Theoretical Computer Science 412 (2011) 4285-4296

o

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

How to improve snap-stabilizing point-to-point communication
space complexity?”

Alain Cournier?, Swan Dubois®*, Vincent Villain?

@ MIS Laboratory, Université de Picardie Jules Verne, France
b LIP6 - UMR 7606 Université Pierre et Marie Curie - Paris 6/INRIA Rocquencourt, France

ARTICLE INFO ABSTRACT

Keywords: A snap-stabilizing protocol, starting from any configuration, always behaves according to
Self-stabilization its specification. In this paper, we are interested in the message forwarding problem in a
SMH:SZ;Sgt:t;:)lﬁ:rz?ng message-switched network in which the system resources must be managed in order to
deliver messages to any processor of the network. To this end, we use the information
provided by a routing algorithm. In the context of an arbitrary initialization (due to
stabilization), this information may be corrupted. In Cournier et al. (2009) [1], we show that
there exist snap-stabilizing algorithms for this problem (in the state model). This implies
that we can request the system to begin forwarding messages without losses even if routing
information is initially corrupted.

In this paper, we propose another snap-stabilizing algorithm for this problem which

improves the space complexity of the one in Cournier et al. (2009) [1].
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The quality of a distributed system depends on its fault-tolerance properties. Many fault-tolerant schemes have been
proposed. For instance, self-stabilization [3] allows one to design a system tolerating an arbitrary number of transient faults.
A self-stabilizing system, regardless of the initial state of the system, is guaranteed to converge into the intended behavior
in finite time. Another paradigm is snap-stabilization [4]. A snap-stabilizing protocol guarantees that, starting from any
configuration, it always behaves according to its specification. Hence, a snap-stabilizing protocol is a self-stabilizing protocol
which stabilizes in 0 time units.

In a distributed system, it is commonly assumed that each processor can exchange messages only with its neighbors (i.e.
processors with which it shares a communication link) but processors may need to exchange messages with any processor
of the network. To perform this goal, processors have to solve two problems: the determination of the path which messages
have to follow in the network to reach their destinations (called the routing problem) and the management of network
resources in order to forward messages (called the message forwarding problem). These two problems have received great
attention in literature. The routing problem is studied, for example in [5-7], and self-stabilizing approaches can be found in
[8-10]. The forwarding problem has also been well studied, see [11-16]. As far we know, only [1,2] deal with this problem
using a stabilizing approach.

Informally, the goal of forwarding is to design a protocol which allows all processors of the network to send messages
to any destination of the network (knowing that a routing algorithm computes the path that messages have to follow to

* A preliminary version of this work appears in the proceedings of the 11th International Symposium on Stabilization, Safety and Security of Distributed
Systems (SSS’09), (Cournier et al. 2009 [2]).
* Corresponding author. Tel.: +33 144 27 73 46.
E-mail addresses: alain.cournier@u-picardie.fr (A. Cournier), swan.dubois@lip6.fr (S. Dubois), vincent.villain@u-picardie.fr (V. Villain).

0304-3975/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.11.014

http://dx.doi.org/10.1016/j.tcs.2010.11.014
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:alain.cournier@u-picardie.fr
mailto:swan.dubois@lip6.fr
mailto:vincent.villain@u-picardie.fr
http://dx.doi.org/10.1016/j.tcs.2010.11.014

4286 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

reach their destinations). The problems arise when messages traveling through a message-switched network [17] must be
stored in each processor of their path before being forwarded to the next processor on this path. This temporary storage
of messages is performed with reserved memory spaces called buffers. Obviously, each processor of the network reserves
only a finite number of buffers for the message forwarding. So, the problem of bounded resources management exposes
the network to deadlocks and livelocks if no control is performed. In this paper, we focus on designing a protocol which
deals with the message forwarding problem using a snap-stabilizing approach. The goal is to allow the system to forward
messages regardless of the state of the routing tables. Obviously, we need the routing tables to be able to repair themselves
within finite time. So, we assume the existence of a self-stabilizing protocol to initially compute routing tables [8-10].

In the following, a message sent out by a processor is called valid. An invalid message is present in the initial configura-
tion. We propose a specification of the message forwarding problem where duplicates (i.e. the same message arrives many
times at its destination while it has been sent out only once) are forbidden:

Specification 1 (85). Specification of the message forwarding problem.

- Any message can be sent out in finite time.
- Any valid message is delivered to its destination once and only once in finite time.

In [1], we show that it is possible to transform the forwarding algorithm of [12] into a snap-stabilizing one without
any significant excess cost (with respect to time of forwarding and amount of memory per processor). But this algorithm
needs ® (n) buffers per processor (where n is the number of processors of the network). The scope of this paper is the
improvement of this space complexity. We achieve this goal by providing a snap-stabilizing forwarding algorithm which
requires ® (D) buffers per processor (where D is the diameter of the network). Since n and D are close values in the worst
case, this improvement is quite useful from a theoretical point of view. However, we believe that it could be very interesting
from a practical point of view. Indeed, practical networks have in general a diameter which is significantly smaller than the
number of nodes (for example, [18] shows that in 2000 the diameter of the Internet is near to 6 although it had near to
14,000 nodes).

However, we show in this paper that this space improvement leads to an increase of time complexity in the worst case
with respect to the protocol of [1]. But we are happy to say that the amortized complexity (a measure that give us the mean
time of delivery of messages) is the same for both protocols. That means that, from a practical point of view, both protocols
have the same cost in time.

The remainder of this paper is organized as follows. We present first our model (Section 2). We give and prove our solution
in the state model, respectively, in Sections 3 and 4. Next, we study the time complexities of our solution in Section 5. Finally,
we give our conclusions in Section 6.

2. Preliminaries

We consider a network to be an undirected connected graph G = (V, E), where V is a set of processors and E is the
set of bidirectional asynchronous communication links. In the network, a communication link (p, q) exists if and only if
p and q are neighbors. We assume that the labels of neighbors of p are stored in the set N,. We also use the following
notations: respectively, n is the number of processors, A the maximal degree, and D the diameter of the network. If p and
q are two processors of the network, we denote by dist(p, q) the length of the shortest path between p and q (that is, the
distance between p and q). In the following, we assume that each processor has an identity which is unique on the network.
Moreover, we assume that all processors know the set I of all identities of the network.

