strong classes of dynamic graphs where the connectivity assumptions are
weak (namely AC or COT), solving GEW (or GW) only.

Phase M. This phase leads each robot to know whether it possesses the minimum
identifier. Initially every robot r considers the right direction. Then r moves to
the right until it moves 4 ∗ n ∗ idr steps on the right (where idr is the identifier
of r, and n is the size of the ring) or until it meets R − 2 other robots such
that its identifier is not the smaller one among these robots or until it meets a
robot that knows the identifier of rmin. The first robot that succeeds to move
4 ∗ n ∗ idr steps in the right direction is necessarily rmin. Depending on the class
of graph, one eventual missing edge may exist, preventing rmin to move on the
right direction during 4 ∗ n ∗ idrmin

steps.

However, in the case where there is an eventual missing edge at least R− 1
robots succeed to be located on a same node. They are located either on the
extremity of the eventual missing edge or on the extremity of a missing edge
that is not eventually missing. The robot rmin is not necessarily located with
these R − 1 robots gathered. Note that the weak form of gathering (GEW)
could be solved in that case. However, the R− 1 robots gathered cannot stop
their execution. Indeed, our algorithm aims at gathering the robots on the node
occupied by rmin. However, rmin may not be part of the R − 1 robots that
gathered. Further, it is possible for R− 1 robots to gather (without rmin) even
when rmin succeeds in moving 4 ∗ n ∗ idrmin

steps to the right (i.e. even when
rmin stops to move because it completed Phase M). In that case, if the R − 1
robots that gathered stop their execution, GE cannot be solved in RE , BRE and
ST rings, as GDG should do. Note that, it is also possible for rmin to be part of
the R− 1 robots that gathered.

Recall that robots can communicate when they are both located in the same
node. So, the R− 1 robots may be aware of the identifier of the robot with the
minimum identifier among them. Since it can or cannot be the actual rmin, let
us call this robot potentialMin. Then, driven by potentialMin, a search phase
starts during which the R−1 robots try to visit all the nodes of the ring infinitely

8 M. Bournat et al.

Algorithm 1 Predicates used in GDG
MinDiscovery() ≡ [stater = potentialMin∧∃r′ ∈ NodeMate(), (stater′ = righter∧

idr < idr′)] ∨ [∃r′ ∈ NodeMate(), idMinr′ = idr] ∨ [∃r′ ∈ NodeMate(), (stater′ ∈
{dumbSearcher, potentialMin} ∧ idr < idPotentialMinr′)] ∨ [rightStepsr =
4 ∗ idr ∗ n]

GE() ≡ |NodeMate()| = R− 1
GEW() ≡ |NodeMate()| = R− 2 ∧ ∃r′ ∈ {r} ∪NodeMate(),

stater′ ∈ {minWaitingWalker,minTailWalker}
HeadWalkerWithoutWalkerMate() ≡ stater = headWalker ∧

ExistsEdge(left, previous) ∧ ¬HasMoved() ∧ NodeMateIds() 6= walkerMater
LeftWalker() ≡ stater = leftWalker
HeadOrTailWalkerEndDiscovery() ≡

stater ∈ {headWalker, tailWalker,minTailWalker} ∧ walkStepsr = n
HeadOrTailWalker() ≡ stater ∈ {headWalker, tailWalker,minTailWalker}
AllButTwoWaitingWalker() ≡ |NodeMate()| = R− 3 ∧ ∀r′ ∈ {r} ∪NodeMate(),

stater′ ∈ {waitingWalker,minWaitingWalker}
WaitingWalker() ≡ stater ∈ {waitingWalker,minWaitingWalker}
PotentialMinOrSearcherWithMinWaiting(r’) ≡ stater ∈ {potentialMin,

dumbSearcher, awareSearcher} ∧ stater′ = minWaitingWalker
RighterWithMinWaiting(r’) ≡ stater = righter ∧ stater′ = minWaitingWalker
NotWalkerWithHeadWalker(r’) ≡ stater ∈ {righter, potentialMin,

dumbSearcher, awareSearcher} ∧ stater′ = headWalker
NotWalkerWithTailWalker(r’)≡ stater ∈ {righter, potentialMin, dumbSearcher,

awareSearcher} ∧ stater′ = minTailWalker
PotentialMinWithAwareSearcher(r’) ≡

stater = potentialMin ∧ stater′ = awareSearcher
AllButOneRighter() ≡

|NodeMate()| = R− 2 ∧ ∀r′ ∈ {r} ∪NodeMate(), stater′ = righter
RighterWithSearcher(r’) ≡

stater = righter ∧ stater′ ∈ {dumbSearcher, awareSearcher}
PotentialMinOrRighter() ≡ stater ∈ {potentialMin, righter}
DumbSearcherMinRevelation() ≡ stater = dumbSearcher ∧
∃r′ ∈ NodeMate(), (stater′ = righter ∧ idr′ > idPotentialMinr)

