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a b s t r a c t

Distributed fault-tolerance can mask the effect of a limited number of permanent faults,
while self-stabilization provides forward recovery after an arbitrary number of transient
faults hit the system. FTSS (Fault-Tolerant Self-Stabilizing) protocols combine the best of
both worlds since they tolerate simultaneously transient and (permanent) crash faults. To
date, deterministic FTSS solutions either consider static (i.e. fixed point) tasks, or assume
synchronous scheduling of the system components.

In this paper, we present the first study of deterministic FTSS solutions for dynamic
tasks in asynchronous systems, considering the unison problem as a benchmark. Unison
can be seen as a local clock synchronization problem as neighbors must maintain digital
clocks at most one time unit away from each other, and increment their own clock value
infinitely often. We present several impossibility results for this difficult problem and
propose an FTSS solution (when the problem is solvable) for the state model that exhibits
optimal fault-containment.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The advent of ubiquitous large-scale distributed systems advocates that tolerance to various kinds of faults and hazards
must be included from the very early design of such systems. Self-stabilization [8,10] is a versatile technique that permits
forward recovery from any kind of transient fault, while Fault-tolerance [17] is traditionally used to mask the effect of a
limited number of permanent faults.Making distributed systems tolerant to both transient and permanent faults is appealing
yet proved difficult [1,16,18] as impossibility results are expected in many cases.

The seminal works of [1,18] define FTSS protocols as protocols that are both fault-tolerant and self-stabilizing, i.e. able to
tolerate a few crash faults aswell as arbitrary initialmemory corruption. In [1], impossibility results for size computation and
election in asynchronous systems are presented, while unique naming is proved possible. In [18], a general transformer is
presented for synchronous systems, aswell as positive resultswith failure detectors. The transformer of [18]was later proved
impossible to transpose to asynchronous systems due to the impossibility of tight synchronization in the FTSS context. For
local tasks (i.e. tasks whose correctness can be checked locally, such as vertex coloring), the notion of strict stabilization was
proposed [28,26]. Strict stabilization guarantees that there exists a containment radius outsidewhich the effect of permanent
faults is masked, provided that the problem specification makes it possible to break the causality chain that is caused by the
faults. Strong stabilization [25,14,15] weakens this requirement and ensures processes outside the containment radius are
only impacted a finite number of times by the Byzantine nodes.
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Table 1
Summary of results.

Unfair Weakly fair Strongly fair
Minimal Priority ∆ ≥ 3 ∆ ≤ 2

Minimal Priority
f = 1 Impossible Impossible Impossible Impossible Impossible Possible

(Proposition 2) (Proposition 3) (Proposition 4) (Proposition 5) (Proposition 6) (Proposition 11)
f ≥ 2 Impossible (Proposition 1)

It turns out that FTSS possibility results in fully asynchronous systems known to date are restricted to static tasks,
i.e. tasks that require eventual convergence to some global fixed point (tasks such as naming or vertex coloring fall in
this category). In this paper, we consider the more challenging problem of dynamic tasks, i.e. tasks that require both
eventual safety and liveness properties (examples of such tasks are clock synchronization and token passing). Due to the
aforementioned impossibility of tight clock synchronization, we consider the unison problem, which can be seen as a local
clock synchronization problem. In the unison problem [27], each node is expected to keep its digital clock value within
one time unit of every of its neighbors’ clock values (weak synchronization), and increment its clock value infinitely often
(liveness). Note that in synchronous systems where the underlying topology is a fully connected graph in which clocks
have discrete time unit values, unison induces tight clock synchronization. Several self-stabilizing solutions exist for this
problem [3–5,20], both in synchronous and asynchronous systems, yet none of those can tolerate crash faults.

As a matter of fact, there exists a number of FTSS results for dynamic tasks in synchronous systems. [12,29] provide
self-stabilizing clock synchronization that is also wait free, i.e that tolerate napping faults, in complete networks. Also [11]
presents a FTSS clock synchronization for general networks. Still in synchronous systems, it was proved that evenmalicious
(i.e. Byzantine) faults can be tolerated, to some extent. In [2,13], probabilistic FTSS protocols were proposed for up to one
third of Byzantine processors, while in [9,22] deterministic solution tolerate up to one fourth and one third of Byzantine
processors, respectively. Note that all solutions presented in this paragraph are for fully synchronous systems. [21] is a notable
exception since it proposes a probabilistic solution to a clock synchronization problem in an asynchronous system.

