
Snap-Stabilizing Message Forwarding
Algorithm on Tree Topologies�

Alain Cournier1, Swan Dubois2, Anissa Lamani1, Franck Petit2,
and Vincent Villain1

1 MIS, Université of Picardie Jules Verne, France
2 LiP6/CNRS/INRIA-REGAL, Université Pierre et Marie Curie - Paris 6, France

Abstract. In this paper, we consider the message forwarding problem
that consists in managing the network resources that are used to forward
messages. Previous works on this problem provide solutions that either
use a significant number of buffers (that is n buffers per processor, where
n is the number of processors in the network) making the solution not
scalable or, they reserve all the buffers from the sender to the receiver to
forward only one message. The only solution that uses a constant number
of buffers per link was introduced in [1]. However the solution works only
on a chain networks. In this paper, we propose a snap-stabilizing algo-
rithm for the message forwarding problem that uses a constant number
of buffers per link as in [1] but works on tree topologies.

Keywords: Message Forwarding, Snap-stabilization, Token Circulation.

1 Introduction

It is known that the quality of a distributed system depends on its fault tol-
erance. Many fault-tolerance approaches have been introduced, for instance:
Self-Stabilization [2] which allows the conception of systems that are tolerant
of any arbitrary transient fault. A system is said to be self-stabilizing if start-
ing from any arbitrary configuration, the system converges into the intended
behavior in a finite time. Another instance of the fault-tolerance scheme is the
snap-stabilization [3]. Snap-stabilizing systems always behave according to their
specification, and this regardless of the starting configuration. Thus, a snap-
stabilizing solution can be seen as a self-stabilizing solution that stabilizes in
zero time.

In distributed systems, the end-to-end communication problem consists in de-
livery in finite time across the network of a sequence of data items generated
at a node called the sender, to another node called the receiver. This problem
comprises the following two sub-problems: (i) the routing problem, i.e., the de-
termination of the path followed by the messages to reach their destinations;
(ii) the message forwarding problem that consists in the management of net-
work resources in order to forward messages. In this paper, we focus on the
second problem whose aim is to design a protocol that manages the mechanism
� This work has been supported in part by the ANR project SPADES (08-ANR-SEGI-

025). Details of the project on http://graal.ens-lyon.fr/SPADES

L. Bononi et al. (Eds.): ICDCN 2012, LNCS 7129, pp. 46–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://graal.ens-lyon.fr/SPADES


Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 47

allowing the message to move from a node to another one on the path from a
sender to a receiver. Each node on this path has a reserved memory space called
buffer. We assume that each buffer is large enough to contain any message. With
a finite number of buffers, the message forwarding problem consists in avoiding
deadlock and livelock situations.

The message forwarding problem has been well investigated in a non faulty
setting [4–7]. In [8, 9] self-stabilizing solutions were proposed. Both solutions deal
with network dynamic, i.e., systems in which links can be added or removed.
However, message deliveries are not ensured while the routing tables are not
stabilized. Thus, the proposed solutions cannot guaranty the absence of message
loss during the stabilization time.

In this paper, we address the problem of providing a snap-stabilizing protocol
for this problem. Snap-stabilization provides the desirable property of delivering
to its recipient every message generated after the faults, once and only once
even if the routing tables are not (yet) stabilized. Some snap-stabilizing solutions
have been proposed to solve the problem [10, 11, 1]. In [10], the problem was
solved using n buffers per node (where n denotes the number of processors in
the network). The number of buffers was reduced in [11] to D buffers per node
(where D refers to the diameter of the network). However, the solution works by
reserving the entire sequence of buffers leading from the sender to the receiver.
Note that the first solution is not suitable for large-scale systems whereas the
second one has to reserve all the path from the source to the destination for the
transmission of only one message. In [1], a snap-stabilizing solution was proposed
using a constant number of buffers per link. However the solution works only on
chain topologies.

We provide a snap-stabilizing solution that solves the message forwarding
problem in tree topologies using the same complexity on the number of buffers
as in [1] i.e., two buffers per link for each processor plus one internal buffer,
thus, 2δ + 1 buffers by processor, where δ is the degree of the processor in the
system.

Road Map. The rest of the paper is organized as follow: Our Model is presented in
Section 2. In Section 3, we provide our snap-stabilizing solution for the message
forwarding problem. Due to the lack of space, the complete proofs of correctness
are omitted however, some sketches of proofs are given in Sub-Section 3.3. Finally
we conclude the paper in Section 4.

2 Model and Definitions

Network. We consider in this paper a network as an undirected connected graph
G = (V, E) where V is the set of nodes (processors) and E is the set of bidirec-
tional communication links. Each process has a unique id. Two processors p and
q are said to be neighbours if and only if there is a communication link (p, q)
between the two processors. Note that, every processor is able to distinguish all
its links. To simplify the presentation we refer to the link (p, q) by the label q
in the code of p. In our case we consider that the network is a tree of n processors.



48 A. Cournier et al.

Computational Model. In this paper we consider the classical local shared mem-
ory model introduced by Dijkstra [12] known as the state model. In this model
communications between neighbours are modelled by direct reading of variables
instead of exchange of messages. The program of every processor consists in a
set of shared variables (henceforth referred to as variable) and a finite number of
actions. Each processor can write in its own variables and read its own variables
and those of its neighbours. Each action is constituted as follow:

< Label >::< Guard > → < Statement >

The guard of an action is a boolean expression involving the variables of p and
its neighbours. The statement is an action which updates one or more variables
of p. Note that an action can be executed only if its guard is true. Each execution
is decomposed into steps.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors. The local state refers to
the state of a processor and the global state to the state of the system.

Let y ∈ C and A an action of p (p ∈ V ). A is enabled for p in y if and
only if the guard of A is satisfied by p in y. Processor p is enabled in y if
and only if at least one action is enabled at p in y. Let P be a distributed
protocol which is a collection of binary transition relations denoted by →, on
C. An execution of a protocol P is a maximal sequence of configurations e =
y0y1...yiyi+1 . . . such that, ∀ i ≥ 0, yi → yi+1 (called a step) if yi+1 exists,
else yi is a terminal configuration. Maximality means that the sequence is either
finite (and no action of P is enabled in the terminal configuration) or infinite.
All executions considered here are assumed to be maximal. ξ is the set of all
executions of P . Each step consists on two sequential phases atomically executed:
(i) Every processor evaluates its guard; (ii) One or more enabled processors
execute its enabled actions. When the two phases are done, the next step begins.
This execution model is known as the distributed daemon [13]. We assume that
the daemon is weakly fair, meaning that if a processor p is continuously enabled,
then p will be eventually chosen by the daemon to execute an action.