2.1. State model

We consider the classical local shared memory model of computation (see [17]) in which communications between
neighbors are modeled by direct reading of variables instead of exchange of messages. In this model, the program of every
processor consists of a set of shared variables (henceforth, referred to as variables) and a finite set of actions. A processor
can write to its own variables only, and read its own variables and those of its neighbors. Each action is of the form:
< label >::< guard >—> < statement >.The guard of an action in the program of p is a Boolean expression involving
variables of p and its neighbors. The statement of an action of p updates one or more variables of p. An action can be executed
only if its guard is satisfied. The state of a processor is defined by the value of its variables. The state of a system is the
Cartesian product of the states of all processors. We refer to the state of a processor and the system as a (local) state and
(global) configuration, respectively. We denote € as the set of all configurations of the system. Let ¥ € € and A be an action
of p(p € V).Ais enabled at p in y if and only if the guard of A is satisfied by p in y. Processor p is said to be enabled in y if and
only if atleast one action is enabled at pin y. Let a distributed protocol & be a collection of binary transition relations denoted
by —, on €. An execution of a protocol & is a maximal sequence of configurations I" = (Yo, V1, - - - ¥i» Vi+1, - - -) such that,
Vi > 0, y; — yit1 (called a step) if ;41 exists, else y; is a terminal configuration. Maximality means that the sequence is
either finite (and no action of & is enabled in the terminal configuration) or infinite. All executions considered here are
assumed to be maximal. & is the set of all executions of #. As we already said, each execution is decomposed into steps.
Each step is split into three sequential phases atomically executed: (i) every processor evaluates its guards, (ii) a daemon

A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296 4287

chooses some enabled processors, (iii) each chosen processor executes its enabled action. When the three phases are done,
the next step begins. A daemon can be defined in terms of fairness and distribution. There exists several kinds of fairness
assumption. Here, we use only the weak fairness assumption, meaning that we assume that every continuously enabled
processor is eventually chosen by the daemon. We assume that the daemon is distributed, meaning that, at each step, if one
or more processors are enabled, then the daemon chooses at least one of these processors to execute an action. We consider
that any processor p is neutralized in the step y; — y;y1 if p was enabled in y; and not enabled in y; 1, but did not execute
any action in y; — y;41. To compute the time complexity, we use the definition of round [19]. This definition captures the
execution rate of the slowest processor in any execution. The first round of I" € &, noted I/, is the minimal prefix of I"
containing the execution of one action or the neutralization of every enabled processor from the initial configuration. Let
I'” be the suffix of I" such that I" = I''I"”. The second round of I is the first round of I"”, and so on.

2.2. Message-switched network

Today, most computer networks use a variant of the message-switching method (also called store-and-forward method).
It is why we have chosen to work with this switching model. In this section, we briefly present this method (see [17] for a
detailed presentation). The model assumes that each buffer can store a whole message and that each message needs only
one buffer to be stored. The switching method is modeled by four types of move:

1. Generation: when a processor is ready to send out a new message, it “creates” a new message in one of its empty buffers.
We assume that the network may allow this move as soon as at least one buffer of the processor is empty.

2. Forwarding: a message m is forwarded (copied) from a processor p to an empty buffer of the next processor q on its route
(determined by the routing algorithm). We assume that the network may allow this move as soon as at least one buffer
of the processor q is empty.

3. Consumption: A message m occupying a buffer in its destination is erased and delivered to this processor. We assume
that the network may always allow this move.

4, Erasing: a message m is erased from a buffer. We assume that the network may allow this move as soon as the message
has been forwarded at least one time or delivered to its destination.

2.3. Stabilization

Definition 1 (Self-Stabilization [3]). Let T be a task and $4 a specification of 7. A protocol & is self-stabilizing for 8+ if and
only if VI" € &, there exists a finite prefix I'' = (yo, 11, - . ., ¥1) of I" such that any execution starting from y, satisfies 8.

Definition 2 (Snap-Stabilization [4]). Let T be a task and 45 a specification of 7. A protocol & is snap-stabilizing for 8+ if
and only if VI" € &, I satisfies 4.

Definition 2 has the two following consequences. We can see that a snap-stabilizing protocol for 8 is a self-stabilizing
protocol for 85 with a stabilization time of 0 time units. A common method used to prove that a protocol is snap-stabilizing
is to distinguish an action as a “starting action” (i.e. an action which initiates a computation) and to prove the following
properties for every execution of the protocol: if a processor requests it, the computation is initiated by a starting action in a
finite time and every computation initiated by a starting action satisfies the specification of the task. We will use these two
remarks to prove snap-stabilization of our protocol.

3. Description of the proposed protocol

To simplify the presentation, we assume that the routing algorithm induces only minimal paths in number of edges. We
have seen in Section 2.2 that, by default, the network always allows message moves between buffers. But, if we do not make
any control on these moves, the network may reach unacceptable situations such as deadlocks, livelocks or message losses.
If such situations appear, specifications of message forwarding are not respected. Now, we briefly present solutions given
by the literature in the case when the routing tables are correct in the initial configuration. We must define an algorithm
which permits or forbids various moves in the network (depending on the current occupation of buffers) in order to prevent
the network reaching a deadlock. Such algorithms are called deadlock-free controllers (see [17] for a detailed description).
Livelocks can be avoided by fairness assumptions on the controller for the generation and forwarding of messages. Message
loss is avoided using identifier on messages (for example, the concatenation of the identity of source and a two-value flag).
[12] introduces a generic method to design deadlock-free controllers. The key idea is to restrict moves of messages along
edges of an oriented graph BG (called buffer graph) defined on the network buffers. The authors show that cycles on BG can
lead to deadlocks and that, if BG is acyclic, they can define a deadlock-free controller on this buffer graph. The main idea in
[1] is to adapt the graph buffer of [12] to obtain a snap-stabilizing forwarding protocol.

In this paper, we are interested in another buffer graph introduced in [12]. Each processor has D + 1 buffers ranked from
1to D+ 1. New messages are always generated in the buffer of rank 1 of the sender processor. When a message occupying a
buffer of rank i is forwarded to a neighbor ¢, it is always copied in the buffer of rank i + 1 of q. It is easy to see that this graph
is acyclic since messages always “ascend” the buffer rank (the reader can find an example of such a graph in Fig. 1). We need

4288 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

Location of buffers

a b c d

3

| D><D O 40
a ? c [[] (] 2 Rankofbuffers
DXD%D 1

Fig. 1. Example of our buffer graph (on the right) for the network on the left.

D + 1 buffers per processor since, in the worst case, a message is forwarded at most D times between its generation and its
consumption.