DumbSearcherWithAwareSearcher(r’) ≡
stater = dumbSearcher ∧ stater′ = awareSearcher

Searcher() ≡ stater ∈ {dumbSearcher, awareSearcher}

often in both directions by subtle round trips. Doing so, rmin eventually knows
that it possesses the actual minimum identifier.

Phase K. The goal of the second phase consists in spreading the identifier of
rmin among the other robots. The basic idea is that during this phase, rmin

stops moving and waits until R − 3 other robots join it on its node so that
its identifier is known by at least R − 3 other robots. The obvious question
arises:“Why waiting for R− 3 extra robots only?”. A basic idea to gather could
be that once rmin is aware that it possesses the minimum identifier, it can just
stop to move and just wait for the other robots to eventually reach its location,
just by moving toward the right direction. Actually, depending on the particular

Gracefully Degrading Gathering in Dynamic Rings 9

evolving graph considered one missing edge e may eventually appear, preventing
robots from reaching rmin by moving toward the same direction only. That is
why the gathering of the R− 2 robots is eventually achieved by the same search
phase as in Phase M (since the search phase permits to at least 3 robots to explore
infinitely often the nodes of the ring until reaching a given node). However, by
doing this, it is possible to have 2 robots stuck on each extremity of e. Further,
these two robots cannot change the directions they consider since a robot is not
able to distinguish an eventual missing edge from a missing edge that will appear
again later. This is why during Phase K, rmin stops to move until R− 3 other
robots join it to form a tower of R− 2 robots. In this way these R− 2 robots
start the third phase simultaneously.

Phase W. The third phase is a walk made by the tower of R − 2 robots. The
R− 2 robots are split into two distinct groups, Head and Tail. Head is the unique
robot with the maximum identifier of the tower. Tail, composed of R− 3 robots,
is made of the other robots of the tower, led by rmin. Both move alternatively in
the right direction during n steps such that between two movements of a given
group the two groups are again located on a same node. This movement permits
to prevent the two robots that do not belong to any of these two groups to be
both stuck on different extremities of an eventual missing edge (if any) once this
walk is finished. Since there exists at most one eventual missing edge, we are sure
that if the robots that have executed the walk stop moving forever, then at least
one robot can join them during the next and last phase.

As noted, it can exist an eventual missing edge, therefore, Head and Tail may
not complete Phase W. Indeed, one of the two situations below may occur: (i)
Head and Tail together form a tower of R− 2 robots but an eventual missing
edge on their right prevents them to complete Phase W; (ii) Head and Tail are
located on neighboring node and the edge between them is an eventual missing
edge that prevents Head and Tail to continue to move alternatively.

Call u the node where Tail is stuck on an eventual missing edge. In the two
situations described even if Phase W is not complete by both Head and Tail, either
GE or GEW is solved. Indeed, in the first situation, necessarily at least one robot
r succeeds to join u (either r considers the good direction to reach u or it meets
a robot on the other extremity of the eventual missing edge that makes it change
its direction, and hence makes it consider the good direction to reach u). In the
second situation, necessarily at least two robots r and r′ succeed to join u. This
is done either because r and r′ consider the good direction to reach u or because
they reach the node where Head is located without Tail making them change
their direction, and hence making them consider the good direction to reach u.

Once a tower of R− 1 robots including rmin is formed, GEW is solved. Then,
the latter robot tries to reach the tower to eventually solve GE in favorable cases.