In this paper, we use a composition of protocols. We assume that the above
statement (ii) is applicable to every protocol. In other words, each time an
enabled processor p is selected by the daemon, p executes the enabled actions of
every protocol.

Snap-Stabilization. Let Γ be a task, and SΓ a specification of Γ . A protocol P
is snap-stabilizing for SΓ if and only if ∀ E ∈ ξ, E satisfies SΓ .

Message Forwarding Problem. In the following, a message is said to be valid if
it has been emitted after the faults. Otherwise it is said to be invalid.

The message forwarding problem is specified as follows:

Specification 1 (SP ). A protocol P satisfies SP if and only if the following
two requirements are satisfied in every execution of P : (i) Any message can be
generated in a finite time. (ii) Any valid message is delivered to its destination
once and only once in a finite time.



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 49

Buffer Graph. A Buffer Graph [14] is defined as a directed graph on the buffers of
the graph i.e., the nodes are a subset of the buffers of the network and links are
arcs connecting some pairs of buffers, indicating permitted message flow from one
buffer to another one. Arcs are only permitted between buffers in the same node,
or between buffers in distinct nodes which are connected by a communication
link.

3 Message Forwarding

In this section, we first give an overview of our snap stabilizing Solution for the
message forwarding problem, then we present the formal description followed by
some sketches of the proofs of correctness.

3.1 Overview of the Solution

In this section, we provide an informal description of our snap stabilizing solu-
tion that solves the message forwarding problem and tolerates the corruption of
the routing tables in the initial configuration. We assume that there is a self-
stabilizing algorithm that calculates the routing tables and runs simultaneously
to our algorithm. We assume that our algorithm has access to the routing tables
via the function Nextp(d) which returns the identity of the neighbour to which p
must forward the message to reach the destination d. In the following we assume
that there is no message in the system whose destination is not in the system.

Before detailing our solution let us define the buffer graph used in our solution.
Let δ(p) be the degree of the processor p in the tree structure. Each processor
p has (i) one internal buffer that we call Extra buffer denoted EXTp. (ii) δ(p)
input buffers allowing p to receive messages from its neighbors. Let q ∈ Np, the
input buffer of p connected to the link (p, q) is denoted by INp(q). (iii) δ(p)
output buffers allowing it to send messages to its neighbors. Let q ∈ Np, the
output buffer of p connected to the link (p, q) is denoted by OUTp(q). In other
words, each processor p has 2δ(p) + 1 buffers. The generation of a message is
always done in the output buffer of the link (p, q) so that, according to the routing
tables, q is the next processor for the message in order to reach its destination.

The overall idea of the algorithm is as follows: When a processor wants to gen-
erate a message, it consults the routing tables to determine the next neighbour by
which the message will transit in order to reach its destination. Once the message
is on system, it is routed according to the routing tables: let us refer to nb(m, b)
as the next buffer b′ of the message m stored in b, b ∈ {INp(q) ∨ OUTp(q)},
q ∈ Np. We have the following properties:

1. nb(m, INp(q)) = OUTp(q′) such as q′ is the next process by which m has to
transit to reach its destination.

2. nb(m, OUTp(q)) = INq(p)

Thus, if the message m is in the Output buffer OUTp(q) such as p is not the
destination then it will be automatically copied to the Input buffer of q. If the
the message m is in the Input buffer of p (INp(q)) then if p is not the destination



50 A. Cournier et al.

it consults the routing tables to determine which is the next process by which
the message has to pass in order to meet its destination.

Note that when the routing tables are stabilized and when all the messages
are in the right direction, the first property nb(m, INp(q)) = OUTp(q′) is never
verified for q = q′. However, this is not true when the routing tables are not yet
stabilized and when some messages are in the wrong direction.

Let us now recall the message progression. A buffer is said to be free if and
only if it is empty (it contains no message) or contains the same message as the
input buffer before it in the buffer graph. In the opposite case, a buffer is said to
busy. The transmission of messages produces the filling and the cleaning of each
buffer, i.e., each buffer is alternatively free and busy. This mechanism clearly
induces that free slots move into the buffer graph, a free slot corresponding to a
free buffer at a given instant.

In the sequel, let us consider our buffer graph taking in account only active
arcs (an arc is said to be active if it starts from a non empty buffer). Observe
that in this case the sub graph introduced by the active arcs can be seen as
a resource allocation graph where the buffers correspond to the resources, for
instance if there is a message m in INp(q) such as nb(m, INp(q)) = OUTq′(p)
then m is using the resource (buffer) INp(q) and it is asking for another resource
which is the output buffer OUTp(q′). We will refer to this sub graph as the active
buffer graph.

It is known in the literature that a deadlock situation appears only in the case
there exists a cycle in the resource allocation graph. Note that this is also the
case in our active buffer graph. Since due to some initial configurations of the
forwarding algorithm and (or) the routing tables construction, this kind of cycles
can appear during a finite prefix of any execution (refer to Figure 1, (a)). Observe
also that because our buffer graph is built on a tree topology, if a cycle exists
then we are sure that there are at least two messages m and m′ that verifies the
following condition: nb(m, INp(q)) = OUTp(q) ∧ nb(m′, INp′(q′)) = OUTp′(q′)
(see messages m and d in Figure 1, (a)). Since in this paper we consider a
distributed system, it is impossible for a processor p to know whether there is
a cycle in the system or not if no mechanism is used to detect them. The only
thing it can do is to suspect the presence of a cycle in the case there is one
message in its input buffer INp(q) that has to be sent to OUTp(q). In order to
verify that, p initiates a token circulation that follows the active buffer graph
starting from the input buffer containing the message m. By doing so, the token
circulation either finds a free buffer (refer to Figure 1, (b)) or detects a cycle.
Note that two kinds of cycle can be detected: (i) a Full-Cycle involving the first
input buffer containing m (refer to Figure 1, (a)) or (ii) a Sub-Cycle that does
not involve the input buffer containing the message m (refer to Figure 1, (c)).