Our idea is to adapt this scheme in order to tolerate transient faults. To that goal, we assume that a self-stabilizing
silent algorithm 4 computes routing tables (see e.g. [8-10]). Our message forwarding protocol is provided in Algorithm 1
(88MF P means $nap-4tabilizing Message Forwarding Protocol). Moreover, we assume that 4 has priority over
S8MF P (ie. a processor which has enabled actions for both algorithms always chooses the action of »). This guarantees
us that routing tables are correct and stable within finite time. We assume that $8 M ¥ & can have access to the routing
table via a function, called nextHop,(d). This function returns the identity of the neighbor of p to which p must forward
messages of destination d. Our idea is as follows: we allow the erasing of a message only if we have evidence that the
message has been delivered to its destination. In this goal, we use a scheme with acknowledgment which guarantees the
reception of the message. More precisely, we associate to each copy of the message a type which has 3 values: E (Emission),
A (Acknowledgment) and F (Fail). Forwarding of a valid message m (to destination d) follows the above scheme:

1. Generation of m with type E in a buffer of rank 1 by (Ry).
2. Forwarding' of m with type E without any erasing by (Rs) or (Ry2).
3. If m reaches d:
(a) Itis delivered and the copy of m takes type A by (Rg) or (Rqo).
(b) Type A is spread to the sink following the incoming path by (R7).
(c) Buffers are allowed to free themselves once the type A is propagated to the previous buffer on the path by (Rg), (R11),
or (Ry4).
(d) The sink erases its copy by (R3) or (Rs), thus m is erased.
4. If m reaches a buffer of rank D 4 1 without crossing d:
(a) The copy of m takes type F by (Ry3).
(b) Type F is spread to the sink following the incoming path by (Ry).
(c) Buffers are allowed to free themselves once the type F is propagated to the previous buffer on the path by (Rg), (R11),
or (Rg)).
(d) Then, the sink of m gives the type E to its copy by (R;) or (Rg), that begin a new cycle: m is sending once again.

Obviously, it is necessary to take in account invalid messages: we have chosen to let them follow the forwarding scheme
and to erase them if they reach Step 4.d (by rules from (R;s) to (R;ys)). The key idea of the snap-stabilization of our algorithm
is the following: since a valid message is never erased, it is sent again after the stabilization of routing tables (if it never
reaches its destination before) and then it is normally forwarded. To avoid livelocks, we use a fair scheme of selection of
processors allowed to forward a message for each buffer. We can manage this fairness by a queue of requesting processors.
Finally, we use a specific flag to prevent message loss. It is composed of the identity of the next processor on the path of the
message, the identity of the last processor crossed over by the message, the identity of the destination of the message and
the type of the message (E, A or F).

We must manage a communication between our algorithm and processors in order to know when a processor has a
message to send. We have chosen to create a Boolean shared variable request, (for any processor p). Processor p can set it at
true when it is at false and when p has a message to send. Otherwise, p must wait until our algorithm sets the shared variable
to false (when a message is sent out).

4. Proof of the snap-stabilization
In order to simplify the proof, we introduce a second specification of the problem. This specification allows message
duplications.

Specification 2 (§.2’). Specification of message forwarding problem allowing duplication.
- Any message can be send out in finite time.
- Any valid message is delivered to its destination in finite time.

1 with copy in buffers of increasing rank.

A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296 4289

Algorithm 1 $8.M F 2 protocol for processor p.

Data:

-n, D : natural integers equal respectively to the number of processors and to the diameter of the network.
-1=1{0,...,n— 1} : set of processor identities of the network.

- N, : set of neighbors of p.

Message:

- (m,r,q,d, c) with m useful information of the message, r € N, identity of the next processor to cross for the message
(whenitreaches the node), g € N, identity of the last processor crossed over by the message, d € I identity of the destination
of the message, ¢ € {E, A, F} type of the message.

Variables:

-Vie {1,...,D+ 1}, buf, (i) : buffer which can contain a message or be empty (denoted by ¢)

Input/Output:

- request,, : Boolean. The higher layer can set it to “true” when its value is “false” and when there is a waiting message. We
consider that this waiting is blocking.

- nextMes,: gives the message waiting in the higher layer.

- nextDest,: gives the destination of nextMes, if it exists, null otherwise.

Procedures:
- nextHop, (d): neighbor of p computed by the routing for destination d (if d = p, we choose arbitrarily r € Np).
-Vi e {2,...,D + 1}, choice,(i): fairly chooses one of the processors which can send a message in buf, (i), i.e. choice,(d)

satisfies predicate ((choicep (i) € Np) A (bUfcnoice, iy (i— 1) = (m, p, g, d, E)) A (choice, (i) # d)). We can manage this fairness
with a queue of length A + 1 of processors which satisfies the predicate.

- deliver,(m): delivers the message m to the higher layer of p.

Rules:

[* Rules for the buffer of rank 1 */
|* Generation of messages */
(Rq) :: request, A (buf,(1) = &) A (nextDest, = d) A (nextMes, = m) A (bfpextriop,@) (2) # (M, r,p,d,c) —
buf, (1) := (m, nextHop,(d), r, d, E) with r € N,; request, := false
¥ Processing of acknowledgment */
(Ry) :: (buf,(1) = (m, 1, q,d, F)) A (d # p) A (buf-(2) # (m, 1", p,d, F)) — buf,(1) := (m, nextHop,(d), q, d, E)
(R3) :: (bufy,(1) = (m,1,q,d,A)) A (d # p) A (bufy(2) # (m, 7', p,d, A)) —> bufy(1) :=¢
|* Management of messages which reach their destinations */
(Ry) :: buf,(1) = (m, 1, q, p, E) — deliver,(m); buf,(1) := (m,1,q,p,A)
(Rs) :: buf,(1) = (m, 1, q,p,A) —> buf,(1) :=¢
(Re) :: bufy, (1) = (m, 1, q,p, F) —> bufy(1) := (m, 1,q,p, E)

In this section, we prove that .M & is a snap-stabilizing message forwarding protocol for specification § . For that,
we prove successively that:

1. Copies of the same message have a particular structure (Definitions 3 and 4). Then, we prove some properties of the
behavior of these structures under §$M ¥ & (Lemmas 1-4).

2. 88MF P is a snap-stabilizing message forwarding protocol for specification 4’ if the routing tables are correct in the
initial configuration (Lemmas 5-7 and Proposition 1).

3. 88MF P is a self-stabilizing message forwarding protocol for specification 85’ even if the routing tables are corrupted
in the initial configuration (Proposition 2).

4, 88MF P is a snap-stabilizing message forwarding protocol for specification § 5 even if the routing tables are corrupted
in the initial configuration (Lemma 8, 9 and Theorem 1).

In this proof, we consider that the notion of message is different from the notion of useful information. This implies that
two messages with the same useful information sent by the same processor are considered as two different messages. We
must prove that the algorithm does not lose one of them due to the use of the flag.

4.1. Preliminaries

Firstly, we define a particular structure of messages and we study the behavior of this structure under § 8§ M ¥ 2.

Let y be a configuration of the network. We say that a message m exists in y if at least one buffer contains m in y. If we
observe the copies of any existing message m in any configuration, we can see that these copies can be always organized as
directed sub-chains of the buffer graph with the following properties (i) only the last buffer can be located on the destination
of m, (ii) the content (pointer to the next and to the previous processor) of each buffer is consistent with the one of the
previous and the following buffer on the subchain and (iii) first buffers are of type E and last buffers are all of type A or F.
We call these particular structures caterpillars. Here is the formal definition.