Phase T. The last phase starts once the robots of Head have completed Phase W.
If it exists a time at which the robots of Tail complete Phase W, then Head and
Tail form a tower of R− 2 robots and stop moving. As explained in the previous
phase, Phase W ensures that at least one extra robot eventually joins the node
where Head and Tail are located to form a tower of R− 1 robots. Once a tower

10 M. Bournat et al.

Algorithm 2 Functions used in GDG
Function StopMoving()

dirr := ⊥

Function MoveLeft()

dirr := left

Function BecomeLeftWalker()

(stater, dirr) := (leftWalker,⊥)

Function Walk()

dirr :=


⊥ if (idr = idHeadWalkerr ∧ walkerMater 6= NodeMateIds())∨

(idr 6= idHeadWalkerr ∧ idHeadWalkerr ∈ NodeMateIds())
right otherwise

walkStepsr := walkStepsr + 1 if dirr = right ∧ ExistsEdge(right, current)

Function InitiateWalk()

idHeadWalkerr := max({idr} ∪NodeMateIds())
walkerMater := NodeMateIds()

stater :=


headWalker if idr = idHeadWalkerr
minTailWalker if stater = minWaitingWalker
tailWalker otherwise

Function BecomeWaitingWalker(r’)

(stater, idPotentialMinr, idMinr, dirr) := (waitingWalker, idr′ , idr′ ,⊥)

Function BecomeMinWaitingWalker()

(stater, idPotentialMinr, idMinr, dirr) := (minWaitingWalker, idr, idr,⊥)

Function BecomeAwareSearcher(r’)

(stater, dirr) := (awareSearcher, right)

(idPotentialMinr, idMinr) :=


(idPotentialMinr′ , idPotentialMinr′)

if stater′ = dumbSearcher
(idMinr′ , idMinr′)

otherwise

Function BecomeTailWalker(r’)

(stater, idPotentialMinr, idMinr) := (tailWalker, idPotentialMinr′ , idMinr′)
(idHeadWalkerr, walkerMater, walkStepsr) :=

(idHeadWalkerr′ , walkerMater′ , walkStepsr′)

Function MoveRight()

dirr := right
rightStepsr := rightStepsr + 1 if ExistsEdge(dir, current)

Function InitiateSearch()

idPotentialMinr := min({idr} ∪NodeMateIds())

stater :=

{
potentialMin if idr = idPotentialMinr

dumbSearcher otherwise
rightStepsr := rightStepsr+1 if stater = potentialMin ∧ ExistsEdge(dir, current)

Function Search()

dirr :=


left if |NodeMate()| ≥ 1 ∧ idr = max({idr} ∪NodeMateIds())
right if |NodeMate()| ≥ 1 ∧ idr 6= max({idr} ∪NodeMateIds())
dirr otherwise

Gracefully Degrading Gathering in Dynamic Rings 11

Algorithm 3 GDG
Rules for Termination

Term1 :: GE() −→ terminate
Term2 :: GEW () −→ terminate

Rules for Phase T

T1 :: LeftWalker() −→ MoveLeft()
T2 :: HeadWalkerWithoutWalkerMate() −→ BecomeLeftWalker()
T3 :: HeadOrTailWalkerEndDiscovery() −→ StopMoving()

Rules for Phase W

W1 :: HeadOrTailWalker() −→ Walk()

Rules for Phase K

K1 :: AllButTwoWaitingWalker() −→ InitiateWalk()
K2 :: WaitingWalker() −→ StopMoving()
K3 :: ∃r′ ∈ NodeMate(), PotentialMinOrSearcherWithMinWaiting(r′)

−→ BecomeWaitingWalker(r’)
K4 :: ∃r′ ∈ NodeMate(), RighterWithMinWaiting(r′) ∧

ExistsEdge(right, current) −→ BecomeAwareSearcher(r’)

Rules for Phase M

M1 :: PotentialMinOrRighter() ∧ MinDiscovery()
−→ BecomeMinWaitingWalker(r)

M2 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′) ∧
ExistsEdge(right, current) −→ BecomeAwareSearcher(r’)

M3 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′)
−→ BecomeAwareSearcher(r’); StopMoving()

M4 :: ∃r′ ∈ NodeMate(), NotWalkerWithTailWalker(r′)
−→ BecomeTailWalker(r’); Walk()

M5 :: ∃r′ ∈ NodeMate(), PotentialMinWithAwareSearcher(r′)
−→ BecomeAwareSearcher(r’); Search()