If the token circulation has found an empty buffer (Let refer to this buffer by
B), the idea is to move the messages along the token circulation path to make
the free slot initially on B move. By doing so, we are sure that OUTp(q) becomes
free. Thus, p can copy the message m directly to OUTp(q) (Note that this action
has the priority on all the other enabled actions). If the token circulation has
detected a cycle then two sub-cases are possible according to the type of the cycle
that has been detected: (i) The case of a Full-Cycle: Note that in this case p is
the one that detects the cycle (p1 in Figure 1, (a)) . The aim will be to release



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 51

a

b

cp2

p1

p3p4

d

u

r

e

m

Initiator

B

(a) Instance of a Full-Cycle.

a

b

cq

p

rs

d

q

r

B

Initiator

(b) Free Buffer on the path

a

b

cq

p

rs

d

q

fg

h

i

k

j

m

Path of the token circulation
Initiator

B

B Last buffer on the path of the token circulation

(c) Instance of a Sub-Cycle.

a

b

cp

q

rs

d

q

fg

h

i

k

mToken 1
Token 2

(d) Token circulations deadlocked.

Fig. 1. Instance of token circulations

OUTp(q). (ii) The case of a Sub-Cycle: In this case the processor containing
the last buffer B that is reached by the token is the one that detects the cycle
(Processor p2 in Figure 1, (c)). Observe that B is an input buffer. The aim in
this case is to release the output buffer B′ by which the message m in B has to
be forwarded to in order to meet its destination (OUTp2(p3) in Figure 1, (c)).
Note that B′ is in this case part of the path of the token circulation. In both
cases (i) and (ii), the processor that detects the cycle copies the message from
the corresponding input buffer (either from INp(q) or B) to its extra buffer. By
doing so the processor releases its input buffer. The idea is to move messages on
the token circulation’s path to make the free slot that was created on the input
buffer move. This ensures that the corresponding output buffer will be free in a
finite time (either OUTp(q) or B′). Thus, the message in the extra buffer can be
copied to the free slot on the output buffer. Thus, one cycle has been broken.

Note that many token circulations can be executed in parallel. To avoid dead-
lock situations between the different token circulations (refer to Figure 1, (d)),
each token circulation carries the identifier of its initiator. The token circula-
tion with an identifier id can use a buffer of another token circulation having
the identifier id′ if id < id′. Note that by doing so, one token circulation can
break the path of another one when the messages move to escort the free slot.
The free slot can be then lost. For instance, in Figure 2, we can observe that
the free slot that was produced by T 1 is taking away by T 2. Note that by



52 A. Cournier et al.

moving messages on the path of T 2, a new cycle is created again, involving p1

and p4, if we suppose that the same thing happens again such that the extra
buffer of p4 becomes full and that p4 and p1 becomes involved again in the
another cycle then the system is deadlocked and we cannot do anything to solve
it since we cannot erase any valid message. Thus, we have to avoid to reach such
a configuration dynamically. To do so, when a token circulation finds either a
free buffer or detect a cycle, it does the reverse path in order to validate its path.
Thus, when the path is validated no other token circulation can use a buffer that
is already in the validated path. Note that the token is now back to the initiator.
To be sure that all the path of the token circulation is a correct path (it did not
merge with another token circulation that was in the initial configuration), the
initiator sends back the token to confirm all the path. On another hand, since
the starting configuration can be an arbitrary configuration, we may have in the
system a path of a token circulation (with no initiator) that forms a cycle. To
detect and release such a situation, a value is added to the state of each buffer
in the following manner: If the buffer Bi has the token with the value x, then
when the next buffer Bi+1 receive the token it will set it value at x + 1. Thus,
we are sure that in the case there is a cycle there will be two consecutive buffers
B and B′ having respectively x and x′ as a value in the path of the cycle such
as x′ �= x + 1. Thus, this kind of situation can be detected and solved.

a

b

cp2

p1

p3p4

d

e

rz

h

i
k

w

Token Circulation T1 Initiator
of T1

Initiator
of T2

Token Circulation T2 
m

Free Buffer 

(a)

a

b

cp2

p1

p3p4

d

e

rz

h

i
k

w

Token Circulation T1 Initiator
of T1

Initiator
of T2

Token Circulation T2 
m

Free Buffer 

(b)

a

b

cp2

p1

p3p4 d

er

z

h
i

k

w

Active buffer graph m

z

(c)

Fig. 2. Instance of a problem



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 53

3.2 Formal Description of the Solution

In this section we first define the data and variables that are used for the de-
scription of our algorithms. We then present the formal description of both the
Token Circulation algorithm and the message forwarding algorithm.

Character ’?’ in the predicates and the algorithms means any value.

– Procedures

• Nextp(d): refers to the neighbour of p given by the routing tables for the
destination d.

• Deliverp(m): delivers the message m to the higher layer of p.

• Choice(c): chooses a color for the message m which is different from the
color of the message that are in the buffers connected to the one that
will contain m.

– Variables
• Np: The set of identities of the neighbors of the processor p.
• INp(q): The input buffer of p associated to the link (p, q).
• OUTp(q): The output buffer of p associated to the link (p, q).
• EXTp: The Extra buffer of processor p.
• Spqi = (id, previous, next, phase, x): refers to the state of the input

buffer of the process p on the link (p,q). id refers to the identity of the
process that initiates the token circulation. previous is a pointer towards
the output buffer from which the buffer pqi received the token (it refers
to the output buffer of q on the link (q,p)). next is also a pointer that
shows the next buffer that received the token from the input buffer of p
on the link (p,q). phase ∈ {S, V, F, C, E} defines the state of the token
circulation to determine which phase is executed respectively (Search,
Validation, Confirm, Escort or non of these “Clean” State). x is an in-
teger which will be used in order to break incorrect cycles.

• Spqo = (id, previous, next, phase, x): As for the input buffer, Spqo =
(id, previous, next, phase, x) refers to the state of the output buffer of
the process p connected to the link (p,q). The attributes have the same
meaning as previously.

• prevpqo : q′ ∈ Np such as Spq′i = (idq′ , q′po, pqo, S, ?) ∧ idq′ =
min{idq′′ , q′′ ∈ Np ∧ Spq′′i = (idq′′ , q′po, pqo, S, ?)}.