4290 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

End of Algorithm 1:

¥ Rule for buffers of rank 1 to D : propagation of acknowledgment */
(Ry) ::3i € {1,...,D}, (buf,(i) = (m,r,q,d,E)) A(p # d) A (bufe(i+1) = (m, 7", p,d,c))A (c € {F,A})) —
buf, (i) := (m,r,q,d, c)
/* Rules for buffers of rank 2 to D */
[* Forwarding of messages */
(Rg) ::3i € {2,...,D}, ((bufy,(i) = &) A (choice,(i) = s) A (bufs(i — 1) = (m, p, q, d, E)A (bfpexttiop, (i + 1) #
(m,r,p,d, c))) — buf,(i) := (m, nextHop,(d), s, d, E) [* Erasing of messages for which acknowledgment has been
forwarded */
(Rg) ::3i € {2,...,D}, (buf,(i) = (m, 1, q,d,c)) A(c € {F,A) A(d # p) A (bufy(i—1) = (m,p,q', d, c)) A (buf(i+
1) # (m,1’,p,d, c)) — buf,(i) :==¢
|* Rules for buffers of rank 2to D + 1 ¥/
/* Consumption of a message and generation of the acknowledgment A */
(Ry) :: i€ {2,...,D+ 1}, bufp,(i) = (m, 1, q, p, E) —> deliver,(m); buf,(i) := (m, 1, q, p,A)
[* Erasing of messages for p for which acknowledgment has been forwarded */
(Ry1) 13 e {2, ..., D41}, ((bufp,(i) = (m, 1, q, p, c))A(c € {F,A}) A(bufy(i—1) = (m, p, q', p, c))) —> buf,(i) :==¢
|* Rules for the buffer of rank D + 1 */
[* Forwarding of messages */
(Ri2) :: (buf,(D + 1) = &) A (choice,(D + 1) = s) A (bufg(D) = (m,p,q,d,E)) — bufy(D + 1) =
(m, nextHop,(d), s, d, E)
|* Generation of the acknowledgment F */
(Rq3) :: (bufy,(D+ 1) = (m,r,q,d,E)) A(d #p) — buf,(D+ 1) :=(m,1,q,d, F)
[* Erasing of messages for which the acknowledgment has been forwarded */
(Rig) =2 (bufpy(D+ 1) = (m, 1,q,d, c)) A (c € {F,A}) A (d # p) A (bufy(D) = (m, p,q',d,c)) —> bufy(D+ 1) :=¢
|* Correction rules: erasing of tail of abnormal caterpillars of type F, A */
(Ry5) ::3i € {2,..., D}, ((bufp,(i) = (m,1,q,d,c)) A(c € {F,A}) A (bufp(i+ 1) # (m, 1/, p,d,c)) A (bufg(i— 1) #
(m,p,q',d, ') —> buf,(i) ==&
(Ryg) ::3i € {2, ..., D}, (bufp,(i) = (m,1,q,d,c)) A(c € {F,A}) A (bufp(i+ 1) # (m, 1, p,d, c)) A (bufg(i—1) =
(m,p,q',d,) An(c" €{F,A\{c} VvV q=d) — bufp(i) :== ¢
(Ry7) 2 (bufy(D+ 1) = (m,1,q,d,¢)) A (c € {F,A}) A (bufy(D) # (m,p,q’,d,c')) —> bufy(D+ 1) :=¢
(Rig) :: (bufy(D+ 1) = (m,1,q,d, c)) A (c € {F,A}) A (bufy(D) = (m,p,q',d,c") A(c" € {F,AN\[c} vg=d) —
buf,(D+ 1) :=¢

Definition 3 (Caterpillar of a Message m). Let m be a message of destination d existing in a configuration y. We define a
caterpillar associated to m (noted Cy,) as the longest sequence of buffers C,, = buf,, (i) . . . buf, (i+t — 1) (with t > 1) which
satisfies:

-vjefl,...,t — 1}, pj # dand pjy1 # p;.

- Vje{1,...,t},bufpj(i+j—1):(m,rj,qj,d,cj).
-Vjie{l,...,t =1}, 15 = pjt1.

-Vje{Z,...,t},qj:pj,L

Vie{l,...,k—1}, ¢ =E and

Vjietk,....t}, g=A) v Ve ik ... ,t}, ¢ =F).

We call respectively buf,, (i), buf,, (i +t — 1), and Ig¢,, = t the tail, the head, and the length of C;,.

—Elke{l,...,t—l—l},{

We give now some characterization of caterpillars.

Definition 4 (Characterization of Caterpillar of a Message m). Let m be a message of destination d in a configuration y and
Cm = bufp, () ... bufp, i+t — 1) (t > 1) a caterpillar associated to m. Then,

- Gy is a normal caterpillar if i = 1. It is abnormal otherwise (i > 2).
Cnisacaterpillarof type EifVj € {1, ..., t}, ¢ =E(ie.k =t + 1).
Cmis acaterpillarof type Aif 3j e {1, ..., t},¢g=A(ie k <t + 1)
- Cnisacaterpillarof type Fif3j € {1,...,t},¢=F(ie. k <t +1).

It is obvious that, for each caterpillar G, G is either normal or abnormal. In the same way, C, is of type E, A or F only.
The reader can find in Fig. 2 an example for some types of caterpillar.

Lemma 1. Let y be a configuration and m be a message of destination d existing in y. Under a weakly fair daemon, every abnormal
caterpillar of type F (resp. A) associated to m disappears in finite time or become a normal caterpillar of type F (resp. A).

A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296 4291

Fig. 2. Examples of caterpillars. On left: abnormal of type A (gray) and normal of type E (white). On right: normal of type F (gray) and abnormal of type E
(white).

Proof. Let y be a configuration of the network. Let m be an existing message (of destination d) in y. Let G, =
buf,, () ... bufp, i+t — 1) (t = 1andi > 1) be a normal caterpillar of type F or A associated to m. Let ¢ be the type
of Cy,.

Step 1: By the definition of caterpillar of type ¢, we have 1 < k < t. We candeduce thati+k—2 <i+t—1<D+ 1and
then (R;) is enabled for p;_1. This rule cannot be neutralized since processor py is not enabled by a rule affecting its buffer
of rank i + k. As the daemon is weakly fair, py_; executes this rule in finite time. We can repeat this reasoning k — 1 times

on the processors py_1, . .., p1. Then, we obtain a caterpillar for which all buffers are of type c in finite time.
Step 2: If t = 1, we can directly go to Step 4. Otherwise (t > 2), we must distinguish the following cases:
Case 1:p; = d.

Processor p; is enabled for rule (Rq1) by the definition of a caterpillar and the fact that all buffers of G, are of type c. Note
that processor p;_1 is not enabled. Consequently, this rule remains continuously enabled for p;. Since the daemon is weakly
fair, p; executes this rule in finite time. Then, buf,, (i 4+t — 1) is empty in finite time.

Case 2: p; # d.

Case2.1:i+t—1=D+1.

Then, processor p; is enabled for rule (Ry4) by the definition of a caterpillar and the fact that all buffers of G, are of type c.
Note that processor p;_1 is not enabled. Consequently, this rule remains continuously enabled for p;. Since the daemon is
weakly fair, p; executes this rule in finite time. Then, buf,, (i + t — 1) is empty in finite time.