M6 :: AllButOneRighter() −→ InitiateSearch()
M7 :: ∃r′ ∈ NodeMate(), RighterWithSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M8 :: PotentialMinOrRighter() −→ MoveRight()
M9 :: DumbSearcherMinRevelation() −→ BecomeAwareSearcher(r); Search()
M10 :: ∃r′ ∈ NodeMate(), DumbSearcherWithAwareSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M11 :: Searcher() −→ Search()

of R− 1 robots including rmin is formed, GEW is solved. Then, the latter robot
tries to reach the tower to eventually solve GE in favorable cases. In the case the
robots of Tail never complete the phase W, then this implies that Head and Tail
are located on neighboring node and that the edge between them is an eventual
missing edge. As described in Phase W either GEW or GE is solved.

Algorithm. Before presenting formally our algorithm, we first describe the set
of variables of each robot. We recall that each robot r knows R, n and idr as

12 M. Bournat et al.

constants. In addition to the variable dirr (initialized to right), each robot r
possesses seven variables described below. Variable stater allows the robot r to
know which phase of the algorithm it is performing and (partially) indicates
which movement the robot has to execute. The possible values for this variable are
righter, dumbSearcher, awareSearcher, potentialMin, waitingWalker, min-
WaitingWalker, headWalker, tailWalker, minTailWalker and leftWalker.
Initially, stater is equal to righter. Initialized with 0, rightStepsr counts the
number of steps done by r in the right direction when stater ∈ {righter, po-
tentialMin}. The next variable is idPotentialMinr. Initially equals to −1, id-
PotentialMinr contains the identifier of the robot that possibly possesses the
minimum identifier (a positive integer) of the system. This variable is especially
set when R− 1 righter are located on a same node. In this case, the variable
idPotentialMinr of each robot r that is involved in the tower of R− 1 robots is
set to the value of the minimum identifier possessed by these robots. The variable
idMinr indicates the identifier of the robot that possesses the actual minimum
identifier among all the robots of the system. This variable is initially set to −1.
Let walkerMater be the set of all the identifiers of the R− 2 robots that initiate
the Phase W. Initially this variable is set to ∅. The counter walkStepsr, initially
0, maintains the number of steps done in the right direction while r performs
the Phase W. Finally, the variable idHeadWalkerr contains the identifier of the
robot that plays the part of Head during the Phase W. Moreover, we assume the
existence of a specific instruction: terminate. By executing this instruction, a
robot stops executing the cycle Look-Compute-Move forever. To ease the writing
of our algorithm, we define a set of predicates (presented in Algorithm 1) and
functions (presented in Algorithm 2), that are used in our gracefully degrading
algorithm GDG. Recall that, during the Compute phase, only the first rule whose
guard is true in the view of an enabled robot is executed.

Sketch of Proof. Due to the lack of space, in this section we only sketch the
correctness proof of Algorithm GDG. The interested reader may find the complete
proofs in the companion report [5]. More precisely, we present which instance
of the gathering our algorithm solves depending on the dynamics of the ring in
which it is executed. In the following, we consider in the order the classes COT ,
AC, RE , BRE and ST . For ease of reading, we abuse the various values of the
variable state to qualify the robots. For instance, if the current value of variable
state of a robot is righter, then we say that the robot is a righter robot.

Theorem 2. Algorithm GDG solves GEW in COT .

Proof Outline. As the safety of GEW directly follows from Rules Term1 and
Term2, we only focus on its liveness in the following. The proof is done by
analyzing successively each phase of GDG.

In Phase M, rmin is supposed to be able, in finite time, to know that it
possesses the minimum identifier among all the robots of the system. In our
algorithm, a robot is aware that it possesses the minimum identifier when it
is either a minWaitingWalker or a minTailWalker robot. Let us call min a
robot such that its variable state is equal to one of these two values. To prove

Gracefully Degrading Gathering in Dynamic Rings 13

the correctness of this phase, we prove first that only rmin can become min and
then that rmin effectively becomes min in finite time.