• Smallp: q ∈ Np such as ∃ q′ ∈ Np, Spqi = (idq, ?, pq′o, F, x) ∧ Spq′o =
(idq, X, q′pi, F, z) ∧ X �= pqi ∧ z �= x + 1 ∧ idq = min{idq′′ , q′′ ∈ Np ∧
Spq′′i = (idq′′ , ?, pro, F, x′) ∧ Spro = (idq′′ , X ′, rpi, F, z′) ∧ X ′ �= pq′′i ∧
z′ �= x′ + 1.

– Predicates
• NO − Tokenp: ∀ q ∈ Np, Spqi = (−1, NULL, NULL, C,−1) ∧ Spqo =

(−1, ?, ?, ?) ∧ Sqpo = (−1, NULL, NULL, C,−1)
– We define a fair pointer that chooses the actions that will be performed on

the output buffer of a processor p. (Generation of a message or an internal
transmission).



54 A. Cournier et al.

Algorithm 1. Token circulation — Initiation and Transmission
Token initiation
R1: Tokenp(q) ∧ Spqo = (−1, NULL, NULL, C, −1) ∧ Spqo = Spqi → Spqi :=
(p, NULL, pqo, S, 0), Spqo := (p, pqi, qpi, S, 1)

Token transmission

– Search phase
• R2: ∃ q, q′ ∈ Np, Sqpo = (id, ?, pqi, S, x) ∧ INp(q) = (m, d, c) ∧ Nextp(d) = q′ ∧ Spq′o �=

(id, ?, ?, ?, ?) ∧ Spqi �= (id′, ?, ?, V ∨ F ∨ E, ?) ∧ (Spqi �= (id′′, ?, ?, ?, ?) ∧ id′′ <= id) →
Spqi := (id, qpo, pq′o, S, x + 1)

• R3: ∃ q, q′ ∈ Np, prevpqo = q′ ∧ Spq′i = (id, q′po, pqo, S, x) ∧ (Sqpi �= (id, ?, ?, ?, ?) ∧
Spqo �= (id′′, ?, ?, V ∨ F ∨ E, ?) ∧ Spqo �= (id′, ?, ?, ?, ?) ∧ id′ <= id ∧ OUTp(q) �= ε ∧
OUTp(q) �= INq(p) → Spqo := (id, pq′i, qpi, S, x + 1)

– Validation phase
• Initiation

∗ R4: ∃q, q′ ∈ Np, prevpqo = q′ ∧ Spq′i = (id, q′po, pqo, S, x) ∧ Spqo �= (id′′, ?, ?, V ∨
F ∨ E, ?) ∧ Spqo �= (id′, ?, ?, ?, ?) ∧ id′ < id ∧ Sqpi = (id, X, ?, S, ?) ∧ X �= pqo ∧
OUTp(q) �= ε ∧ OUTp(q) �= INq(p) → Spqo := (id, pq′i, qpi, V, x + 1)

∗ R5: ∃ q, q′ ∈ Np, Sqpo = (id, ?, pqi, S, x) ∧ INp(q) = (m, d, c) ∧ Nextp(d) = q′ ∧
Spq′o = (id, X, ?, S, z) ∧ X �= pqi ∧ EXTp = ε ∧ Spqi �= (id′, ?, ?, V ∨ F ∨ E, ?) ∧
(Spqi �= (id′′, ?, ?, ?, ?) ∧ id′′ < id) → Spqi := (id, qpo, pq′o, V, x + 1)

∗ R6: ∃ q, q′ ∈ Np, prevpqo = q′ ∧ Spq′ i = (id, q′po, pqo, S, x) ∧ [(OUTp(q) = ε ∨
OUTp(q) = INq(p))] → Spqo := (id, pq′i, NULL, V, x + 1)

∗ R7: ∃ q, q′ ∈ Np, Sqpo = (id, ?, pqi, S, x) ∧ INp(q) = ε → Spqi :=
(id, qpo, NULL, V, x + 1)

• Transmission
∗ R8: ∃ q, q′ ∈ Np, Spqo = (id, pq′i, qpi, S, x) ∧ Sqpi = (id, pqo, ?, V, x + 1) ∧ x �= 1 ∧

Spq′i �= (id, ?, pqo, F, x − 1) → Spqo := (id, ?, qpi, V, x)

∗ R9: ∃ q, q′ ∈ Np, Spqi = (id, qpo, pq′o, S, x) ∧ Spq′o = (id, pqi, ?, V, x + 1) ∧
Sqpo �= (id, ?, pqi, F, x − 1) → Spqi := (id, qpo, pq′o, V, x)

– Confirm phase
• Initiation

∗ R10: ∃ q ∈ Np, Spqo = (p, pqi, qpi, S, 1) ∧ Spqi = (p, NULL, pqo, S, 0) ∧
Sqpi = (p, pqo, ?, V, 2) → Spqo := (p, pqi, qpi, F, 1), Spqi := (p, NULL, pqo, F, 0)

• Transmission
∗ R11: ∃ q, q′ ∈ Np, Sqpo = (id, ?, pqi, F, x) ∧ Spqi = (id, qpo, pq′o, V, x + 1) →

Spqi := (id, qpo, pq′o, F, x + 1)
∗ R12: ∃ q, q′ ∈ Np, prevpqo = q′ ∧ Spq′i = (id, ?, pqo, F, x) ∧

Spqo = (id, pq′i, qpi, V, x + 1) → Spqo := (id, pq′i, qpi, F, x + 1)

– Escort phase
• Initiation

∗ R13: ∃ q ∈ Np, Spqi = (id, idle, pqo, F, 0) ∧ Sqpo = (id, ?, pqi, F, x) ∧ x ≥ 3 ∧
Spqo = (id, pqi, qpi, F, 1) ∧ EXTp = ε → Spqi := (id, idle, pqo, E, 0)

∗ R14: Smallp = q ∧ ∃ q′ ∈ Np, Spqi = (id, qpo, pq′o, F, x) ∧ Spq′o = (id, X, q′pi, F, z)

∧ X �= pqi ∧ z �= x + 1 ∧ EXTp = ε ∧ � q′′ ∈ Np, (Spq′′i = (id′, NULL, Z, F, 0) ∧
SZ = (id′, pq′′i, ?, F, 1)) → Spqi := (id, qpo, pq′o, E, x)

∗ R15: ∃ q ∈ Np, Sqpo = (id, ?, pqi, F, x) ∧ Spqi = (id, qpo, idle, V, x+1) ∧ INp(q) = ε
→ Spqi := (id, qpo, idle, E, x + 1)