Case2.2:i+t—1<D.

Assume that buf,, (i +t — 1) = (m, 1, q, d, ¢). Then, processor p; is enabled for rule (Ry) by the definition of a caterpillar
and the fact that all buffers of Cp, are of type c. Note that processor p;_; is not enabled and that processor r cannot forward
amessage (m, r’, p;, d, ¢) in its buffer of rank i + t (since buf,, (i + t — 1) is of type ¢ # E). Consequently, this rule remains
continuously enabled for p;. Since the daemon is weakly fair, p; executes this rule in finite time. Then, buf,, (i +t — 1) is
empty in finite time.

Step 3: By following a reasoning similar to the one of Case 2.2 (Step 2), we can prove that p;_1, ..., p, executes (Rg)
sequentially in finite time.

Step 4: Then, we obtain a caterpillar of type ¢ of length 1 satisfying i > 1. Assume that buf, (i) = (m, 1, q, d, ¢). We can
distinguish the following cases:

Case 1: bufy(i— 1) = (m, p1,q', d,).

Case1.1: g =d.

By the definition of a caterpillar of type c of length 1 and the hypothesis, p; is enabled for rule (Ryg) (if i < D) or (Ryg) (if
i = D + 1). By a reasoning similar to the one of Case 2.2 (Step 2), this rule remains continuously enabled. Since the daemon
is weakly fair, p; executes this rule in finite time. Consequently, buf,, (i) becomes empty in finite time. Then, C;, disappears.
Case 1.2:q # d.

Assume that ¢ = E. Then, buf, (i — 1) belongs to Cy,. This contradicts the fact that Gy, is of type c. Consequently, ¢’ € {F, A}.

If ¢’ = c, then the execution of rule (R7) by p; leads to the merging of two caterpillars of type c. Then, consider the new
caterpillar C;, = bufy, {y... bufp;, (i’ 4+t — 1) (with bufpz, (i +t'—1) = buf,, (). If i = 1, then we have a normal caterpillar
of type c. Otherwise, we can start the reasoning from the beginning. Note that we are ensured that this reasoning is finite
since 1 < i’ < iateach step.

Consider now the case ¢’ # c. By definition of a caterpillar of type ¢ of length 1 and the hypothesis, p; is enabled by rule
(Ry6) (ifi < D)or (Ryg) (ifi = D + 1). By a reasoning similar to the one of Case 2.2 (Step 2), this rule remains continuously
enabled. Since the daemon is weakly fair, p; executes this rule in finite time. Consequently, buf,, (i) becomes empty in finite
time. Then, C,, disappears.

Case 2: bufy(i— 1) # (m, p1,q', d,).

By definition of a caterpillar of type c of length 1 and the hypothesis, p; is enabled by rule (Rys) (if i < D) or (Ry7) (if
i = D + 1). By a reasoning similar to the one of Case 2.2 (Step 2), this rule remains continuously enabled. Since the daemon
is weakly fair, p; executes this rule in finite time. Consequently, buf,, (i) becomes empty in finite time. Then, G, disappears.

In all cases, G, disappears or becomes a normal caterpillar of type c in finite time. That leads us to the proof of the
lemma. O

4292 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

Lemma 2. Let y be a configuration and m be a message of destination d existing in y. Under a weakly fair daemon, every normal
caterpillar of type A associated to m disappears in finite time.

Proof. Let y be a configuration and m be a message of destination d existing in y. Let C;, = buf,, (1) ... buf, (t) (t > 1) be
a normal caterpillar of type A associated to m. We must distinguish the following cases:
Case1:t = 1.
Case 1.1:p; = d.
Then, rule (Rs) is enabled for p;. Since the guard of this rule involves only local variables, it remains continuously enabled.
Since the daemon is weakly fair, p; executes this rule in finite time. Consequently, C,, disappears.
Case 1.2:p; # d.
By the definition of a caterpillar and the hypothesis, p is enabled by rule (R3). By a reasoning similar to the one of Case 2.2
(Step 2) of the proof of Lemma 1, we can prove that this rule remains continuously enabled. Since the daemon is weakly fair,
p; executes this rule in finite time. Consequently, C,, disappears.
Case2:t > 2.
We can apply the reasoning of steps 1, 2, and 3 of the proof of Lemma 1. That leads us to Case 1.2.

In all the cases, C,, disappears in finite time. O

Lemma 3. Let y be a configuration and m be a message of destination d existing in y. Under a weakly fair daemon, every normal
caterpillar of type F associated to m becomes a normal caterpillar of type E of length 1 in finite time.

Proof. Let y be a configuration and m be a message of destination d existing in y. Let C,, = buf,, (1) ... buf, (¢t) (t > 1) be
a normal caterpillar of type F associated to m. We must distinguish the following cases:
Case1:t = 1.
Case 1.1:p; = d.
Then, rule (Rg) is enabled for p;. Since the guard of this rule involves only local variables, it remains continuously enabled.
Since the daemon is weakly fair, p; executes this rule in finite time. Consequently, C;, becomes a caterpillar of type E of
length 1.
Case 1.2:p; # d.
By the definition of a caterpillar and the hypothesis, p; is enabled by rule (R,). By a reasoning similar to the one of Case 2.2
(Step 2) of the proof of Lemma 1, we can prove that this rule remains continuously enabled. Since the daemon is weakly fair,
p1 executes this rule in finite time. Consequently, C,, becomes a caterpillar of type E of length 1.
Case2:t > 2.
We can apply the reasoning of steps 1, 2, and 3 of the proof of Lemma 1. That leads us to Case 1.2.

In all cases, we proved that C,, becomes a caterpillar of type E of length 1 in finite time. This leads us to the lemma. O

Lemma 4. Let y be a configuration and m be a message of destination d existing in y. Under a weakly fair daemon, every
caterpillar of type E associated to m becomes a caterpillar of type A or F in finite time.

Proof. Let y be a configuration of the network and m be a message (of destination d) existing in y. Let C;;, =
buf,, (i) ... bufp, i+t — 1) (t > 1) be a caterpillar of type E associated to m.

We prove this result by a decreasing induction on the rank of the buffer occupied by the head of C, in y. Let us define
the following property:
(Py) : If Gy, satisfiesi + t — 1 = I, then it becomes a caterpillar of type A or F in finite time.
Initialization: We want to prove that (Pp41) is true.
Let Cpy = bufy, (i) ... bufy, (i+t — 1) (t > 1) be a caterpillar of type E associated to m such thati+t — 1 = D + 1. We must
distinguish the following cases:
Case1:p, =d.
By hypothesis, processor p; is enabled for rule (Ryg). Since the guard of this rule involves only local variables, it remains
continuously enabled. Since the daemon is weakly fair, p; executes this rule in finite time. Consequently, buf, (i + t — 1)
becomes a buffer of type A and G, becomes a caterpillar of type A in finite time. Then, property (Pp.1) is satisfied.
Case 2:p; # d.
By hypothesis, processor p; is enabled for rule (R;3). Since the guard of this rule involves only local variables, it remains
continuously enabled. Since the daemon is weakly fair, p; executes this rule in finite time. Consequently, buf,, (i +t — 1)
becomes a buffer of type F and C,, becomes a caterpillar of type F in finite time. Then, property (Pp41) is satisfied.
Induction: Let be | < D. Assume that (Pj41) . .. (Pp41) are satisfied. We want to prove that (P) is then satisfied.