First note that, by the rules of GDG, if a robot is located on the same
node as a min, it stops to be in Phase M and hence cannot be min. By the
rules of GDG, a robot is necessarily a minWaitingWalker before becoming
a minTailWalker. Moreover, only a righter or a potentialMin can become
a minWaitingWalker (Rule M1). Therefore, if a robot becomes min, then
necessarily it considers the right direction from the beginning of the execution
until it becomes min (Rule M8). While executing the other phases of GDG, a
min can only consider either the ⊥ or the right direction (refer to Rules K2,
K1, W1, and T3). Besides, in the case a min robot r succeeds to execute all
the phases of GDG, it can only move from 4 ∗ idr ∗ n + n steps in the right
direction (refer to Rules M1, K2, K1, W1, and T3). Moreover, because of the
dynamism of the ring, two robots r′ and r′′ such that both stater′ and stater′′

belong to {righter, potentialMin}, can have their variables rightSteps such that
|rightStepsr′ − rightStepsr′′ | ≤ n. Besides, it takes one round for a robot to
update its variable state to min. Hence, since a righter or a potentialMin can
be located with a robot r just the round before r becomes min, this righter or
potentialMin can move again in the right direction during at most n steps
without meeting the min. Hence, since for all r 6= rmin, idrmin < idr, we have
4 ∗ idrmin

∗ n + n + n + n < 4 ∗ idr ∗ n. This implies that a robot r (with
r 6= rmin) cannot become min thanks to the condition rightStepsr = 4 ∗ idr ∗ n
of the predicate MinDiscovery() of Rule M1. Finally, the other conditions of
the predicate MinDiscovery() of Rule M1 cannot be satisfied by another robot
than rmin. Indeed, by the rules of GDG, a potentialMin (resp. a dumbSearcher)
is a robot that is aware of the identifiers of R− 1 robots (Rule M6), and that
possesses the minimum identifier among these R− 1 robots (resp. and that keeps
in its variable idPotentialMin the value of the smallest identifier among these
R− 1 robots). Therefore, the first (resp. the third) condition of the predicate
MinDiscovery() of Rule M1 is true only for rmin. Finally, when there is no min
in the execution, an awareSearcher (robot whose variable idMin is different
from −1) is a robot that is aware of all the identifiers of all the robots of the
system (Rules M5, M7, M9, and M10) and that keeps in its variable idMin the
value of the minimum identifier among these robots. Thus, the second condition
of the predicate MinDiscovery() of Rule M1 is true only for rmin.

Then, we prove that rmin becomes min in finite time. First, note that as long
as there is no min in the execution, rmin is either a righter or a potentialMin.
In the case where rmin succeeds to move in the right direction during 4∗ idrmin

∗n
steps, it becomes min (Rule M1). If rmin does not succeed to do so, then there
exists an eventual missing edge, and necessarily R − 1 righter succeed to be
located on the same node. From this time, they are potentialMin and dumb-
Searcher in the execution. It is also possible to have awareSearcher (Rules M5,
M7, M9, and M10). As long as there is no min, dumbSearcher and awareSear-
cher execute the function Search at each time (Rules M9, M10, and M11),
and the potentialMin executes either Rule M8 or function Search (Rule M5).

14 M. Bournat et al.

By definition of Search and of Rule M8, one robot succeeds to reach the node
where rmin is stuck and to inform it that it has to become min.

Phase K is achieved when there are R − 3 waitingWalker robots located
on the same node as rmin, while rmin is a minWaitingWalker. By the rules of
GDG, as long as this phase is not achieved, there are only righter, potentialMin,
dumbSearcher, awareSearcher, waitingWalker, and minWaitingWalker. By
Rules K3 and K2, all the waitingWalker and minWaitingWalker are located
on a same node and do not move. By analyzing the movements of the other kind
of robots , we prove that it exists a time t at which this phase is achieved and
that there is at most one righter in the execution from time t.

Similarly, Phase W and Phase T are proved by analyzing the movements
of the robots. At the time when the Phase K is achieved, we can prove that
the two robots r1 and r2 that are not on the same node as the min are such
that stater1 ∈ {righter, potentialMin, awareSearcher, dumbSearcher} and
stater2 ∈ {awareSearcher, dumbSearcher}. Moreover, once the Phase K is
achieved, all the waitingWalker and minWaitingWalker execute Rule K1.
While executing this rule the robot with the maximum identifier among these
robots becomes headWalker, the minWaitingWalker becomes minTailWalker
and the other robots become tailWalker. Analyzing all the possible movements
of these kind of robots we succeed to prove that whatever the position of an
eventual missing edge, in finite time, either Rule Term1 or Rule Term2 is
executed. Hence, either R robots terminate their execution (Rule Term1) or
R− 1 robots terminate their execution (Rule Term2) in finite time. ut

Once Theorem 2 proved, classes inclusions and a careful analysis of the robot
movements allow us to deduce the following set of results.