∗ R16: ∃ q, q′ ∈ Np, Spqi = (id, qpo, pq′o, F, x) ∧ Spq′o = (id, pqi, idle, V, x + 1) ∧
[OUTp(q) = ε ∨ OUTp(q) = INq(p)] → Spq′o := (id, pqi, idle, E, x + 1)

• Propagation
∗ R17: ∃q, q′ ∈ Np, Spqo = (id, ?, qpi, F, x) ∧ Sqpi = (id, pqo, ?, E, x + 1 ∨ 0) →

Spqo := (id, ?, qpi, E, x)
∗ R18: ∃q, q′ ∈ Np, Spqi = (id, qpo, pq′o, F, x) ∧ Spq′o = (id, pqi, q′pi, E, x + 1) →

Spqi := (id, qpo, pq′o, E, x)
∗ R19: ∃q ∈ Np, Spqo = (id, pqi, qpi, F, 1) ∧ Sqpi = (id, idle, pqo, E, 0) ∧ Sqpi =

(id, pqo, ?, E, 2) → Spqo := (id, pqi, qpi, E, 1)



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 55

Algorithm 2. Token Circulation — Cleaning Phase and Correction
– -Cleaning phase

• Initiation
∗ R20: ∃ q ∈ Np, Spqi = (id,NULL, pqo, E, 0) ∧ Spqo = (id, pqi, qpi, E, 1) → Spqi :=

(−1, NULL,NULL,C,−1)
∗ R21: ∃ q, q′ ∈ Np, Spq′i = (id, q′po, pqo, E, x) ∧ Spqo = (id,X, qpi, E, z) ∧ X �= pq′i

→ Spq′i := (−1, NULL,NULL,C,−1)

∗ R22: ∃ q ∈ Np, Spqi = (id, qpo,NULL,E, x) ∧ Sqpo = (id, ?, pqi, E, x − 1) →
Spqi := (−1, NULL,NULL,C,−1)

∗ R23: ∃ q, q′ ∈ Np, Spqo = (id, pq′i, qpi, E, x) ∧ Spq′i = (id, q′po, pqo, E, x − 1) →
Spq′i := (−1, NULL,NULL,C,−1)

• Propagation
∗ R24: ∃ q ∈ Np, Spqo = (id,X, qpi, E, x) ∧ SX �= (id, ?, pqo, F, x − 1) ∧ [(Sqpi =

(id′, ?, ?, ?, ?) ∧ id �= id′) ∨ Sqpi = (−1, NULL,NULL,C,−1)] → Spqo :=
(−1, NULL,NULL,C,−1)

∗ R25: ∃ q ∈ Np, Spqi = (id, qpo, pq′o, E, x) Sqpo �= (id, ?, pqi, F, x − 1) ∧
[(Spq′o = (id′, ?, ?, ?, ?) ∧ id �= id′) ∨ Spq′o = (−1, NULL,NULL,C,−1)] →
Spqo := (−1, NULL,NULL,C,−1)

– Correction rules
• Freeze Cleaning

∗ Initiation
- R26: ∃q, q′ ∈ Np, Spqo = (id, pq′i, qpi, S ∨ V ∨ F, ?) ∧ [Spq′i =

(−1, NULL,NULL,C,−1) ∨ (Spq′i = (id′, ?, ?, ?, ?) ∧ id′ �= id) ∨ (Spq′i =

(id, ?,M, ?, ?) ∧ M �= pqo)] → Spqo := (id, pq′i, qpi, G, ?)
- R27: ∃q, q′ ∈ Np, Spqi = (id, qpo, pq′o, ?, ?) ∧ (Sqpo = (−1, NULL,NULL,C,−1)
∨ (Sqpo = (id′, ?, ?, ?, ?) ∧ id′ �= id)) → Spqi := (id, qpo, pq′o,G, ?)
- R28: Spqi = (p,NULL, pqo, ?, x) ∧ x > 0 → Spqi := (p,NULL, pqo,G, x)
- R29: ∃ q, q′ ∈ Np, Spqi = (id, ?, pq′o, ?, x) ∧ Spqo = (id, pq′i, qpi, ?, z) ∧ z �= x + 1
→ Spqi := (id, ?, pq′o,G, x)
- R30: ∃ q ∈ Np, Spqi = (id, qpo, pqo, ?, x) ∧ Sqpo = (id, ?, pqi, ?, z) ∧ z �= x + 1 →
Spqi := (id, qpo, pqo,G, x)
- R31: ∃ q ∈ Np, [(Spqo = (id, ?, qpi, S, x) ∧ Sqpi = (id, pqo, ?, F ∨ E, x + 1)) ∨
(Spqo = (id, ?, qpi, F, x) ∧ Sqpi = (id, pqo, ?, S, x + 1)) ∨ (Spqo = (id, ?, qpi, V, x) ∧
Sqpi = (id, pqo, ?, E ∨ S, x + 1))] → Spqo := (id, ?, qpi, G, x)
- R32: ∃ q, q′ ∈ Np, [(Spqi = (id, ?, pq′o, S, x) ∧ Spq′o = (id, pqi, ?, F ∨ E, x + 1)) ∨
(Spqi = (id, ?, pq′o, F, x) ∧ Spq′o = (id, pqi, ?, S, x + 1)) ∨ (Spqi = (id, ?, pq′o, V, x)
∧ Spq′o = (id, pqo, ?, E ∨ S, x + 1))] → Spqi := (id, ?, pq′o,G, x)

∗ Propagation
- R33:∃ q, q′ ∈ Np, Sqpo = (id, ?, pqi, G, ?) ∧ Spqi = (id, qpo, pq′o, S ∨ V ∨ F ∨ E, ?)
→ Spqi := (id, qpo, pq′o,G, ?)
- R34: ∃ q, q′ ∈ Np, prevpqo = q ∧ Spqi = (id, ?, pq′i, G, ?) ∧
Spq′o = (id, qpo, q′pi, S ∨ V ∨ F ∨ E, ?) → Spq′o := (id, pqi, q′pi,G, ?)