Let Gy = buf,, (i) ... buf, (i4+t — 1) (t > 1) be a caterpillar of type E associated tom suchthati+t —1=1<D+ 1.
We must distinguish the following cases:
Case1:p, =d.
Casel.l:i4+t—1=1.
By hypothesis, processor p; is enabled for rule (R4). Since the guard of this rule involves only local variables, it remains
continuously enabled. Since the daemon is weakly fair, p, executes this rule in finite time. Consequently, buf, (i + t — 1)
becomes a buffer of type A and G, becomes a caterpillar of type A in finite time. Then, property (P) is satisfied.

A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296 4293

Case1.2:2<i+t—1<D.
These case is similar to the Case 1 of initialization. Consequently, G, becomes a caterpillar of type A in finite time. Then,
property (Py) is satisfied.
Case 2:p; # d.

Assume without loss of generality that buf,, (i + t — 1) = (m, r, q, d, E). We want to prove that the head of G, goes up
by one buffer in finite time. We must study the following cases:
Case2.1:i+t=D+1.
Case 2.1.1: If buf, (i+t) = &, then processor r is enabled by rule (Ry2). Since processor choice, (i + t) is not enabled, this rule
remains continuously enabled for r. r executes this rule in finite time because the daemon is weakly fair. The result of this
execution depends on the value of choice, (i + t):

1. If choice. (i + t) = p;, then the head of C,, goes up by one buffer when r executes rule (Ry2).
2. If choice, (i + t) = s # p;, then buf, (i + t) takes the value (im’, 1/, s, d’, ¢) when r executes rule (Ryz). This leads us to
Case 2.1.2.2. Note that the fairness of choice, (i + t) ensures us that these case can appear only a finite number of times.

Case 2.1.2: Consider now that buf, (i +t) = (m', ', ¢, d’,).

Assume that ¢’ = p; and m’ = m, then buf, (i + t) belongs to Cy, (the type of C,, is then identical to the one of buf; (i + t)).
Consequently, we have a contradiction with the definition of C,,. This implies that g’ # p, or m’ ## m. Let C,;y be the caterpillar
to which buf; (i + t) belongs. Consider the three possible cases:

1. G,y is of type E: we can apply the induction hypothesis to G,/ since its head stays in a buffer of rank greater than or equal
to i+ t. Consequently, C,y becomes a caterpillar of type F or A in finite time. That leads us to one of the following cases.

2. Gy is of type A: following Lemmas 1 and 2, C,y disappears in finite time. Then, buf, (i + t) becomes empty. That leads us
to Case 2.1.1.

3. Gy is of type F: following Lemmas 1 and 3, G,y disappears or becomes a caterpillar of type E and length 1 in finite time.
In all cases, buf; (i + t) becomes empty (sincei 4+ t = D + 1 > 2). That leads us to Case 2.1.1.

Case2.2:2 <i+t <D.

Consider the following cases:

Case 2.2.1: buf,(i+t) = ¢.

Assume without loss of generality that s = choice, (i + t) and buf;(i +t — 1) = (m’, r,q, d’, ¢’). By the construction of
rule (Rg) and the definition of a caterpillar, r is enabled if and only if bufyextiop, @) (i + t + 1) is not the tail of an abnormal
caterpillar G,y associated to m'. Let us study the following cases:

1. G, is of type E: we can apply the induction hypothesis to G, since its head stays in a buffer of rank greater than or equal
toi+ t + 1. Consequently, G,y becomes a caterpillar of type F or A in finite time. That leads us to one of the following
cases.

2. Gy is of type A: following Lemma 1, G,y disappears in finite time. Then, bufnexttiop, () (i 4 t -+ 1) becomes empty.

3. Gy is of type F: following Lemma 1, G,y disappears in finite time (it cannot become a caterpillar of type E and length 1
since buf; (i + t) = ¢). Consequently, bufpexitop, (@) (i + t 4+ 1) becomes empty in finite time.

Then, Rule (Rg) is enabled for r in finite time. This rule remains continuously enabled since no message of type
(m”,r',r,d", c”) can be copied in bufnexttop, (@) (i + t + 1) (indeed, the contrary implies that nextHop, (d’) executes rule (Rg)
whereas buf; (i + t) = ¢). Since the daemon is weakly fair, r executes rule (Rg) in finite time. The result of this execution is
one of the following:

1. If choice, (i + t) = p;, then the head of C;,, goes up by one buffer when r executes rule (Rg).

2. If choice, (i + t) = s # p;, then buf;, (i + t) takes the value (m’, ', s, d’, ¢) when r executes rule (Rg). This situation is
similar to the one of Case 2.1.2 below. Note that the fairness of choice, (i + t) ensures us that this case can appear only a
finite number of times.

Case 2.2.2: If buf, (i +t) = (m', ', ¢, d’, ¢’), the reasoning is similar to the one of Case 2.1.2. Consequently, that leads us to
point 1 in finite time.

In conclusion of Case 2 (p; # d), the head of G, goes up by one buffer in finite time. Then, the induction hypothesis allows
us to state that C,, becomes a caterpillar of type F or A in finite time. Hence, (P;) is true. O

4.2. Snap-stabilization when routing tables are correct in the initial configuration

Now, we assume that routing tables are correct in the initial configuration and we prove that §8M% & is a snap-
stabilizing algorithm for §5’.

Lemma 5. Let y be a configuration in which routing tables are correct and m be a message of destination d existing in y. Under
a weakly fair daemon, every normal caterpillar of type E associated to m becomes a caterpillar of type A in finite time.

4294 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

Proof. Let y be a configuration of the network in which routing tables are correct and m be a message (of destination d)
existing in y. Let G, = buf,, (1) ... bufy, (t) (t > 1) be a normal caterpillar of type E associated to m.

By Lemma 4, G, becomes a caterpillar of type A or F in finite time. In the first case, the proof ends here. In the second
case (which is possible if D+ 1 —t < d(p, d) in), it follows by Lemma 3 that G, becomes a caterpillar of type E of length
1in finite time. Then, we have: G, = buf,, (1).

Following Lemma 4, C;,, becomes a caterpillar of type F or A in finite time. Assume that C;,, becomes a caterpillar of type
F. This implies that m has been forwarded D times without reaching its destination. This result is absurd since we have by
definition that dist(p;, d) < D and we assumed that routing tables are correct and constant. Consequently, C,, becomes a
caterpillar of type A in finite time. O

Lemma 6. Ifrouting tables are correct, any processor can generate a first message (i.e. execute (Ry)) in finite time under a weakly
fair daemon.