Theorem 3. GDG solves GW in AC in O(idrmin
∗ n2 +R ∗ n) rounds.

Theorem 4. GDG solves GE in RE.

Theorem 5. GDG solves G in BRE in O(n ∗ δ ∗ (idrmin
+R)) rounds.

Corollary 4. GDG solves G in ST in O(n ∗ (idrmin
+R)) rounds.

5 Conclusion

In this paper, we apply for the first time the gracefully degrading approach to
robot networks. This approach consists in circumventing impossibility results
in highly dynamic systems by providing algorithms that adapt themselves to
the dynamics of the graph: they solve the problem under weak dynamics and
only guarantee that some weaker but related problems are satisfied whenever the
dynamics increases and makes the original problem impossible to solve.

Focusing on the classical problem of gathering a squad of autonomous robots,
we introduce a set of weaker variants of this problem that preserves its safety
(in the spirit of the indulgent approach that shares the same underlying idea).
Motivated by a set of impossibility results, we propose a gracefully degrading

Gracefully Degrading Gathering in Dynamic Rings 15

gathering algorithm. We highlight that it is the first gracefully degrading algorithm
dedicated to robot networks and the first algorithm focusing on the gathering in
COT , the class of dynamic graphs that exhibits the weakest recurrent connectivity.

A natural open question arises on the optimality of the graceful degradation we
propose. Indeed, we prove that our algorithm provides for each class of dynamic
graphs the best specification among the ones we proposed. We do not claim that
another algorithm could not be able to satisfy stronger variants of the original
gathering specification. Aside gathering in robot networks, defining a general
form of degradation optimality seems to be a challenging future work.

References

1. D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. Generating fast indulgent
algorithms. TCS, 51(4):404–424, 2012.

2. M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading
consensus and k -set agreement in directed dynamic networks. TCS, 726:41–77,
2018.

3. M. Bournat, A. Datta, and S. Dubois. Self-stabilizing robots in highly dynamic
environments. In SSS, pages 54–69, 2016.

4. M. Bournat, S. Dubois, and F. Petit. Computability of perpetual exploration in
highly dynamic rings. In ICDCS, pages 794–804, 2017.

5. M. Bournat, S. Dubois, and F. Petit. Gracefully degrading gathering in dynamic
rings. Technical report, arXiv 1805.05137, 2018.

6. N. Braud-Santoni, S. Dubois, M.-H. Kaaouachi, and F. Petit. The next 700
impossibility results in time-varying graphs. IJNC, 6(1):27–41, 2016.

7. A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Shortest, fastest, and foremost
broadcast in dynamic networks. IJFCS, 26(4):499–522, 2015.

8. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs
and dynamic networks. IJPEDS, 27(5):387–408, 2012.

9. S. Dubois and R. Guerraoui. Introducing speculation in self-stabilization: an
application to mutual exclusion. In PODC, pages 290–298, 2013.

10. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Multiple mobile
agent rendezvous in a ring. In LATIN, pages 599–608, 2004.

11. R. Klasing, E. Markou, and A. Pelc. Gathering asynchronous oblivious mobile
robots in a ring. In ISAAC, pages 744–753, 2006.

12. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative
byzantine fault tolerance. TOCS, 27(4):7:1–7:39, 2009.

13. F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks.
In STOC, pages 513–522, 2010.

14. L. Lamport. The part-time parliament. TOCS, 16(2):133–169, 1998.
15. M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the

modeling of interactions over time. Technical report, arXiv 1710.04073, 2017.
16. G. Di Luna, S. Dobrev, P. Flocchini, and N. Santoro. Live exploration of dynamic

rings. In ICDCS, pages 570–579, 2016.
17. G. Di Luna, P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, and G. Viglietta.

Gathering in dynamic rings. In SIROCCO, pages 339–355, 2017.
18. G. Di Stefano and A. Navarra. Optimal gathering of oblivious robots in anonymous

graphs and its application on trees and rings. DC, 30(2):75–86, 2017.
19. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost

journeys in dynamic networks. IJFCS, 14(02):267–285, 2003.