∗ Cleaning
- R35: ∃q, q′ ∈ Np, Spqi = (id, qpo, pq′o,G, x) ∧ [Spq′o =

(−1, NULL,NULL,C,−1) ∨ (Spq′o = (id′, ?, ?, ?, ?) ∧ id′ �= id) ∨
(Spq′o = (id, ?, qpi, G, z) → Spqi := (−1, NULL,NULL,C,−1)

- R36: ∃q, q′ ∈ Np, Spqo = (id, pq′i, qpi, G, x) ∧ [Sqpi = (−1, NULL,NULL,C,−1)
∨ (Sqpi = (id′, ?, ?, ?, ?) ∧ id′ �= id) ∨ (Sqpi = (id, pqo, ?, G, z) →
Spqo := (−1, NULL,NULL,C,−1)

• R37: ∃ q, q′ ∈ Np, Spqi = (id, ?, pq′o,G, x) ∧ Spq′o = (id, pqi, q′pi,G, z) ∧ z �= x + 1 →
Spqi := (−1, NULL,NULL,C,−1)

• R38: ∃ q ∈ Np, Spqi = (id, qpo, pqo,G, x) ∧ Sqpo = (id, ?, pqi, G, z) ∧ z �= x + 1 →
Spqi := (−1, NULL,NULL,C,−1)

• R39: Tokenp(q) ∧ Spqi = (p, ?, ?, ?, ?) → Tokenp(q) := false
• R40: ∃ q, q′ ∈ Np, Spqi = (id, qpo, pq′o, F, x) ∧ Spq′o = (id,X, q′pi, S ∨ V, z) ∧ z �= x+ 1

→ Spqi := (−1, NULL,NULL,C,−1)
• R41: ∃ q ∈ Np, Spqi = (id, qpo,NULL, S ∨ V ∨ F, x) ∧ INp(q) �= ε → Spqi :=

(−1, NULL,NULL,C,−1)
• R42: ∃ q, q′ ∈ Np, Spqo = (id, pq′i, NULL, S ∨ V ∨ F, x) ∧ OUTp(q) �= ε → Spqo :=

(−1, NULL,NULL,C,−1)
• R43 ∃ q ∈ Np, Spqo = (id, ?, qpi, V ∨ F, x) ∧ [(Sqpi = (id′, ?, ?, ?, ?) ∧ id �= id′) ∨

Sqpi = (−1, NULL,NULL,C,−1)] → Spqo := (−1, NULL,NULL,C,−1)
• R44 ∃ q ∈ Np, Spqi = (id, qpo, pq′o, V ∨ F ∨ E, x) ∧ [(Spq′o = (id′, ?, ?, ?, ?) ∧ id �= id′)

∨ Spq′o = (−1, NULL,NULL,C,−1)] → Spqo := (−1, NULL,NULL,C,−1)



56 A. Cournier et al.

Algorithm 3. Message Forwarding
– Message generation (For every processor)

R’1: Requestp ∧ Nextp(d) = q ∧ [OUTp(q) = ε ∨ OUTp(q) = INq(p)] ∧ NO − Token →
OUTp(q) := (m, d, choice(c)), Requestp := false.

– Message consumption (For every processor)
R’2: ∃q ∈ Np, INp(q) = (m, d, c) ∧ d = p ∧ OUTq(p) �= INp(q) → deliverp(m),
INp(q) := OUTq(p).

– Internal transmission
R’3: ∃q, q′ ∈ Np, INp(q) = (m, d, c) ∧ d �= p ∧ Nextp(d) = q′ ∧ q′ �= q ∧ [OUTp(q′) = ε ∨
OUTp(q′) = INq′ (p)] ∧ OUTq(p) �= INp(q) ∧ NO − Token → OUTp(q′) := (m, d, choice(c)),

INp(q) := OUTq(p).

R’4: ∃ q, q′ ∈ Np, INp(q′) = (m, d, c) ∧ OUTq′ (p) �= INp(q′) ∧ [OUTp(q) = ε ∨
OUTp(q) = INq(p)] ∧ Spqo = (id, pq′i, qpi, E, x + 1) ∧ Spq′i = (id, q′po, pqo, F, x) →
OUTp(q) := (m, d, choice(c)), INp(q′) := OUTq′ (p)

– Message transmission from q to p
R’5: ∃q ∈ Np, INp(q) = ε ∧ OUTq(p) = (m, d, c) ∧ q �= d ∧ NO − Token →
INp(q) := OUTq(p).

R’6: ∃q ∈ Np, INp(q) = ε ∧ OUTq(p) = (m, d, c) ∧ q �= d ∧ Spqi = (id, qpo, ?, E, x + 1) ∧
Sqpo = (id, ?, pqi, E, x) → INp(q) := OUTq(p)

– Erasing a message after its transmission
R’7: ∃q ∈ Np, OUTp(q) = INq(p) ∧ (∀q′ ∈ Np \ {q}, INp(q′) = ε ∨
(INp(q′) = (m, d, c) ∧ Nextp(d) �= q)) ∧ NO − Token → OUTp(q) := ε

– Erasing a message after its transmission (For the leaf processors)
R’8: Np = {q} ∧ OUTp(q) = INq(p) ∧ (INp(q) = ε ∨ (INp(q) = (m, d, c)∧ Nextp(d) �= q)) ∧
NO − Token → OUTp(q) := ε

– Road change
R’9: ∃ q ∈ Np, INp(q) = (m, d, c) ∧ Nextp(d) = q ∧ OUTq(p) �= INp(q) ∧ (OUTp(q) = ε ∨
OUTp(q) = INq(p)) → OUTp(q) := INp(q), INp(q) := OUTq(p)

R’10: ∃ q ∈ Np, INp(q) = (m, d, c) ∧ Nextp(d) = q ∧ OUTp(q) �= ε ∧ OUTp(q) �= INq(p) ∧
EXTp = ε ∧ � q′ ∈ Np/{q}, Spq′i = (id, ?, ?, ?, 0) → Tokenp(q) := true

R’11: ∃ q ∈ Np, Spqi = (id, idle, pqo, F, 0) ∧ Sqpo = (id, ?, pqi, F, x) ∧ x ≥ 3 ∧
Spqo = (id, pqi, qpi, F, 1) ∧ EXTp = ε → EXTp := INp(q), INp(q) := OUTq(p)

R’12: ∃ q ∈ Np, Smallp = q ∧ Sqpo = (id, ?, pqi, F, x − 1) ∧ � q′′ ∈ Np,
(Spq′′i = (id′, NULL, Z, F, 0) ∧ SZ = (id′, pq′′i, ?, F, 1)) → EXTp := INp(q),