Proof. Let p be a processor of the network which has a message m (of destination d) to forward. As p has a waiting message,
the higher layer puts request, = true whatever is its value in the initial configuration.

Assume that buf,(1) already contains a message. Let G, be the caterpillar which contains this buffer.

If G is of type F, C;, becomes a caterpillar of type E in finite time following Lemma 3. That leads us to the case above.

If G, is of type E, C;, becomes a caterpillar of type A in finite time following Lemma 5. That leads us to the case above.

If C, is of type A, C, disappears in finite time following Lemma 2.

In all cases, we obtain that buf,(1) becomes empty in finite time. It remains empty while p does not execute rule
(Ry) (since it is the only rule which can put a message in this buffer). In these case, (R;) is enabled for p if and only if
bufnex[Hopp(d) (2) # (m,r',p,d, o).

Assume that this condition is not satisfied. This implies (by definition of a caterpillar) that bufyexop, @) (2) is the tail
of an abnormal caterpillar C;,. Following sequentially Lemmas 1 and 4, C;, disappears in finite time (note that the merge
with buf(1) is impossible since this buffer is empty). Moreover, bufqexttop, (@) (2) cannot be filled by a message of type
(m, 7', p, d, c) (since buf,(1) is empty). Consequently, rule (Ry) is continuously enabled for processor p. As the daemon
is weakly fair, p executes this rule in finite time, which leads to the lemma. O

Lemma 7. If a message m is generated by 88 M F P in a configuration in which routing tables are correct, 8 M F P delivers m
to its destination in finite time under a weakly fair daemon.

Proof. The generation of a message m (of destination d) by §8.M F & results from the execution of rule (R;) by the processor
which sends m. This rule creates a normal caterpillar of type E associated to m. Following Lemma 5, this caterpillar becomes
a caterpillar of type A in finite time. It is due to the execution of rule (R4) or (Ry9) by d. These rules delivers the message to
the higher layer of d. This ends the proof. O

Proposition 1. $8M ¥ P is a snap-stabilizing message forwarding protocol for 85’ if routing tables are correct in the initial
configuration.

Proof. Assume that routing tables are correct in the initial configuration.

In our case, the starting action of §8M % & is the execution of (R;). Lemma 6 proves that, if a processor p requests to
send a message, then the protocol is initiated by at least one starting action on p in finite time.

If we consider that (Ry) has been executed at least one time, we can prove that: the first property of 8’ is always satisfied
(following Lemma 6 and the fact that the waiting for the sending of new messages is blocking) and the second property of
8P’ is always satisfied (following Lemma 7). Consequently, the protocol is executed according to 8 after the execution
of the first starting action.

These two properties shows us that 88 .M F & is a snap-stabilizing message forwarding protocol for specification §2'. O

4.3. Self-stabilization

Now, we assume that routing tables are corrupted in the initial configurations and we prove that §8M % P is a self-
stabilizing algorithm for specification §5’.

Proposition 2. $8M ¥ P is a self-stabilizing message forwarding protocol for 85’ even if routing tables are corrupted in the
initial configuration when A runs simultaneously.

Proof. Recall that +4 is a self-stabilizing silent algorithm for computing routing tables running simultaneously to $$ M ¥ &.
Moreover, we assumed that « has priority over $8M¥ & (i.e. a processor which has enabled actions for both algorithms
always chooses the action of »4). This guarantees us that routing tables are correct and constant in finite time regardless of
their initial states.

By Proposition 1, §8.M ¥ & is a snap-stabilizing message forwarding protocol for specification 8" when it starts from a
such configuration. Consequently, we can conclude on the proposition. O

A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296 4295
4.4. Snap-stabilization

We still assume that routing tables are corrupted in the initial configuration and we prove that $8M¥ & is a snap-
stabilizing algorithm for specification § 5.

Lemma 8. Under a weakly fair daemon, 88 M F P does not delete a valid message without delivering it to its destination even if
A runs simultaneously.

Proof. When 88 M F £ accepts a new valid message m, the processor which sends m executes rule (Ry). By construction of
the rule, this execution creates a normal caterpillar Cy, of type E associated to m.
While m is not delivered to its destination, we know, by Lemmas 4 and 3, that C,, follows infinitely often the above cycle:
G is of type E and becomes of type F (type A is impossible since m is not delivered), Gy, is of type F and becomes of type E.
This implies that there always exists at least one copy of m in buf,(1) (if p is the sending processor of m). Then, this
message is not deleted without being delivered to its destination. O

Lemma 9. Under a weakly fair daemon, § 8 M F & never duplicates a valid message even if A works simultaneously.

Proof. It is obvious that the emission of a message m by rule (R;) only creates one caterpillar of type E associated to m.

Then, observe that all rules are designed to obtain the following property: if a caterpillar has one head in a configuration,
it also has one head in the following configuration whatever rules have been applied. Indeed, this property is ensured by the
fact that the next processor on the path of a message m is computed (and put in the second field on the message) when m is
copied into a buffer buf, (i) (not when it is forwarded to a neighbor). Consequently, if there is a routing table move after the
copy of m in buf, (i), the caterpillar does not fork. The head of the caterpillar remains unique.

We can conclude that, for any valid message m, there always exists a unique caterpillar C,, associated to m. When m is
delivered, C,, becomes of type A by construction of rules (R4) and (Ryg). Following Lemma 2, C,, disappears in finite time. m
cannot be delivered several times. O

Theorem 1. $8MF & is a snap-stabilizing message forwarding protocol for 8P even if routing tables are corrupted in the initial
configuration when 4 runs simultaneously.

Proof. Proposition 2 and Lemma 8 allows us to conclude that $ 8 M F & is a snap-stabilizing message forwarding protocol for
specification 84’ even if routing tables are corrupted in the initial configuration, on condition that -4 runs simultaneously.
Then, using this remark and Lemma 9, we obtain the result. O

5. Time complexities

Since our algorithm needs a weakly fair daemon, there is no point in doing an analysis in terms of steps. It is why all the
following complexity analysis is given in rounds. Let R4 be the stabilization time of + in terms of rounds.

Proposition 3. In the worst case, ® (nD) invalid messages are delivered to processor d.

Proof. In the initial configuration, the system has at most n(D + 1) distinct invalid messages of destination d. Then, the
number of invalid messages delivered to d is in O(nD).

We can obtain the lower bound with a chain of n = 2q + 1 processors labeled p1, p,, . . ., pn. Assume that all buffers of
rank strictly less than q + 2 initially contain a message of destination pq1 and other buffers are empty. Moreover, assume
that routing tables are initially correct. Then, .M F & delivers all invalid messages of this initial configuration to pq41. This

initial configuration contains n(q + 1) = n(% + 1) € ©(nD) invalid messages. The result follows. O

Proposition 4. In the worst case, a message m (of destination d) needs O(max(R ,, nDAP)) rounds to be delivered to d once it
has been sent out by its source.