INp(q) := OUTq(p)

R’13: ∃ q ∈ Np Spqi = (id, NULL, pqo, E, 0) ∧ Spqo = (id, pqi, qpi, F, 1) ∧
Sqpi = (id, pqo, ?, E, 2) ∧ EXTp �= ε ∧ (OUTp(q) = ε ∨ OUTp(q) = INq(p)) →
OUTp(q) := EXTp, EXTp := ε

R’14: ∃ q, q′ ∈ Np Spq′i = (id, q′po, pqo, E, x) ∧ Spqo = (id, X, qpi, F, z) ∧ X �= pq′i ∧
z �= x + 1 ∧ Sqpi = (id, pqo, ?, E, z + 1) ∧ EXTp �= ε ∧ (OUTp(q) = ε ∨ OUTp(q) = INq(p))
→ OUTp(q) := EXTp, EXTp := ε

– Correction Rules
R’15: EXTp �= ε ∧ (NO − Token ∧ (∀ q ∈ Np, Spqi �= (id, qpo, ?, E)) ∧ (∃ q
∈ Np, Spqi = (id, NULL, pqo, E, 0) ∧ Spqo = (id, pqi, qpi, E, 1) ∧ OUTp(q) �= ε ∧
OUTp(q) �= INq(p)) → EXTp := ε

R’16: EXTp �= ε ∧ (NO − Token ∧ (∀ q ∈ Np, Spqi �= (id, qpo, ?, E)) ∧ (∃ q, q′ ∈ Np,
Spq′i = (id, ?, pqo, E, x) ∧ Spqo = (id, X, qpi, E, z) ∧ X �= pq′i ∧ z �= x + 1 ∧ OUTp(q) �= ε ∧
OUTp(q) �= INq(p)) → EXTp := ε

R’17: Tokenp(q) = true ∧ INp(q) = ε ∨ INp(q) = (m, d, c) ∧ Nextp(d) �= q →
Tokenp(q) = false



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 57

3.3 Proof of Correctness

In this section, due to the lack of space1, we outline correctness proofs of our
solution only.

The idea of the proofs is as follows: we first show that no valid message is
deleted from the system unless it is delivered to its destination. We then show
that each buffer is infinitely often free, thus, neither deadlocks nor starvation
appear in the system. We finally show that every valid message is delivered to
its destination once and only once in a finite time.

Let us define first some notions that will be used later.

Definition 1. Let B1 and B2 be two buffers and let p, q and q′ be processors
in the network such as one of those properties holds: (i) B1 = INp(q) ∧ B2 =
OUTp(q′) (ii) B1 = OUTp(q) ∧ B2 = INq(p). B2 is the successor of B1 denoted
by B1 
→ B2 if and only if SB1 = (id, ?, B2, ?, x) ∧ SB2 = (id, B1, ?, ?, x + 1)

Definition 2. A sequence of k buffers B1 
→ B2 
→ ... 
→ Bk starting from B1

is called an abnormal sequence if the following property holds:
SB1 = (id, ?, ?, ?, ?) ∧ (B1 = INp(q) ∨ B1 = OUTp(q)) ∧ id �= p

A buffer B is said to be cleared if SB = (−1, NULL, NULL, C,−1). In the same
manner, a sequence is said to be cleared, if all the buffers part of it becomes
cleared in a finite time. Let us state the following lemma:

Lemma 1. If the configuration contains an abnormal sequence of buffers S1 =
B1 
→ B2 
→ ... 
→ Bk, then S1 will be cleared in a finite time.

The proof of Lemma 1 is based on the fact that the processor p that has B1 as
a buffer will be able to detect this abnormal sequence (p is not the initiator of
the token circulation and B1 sent the token without receiving it from any other
buffer). p will initiate a Freeze cleaning phase by executing either R24 or R25
or R26. Thus, the state of B1 will be referring to the freeze cleaning phase. This
special phase will be propagated on the path of the abnormal sequence. When
it reaches the last buffer Bk, Bk clears its state. Then Bk−1 will clear it state
too and so on. Thus, at the end, we are sure that all the buffers in sequence
have cleared their state. Note that if in the sequence SBk

= (id, Bk−1, B1, ?, z)
and SB1 = (id, Bk, B2, ?, x) then we are sure that z �= x + 1. In this case too,
the processor having B1 as a buffer will be able to detect such a situation and
initiates the freeze cleaning phase as previously.

Note that when the sequence of a token circulation T is completely validated
(all the buffers Bi part of it have the state SBi = (id, ?, ?, V, ?)) , no other
token circulation can break it (use a buffer that is already part of T ). Note also
that the validation phase starts from the last buffer Bk such as either Bk is
free or it contains a message that has to be forwarded to one buffer Bs that is
already part of T . (i) if the state of Bs is corrupted (its state was set already
in the initial configuration, Bs is part of an abnormal sequence), then when the
confirm phase is initiated, and when the state of Bk is updated to the confirm
phase (SBk

= (id, ?, ?, F, ?)), we are sure that the state of Bs is not in the confirm
phase (Recall that the confirm phase starts from the initiator and it passes by
1 The complete proofs can be found in http://arxiv.org/pdf/1107.6014



58 A. Cournier et al.

all the buffers part of T . Since Bs is not part of it, it will never update its state
to the Confirm phase). Thus, Bk clears its state, then Bk−1 does the same and
so on. Thus, in this case we are sure that T will be cleared. (ii) if the state of
Bs is not corrupted, when the initiator initiates the confirm phase, we are sure
that all the buffers part of it will updates their state to the confirm phase. Note
that since the abnormal sequences eventually clear their state (refer to Lemma
1), The token circulations that validate all their sequence will be able to confirm
it completely in a finite time.

In a case of a cycle, when the sequence of a token circulation T is completely
confirmed, the message that is in the input buffer B of the processor p that
detected the cycle (note that B is part of T ) is copied to EXTp. We show the
following result where B is INp(q):

Lemma 2. If a valid message m is copied to EXTp from INp(q) in order to be
copied later in OUTp(q′), then when Spq′o = (id, ?, ?, E, ?), EXTp is free.