Proof. Firstly, we prove by induction the following fact: if ¢ is a configuration in which routing tables are correct and in
which a message of destination d exists and Cp, is a caterpillar of type E associated to m whose head is a buffer of rank
1<i+t—1<D+1onp # d, then the head of G, goes up by one buffer in at most 0(AP+1~0+=D) rounds if there exists
no abnormal caterpillar whose tail is a buffer of rank greater thani + t.

Secondly, it is possible to show that €, the set of abnormal caterpillars in y loses at least one element during the 0(AP)
rounds which follow y. Then, we can say that, when routing tables are correct, an accepted message is forwarded in at most
0(nDAP) rounds.

Finally, we can deduce the result when m is emitted in a configuration in which routing tables are not correct, since the
message is delivered in at most O(nDAP) rounds after routing tables computation (which takes at most O(R,,) rounds if m
is not delivered during the routing tables computation, since we have assumed the priority of 4). O

Proposition 5. The delay (waiting time before the first emission) and the waiting time (between two consecutive emissions) of
SSMF P is O(max(R,, nDAP)) rounds in the worst case.

4296 A. Cournier et al. / Theoretical Computer Science 412 (2011) 4285-4296

Proof. Let p be a processor which has a message of destination d to emit. By the fairness of choice,(d), we can say that
m is sent after at most (A — 1) releases of buf,(1). The result of Proposition 4 allows us to say that buf,(1) is released in

O(max(R,, nDAP)) rounds at worst. Indeed, we can deduce the result. O

The complexity obtained in Proposition 4 is due to the fact that the system delivers a huge quantity of messages during
the forwarding of the considered message. It is why we are interested now in the amortized complexity (in rounds) of our
algorithm. For an execution I', this measure is equal to the number of rounds of I" divided by the number of delivered
messages during I” (see [20] for a formal definition).

Proposition 6. The amortized complexity to forward a message of 88 M F &P is in O(max(R,, D)) rounds when there exists no
invalid messages.

Proof. Firstly, we prove the following property: if y is a configuration in which at least one caterpillar of type E exists,
routing tables are correct, and there exists no invalid messages, then §8.M ¥ & delivers at least one message to a processor
in the 3D 4 1 rounds following y .

Assume now an initial configuration in which routing tables are correct and in which there exists no invalid messages. Let
I’ be one execution which leads to the worst amortized complexity. Let R be the number of rounds of I". By the last remark,

we can say that $8MF & delivers at least % messages during I". So, we have an amortized complexity of ﬁﬁ € ©(D).

3D+1

Then, the announced result is obvious. O
6. Conclusion

In this paper, we provide an algorithm to solve the message forwarding problem in a snap-stabilizing way (when a self-
stabilizing algorithm for computing routing tables runs simultaneously) for a specification which forbids message losses
and duplication. This property implies the following fact: our protocol can forward any generated message to its destination
regardless of the state of the routing tables in the initial configuration. Such an algorithm allows the processors of the
network to send messages to each other without waiting for the routing table computation.

Asin [1], we show that it is possible to adapt a fault-free protocol into a snap-stabilizing one without memory over cost.
This new algorithm improves the one proposed in [1] since it needs ® (D) buffers per processor versus ® (n) for the former.
Although we prove that this new protocol has a worse time complexity in the worst case than the one of [1], we prove
that their amortized complexities are equal. That allows us to state that this new protocol has, from a practical point of
view, similar time complexity than the previous one. But the following problem is still open: what is the minimal number
of buffers to allow snap-stabilization on the message forwarding problem?

References

[1] A. Cournier, S. Dubois, V. Villain, A snap-stabilizing point-to-point communication protocol in message-switched networks, in: IPDPS, 2009, pp. 1-11.
[2] A. Cournier, S. Dubois, V. Villain, How to improve snap-stabilizing point-to-point communication space complexity? in: SSS, 2009, pp. 195-208.
[3] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (1974) 643-644.
[4] A.Bui, AK. Datta, F. Petit, V. Villain, Snap-stabilization and pif in tree networks, Distrib. Comput. 20 (1) (2007) 3-19.
[5] K.M. Chandy, J. Misra, Distributed computation on graphs: shortest path algorithms, Commun. ACM 25 (11) (1982) 833-837.
[6] J.van Leeuwen, R.B. Tan, Compact routing methods: a survey, in: SIROCCO, 1994, pp. 99-110.
[7] P.Merlin, A. Segall, A failsafe distributed routing protocol, IEEE Trans. Commun. 27 (9) (1979) 1280-1287.
[8] S.-T. Huang, N.-S. Chen, A self-stabilizing algorithm for constructing breadth-first trees, Inform Process. Lett. 41 (2) (1992) 109-117.
[9] A.Kosowski, L. Kuszner, A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves, in: PPAM, 2005, pp. 75-82.
[10] C.]Johnen, S. Tixeuil, Route preserving stabilization, in: Self-Stabilizing Systems, 2003, pp. 184-198.
[11] J. Duato, A necessary and sufficient condition for deadlock-free routing in cut-through and store-and-forward networks, IEEE Trans. Parallel Distrib.
Syst. 7 (8) (1996) 841-854.
[12] P.M. Merlin, PJ. Schweitzer, Deadlock avoidance in store-and-forward networks, in: Jerusalem Conference on Information Technology, 1978,
pp. 577-581.
[13] L. Schwiebert, D.N. Jayasimha, A universal proof technique for deadlock-free routing in interconnection networks, in: SPAA, 1995, pp. 175-184.
[14] S. Toueg, Deadlock- and livelock-free packet switching networks, in: STOC, 1980, pp. 94-99.
[15] S.Toueg, K. Steiglitz, Some complexity results in the design of deadlock-free packet switching networks, SIAM J. Comput. 10 (4) (1981) 702-712.
[16] S.Toueg,].D. Ullman, Deadlock-free packet switching networks, SIAM J. Comput. 10 (3) (1981) 594-611.
[17] G. Tel, Introduction to Distributed Algorithms, 2nd edition, Cambridge University Press, Cambridge, UK, 2000.
[18] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology, in: SIGCOMM, 1999, pp. 251-262.
[19] S.Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election, IEEE Trans. Parallel Distrib. Syst. 8 (4) (1997) 424-440.
[20] T. Cormen, C. Leierson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, MIT, 2001.

	How to improve snap-stabilizing point-to-point communication space complexity?
	Introduction
	Preliminaries
	State model
	Message-switched network
	Stabilization

	Description of the proposed protocol
	Proof of the snap-stabilization
	Preliminaries
	Snap-stabilization when routing tables are correct in the initial configuration
	Self-stabilization
	Snap-stabilization

	Time complexities
	Conclusion
	References