Proof Outline. The idea of the proof is as follows: when the message is
copied to EXTp from INp(q), the processor p initiates the last phase of the
token circulation (the Escort phase). Note that INp(q) becomes a free buffer. We
prove that there is a synchrony between the Token circulation and the forwarding
algorithm such as the escort phase’s token progresses on the system according to
the token circulation sequence at the same time as the free slot. Thus, when the
action that allows p to update the state of OUTp(q′) to Spq′o = (id, ?, ?, E, ?) is
enabled. OUTp(q′) is free thus, either R′13 or R′14 is enabled as well. Thus, when
p executes both actions (recall that in the case there is an action that is enabled
in each algorithm (Algorithm 1 and Algorithm 2), they are both executed), Thus,
EXTp becomes free and Spq′o = (id, ?, ?, E, ?) and the lemma holds. �

We can now detect in some cases if the message in the extra buffer is invalid (it
was in the initial configuration). Note that the algorithm deletes a message only
in such cases (when we are sure that the message in the extra buffer is invalid),
refer to Rules R′15 and R′16. Thus, we have the following theorem:

Theorem 1. No valid message is deleted from the system unless it is delivered
to its destination.

We now show in Lemma 3 that the extra buffer of any processor p cannot be
infinitely continuously busy (Recall that the extra buffer is used to solve the
problem of deadlocks).

Lemma 3. If the extra buffer of the processor p (EXTp) contains a message,
then this buffer becomes free after a finite time.

Since every token circulation T that confirmed its sequence finishes its execution
(recall that no other token circulation can break its sequence). We are sure that
all the buffers part of T will be cleared in a finite time. On another hand, the
abnormal sequences clear their state in a finite time and the extra buffer of each
processor cannot be infinitely continuously busy thus, we can deduce the next
lemma:

Lemma 4. If there is a processor that wants to initiates a token circulation, it
will be able to do it in a finite time.



Snap-Stabilizing Message Forwarding Algorithm on Tree Topologies 59

Since many token circulations can be executed in parallel on the system, we have
to prove that at least one of them will be able to validate its path. Thus, the
Lemmas 5 follows:
Lemma 5. If there are some Token Circulations that are initiated then at least
one of them will validate all its path.
We can then deduce that at least one message will undergo a route change. Note
that once the routing tables are stabilized, every new message is generated in
a suitable buffer. So, it is clear that the number of messages that are not in a
suitable buffer strictly decreases. The next lemma follows:
Lemma 6. When the routing tables are stabilized all the messages will be in a
suitable buffer in a finite time.
We have to show now that any processor can generate a message in a finite time
and that no deadlock situation appears in the system. Lemma 6 ensures that all
the messages are in suitable buffers in a finite time. Since the Token circulations
are only used for route changes, then:
Lemma 7. When the routing tables are stabilized and all the messages are in
suitable buffer, no Token circulation is initiated.
Note that the fair pointer mechanism cannot be disturbed anymore by the token
circulations. Since our buffer graph is a DAG, the following lemma holds:
Lemma 8. All the messages progress in the system.
In the same manner, since the fair pointer mechanism cannot be disturbed. The
fairness of message generation guarantees the following lemma:
Lemma 9. Any message can be generated in a finite time under a weakly fair
daemon.
We can deduce the following theorem:

Theorem 2. Neither deadlock nor Starvation situation appears in the system.

The color management (Function Choice(c)) ensures the next lemma :
Lemma 10. The forwarding protocol never duplicates a valid message even if
the routing tables are not yet stabilized.
From Theorem 1 , no message is deleted unless it meets its destination. From
Theorem 2, no deadlock situation appear and any message can be generated in a
finite time. From Lemma 10, no valid message is duplicated. Hence, the following
theorem holds:

Theorem 3. The proposed solution (Algorithms 1, 2 and 3) is a snap-stabilizing
message forwarding algorithm (satisfying SP ) under a weakly fair daemon.

4 Conclusion

In this paper, we presented the first snap-stabilizing message forwarding protocol
on trees that uses a number of buffers per node being independent of any global
parameter. Our protocol uses only 4 buffers per link and an extra one per node.
This is a preliminary version to get a solution that tolerates topology changes
provided that the topology remains a tree.



60 A. Cournier et al.

References

1. Cournier, A., Dubois, S., Lamani, A., Petit, F., Villain, V.: Snap-Stabilizing Linear
Message Forwarding. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 546–559. Springer, Heidelberg (2010)

2. Dolev, S.: Self-stabilization. MIT Press (2000)
3. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree

networks. Distributed Computing 20, 3–19 (2007)
4. Duato, J.: A necessary and sufficient condition for deadlock-free routing in cut-

through and store-and-forward networks. IEEE Trans. Parallel Distrib. Syst. 7,
841–854 (1996)

5. Merlin, P.M., Schweitzer, P.J.: Deadlock avoidance in store-and-forward networks.
In: Jerusalem Conference on Information Technology, pp. 577–581 (1978)

6. Toueg, S.: Deadlock- and livelock-free packet switching networks. In: STOC,
pp. 94–99 (1980)

7. Toueg, S., Ullman, J.D.: Deadlock-free packet switching networks. SIAM J. Com-
put. 10, 594–611 (1981)

8. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilizing end-to-end commu-
nication. Journal of High Speed Networks 5, 365–381 (1996)

9. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-space polynomial end-to-end com-
munication. In: STOC 1995: Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, pp. 559–568. ACM (1995)

10. Cournier, A., Dubois, S., Villain, V.: A snap-stabilizing point-to-point communi-
cation protocol in message-switched networks. In: 23rd IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS 2009), pp. 1–11 (2009)

11. Cournier, A., Dubois, S., Villain, V.: How to Improve Snap-Stabilizing Point-to-
Point Communication Space Complexity? In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 195–208. Springer, Heidelberg (2009)

12. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commum.
ACM 17(11), 643–644 (1974)

13. Burns, J., Gouda, M., Miller, R.: On relaxing interleaving assumptions. In: Pro-
ceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical Report
No. STP-379-89 (1989)

14. Merlin, P.M., Schweitzer, P.J.: Deadlock avoidance in store-and-forward networks.
In: Jerusalem Conference on Information Technology, pp. 577–581 (1978)


	Snap-Stabilizing Message Forwarding 
Algorithm on Tree Topologies
	Introduction
	Model and Definitions
	Message Forwarding
	Overview of the Solution
	Formal Description of the Solution
	Proof of Correctness

	Conclusion
	References