In this paper, we tackle the open issue of FTSS deterministic solutions to dynamic tasks in asynchronous systems, using
the unison problem as a case study. Our first negative results show that whenever two or more crash faults may occur,
FTSS unison is impossible in any asynchronous setting. The remaining case of one crash fault drives the most interesting
results (see Section 3). The first main contribution of the paper is the characterization of two key properties satisfied by
all previous self-stabilizing asynchronous unison protocols:minimality and priority. Minimality means that nodes maintain
no extra variables but the digital clock value. Priority means that if incrementing the clock value does not break the local
safety predicate between neighbors, then the clock value is actually incremented in a finite number of activations, even if no
neighbor modifies its clock value. Then, depending on the fairness properties of the scheduling of nodes, we provide various
results with respect to the possibility or impossibility of unison. When the scheduling is unfair (only global progress is
guaranteed), universal FTSS unison (i.e. unison that can operate on every graph of a particular class) is impossible. When
the scheduling is weakly fair (a processor that is continuously enabled is eventually activated), then it is impossible to
solve universal FTSS unison by a protocol that satisfies either minimality or priority. The case of strongly fair scheduling
(a processor that is enabled infinitely often is eventually activated) is similar whenever the maximum degree of the graph
is at least three. Our negative results still apply when the clock variable is unbounded, the local synchronization constraint
is relaxed, and the scheduling is central (i.e. a single processor is activated at any time).

On the positive side (Section 4), we present a universal FTSS protocol for connected networks of maximum degree at
most two (i.e. rings and chains), which satisfies bothminimality and priority properties. This protocolmakesminimal system
hypothesis with respect to the aforementioned impossibility results (maximum degree, fairness of the scheduling, etc.) and
is optimalwith respect to the containment radius that is achieved (no correct processor is ever prevented from incrementing
its clock). This protocol assumes that the scheduling is central. Table 1 provides a summary of the main results of the paper.
Remaining open questions are discussed in Section 5.

2. Model, problem and specifications

We model the network as an undirected connected graph G = (V , E) where V is a set of processors and E is a binary
relation that denotes the ability for two processors to communicate ((p, q) ∈ E if and only if p and q are neighbors). We
consider only anonymous systems (i.e. there exists no unique identifiers for each processor) but we assume that every
processor p can distinguish its neighbors and locally label them. Each processor p maintains Np, the set of its neighbors’
local labels. In the following, n denotes the number of processors, and ∆ the maximal degree. If p and q are two processors
of the network,wedenote by d(p, q) the length of the shortest path between p and q (i.e the distance from p to q). In this paper,
we assume that the network can be hit by crash faults, i.e. some processors can stop executing their actions permanently and
without any warning to their neighborhood. Since the system is assumed to be fully asynchronous, no processor can detect
if one of its neighbors is crashed or slow.

We consider the classical local shared memory model of computation (see [10]) where communications between
neighbors are modeled by direct reading of variables instead of exchange of messages. In this model, the program of



3420 S. Dubois et al. / Theoretical Computer Science 412 (2011) 3418–3439

every processor consists of a set of shared variables (henceforth, referred to as variables) and a finite set of rules. A
processor can write to its own variables only, and read its own variables and those of its neighbors. Each rule consists of:
<label>::<guard>−→<statement>. The label of a rule is simply a name to refer the action in the text. The guard of a rule
in the program of p is a Boolean predicate involving variables of p and its neighbors. The statement of a rule of p updates
one or more variables of p. A statement can be executed only if the corresponding guard is satisfied (i.e. it evaluates to true).
The processor rule is then enabled, and processor p is enabled in γ ∈ Γ if and only if at least one rule is enabled for p in γ .
The state of a processor is defined by the current value of its variables. The state of a system (a.k.a. the configuration) is the
product of the states of all processors. We also refer to the state of a processor and its neighborhood as a local configuration.
We note Γ the set of all configurations of the system.

A step γ → γ ′ is defined as an atomic execution of a non-empty subset of enabled rules in γ that transitions the
system from γ to γ ′. An execution of a protocol P is a maximal sequence of configurations ϵ = γ0γ1 . . . γiγi+1 . . . such
that, ∀i ≥ 0, γi → γi+1 is a step if γi+1 exists (else γi is a terminal configuration). Maximality means that the sequence is
either finite (and no action of P is enabled in the terminal configuration) or infinite. E is the set of all possible executions of
P . A processor p is neutralized in step γi → γi+1 if p is enabled in γi and is not enabled in γi+1, yet did not execute any rule
in step γi → γi+1.

A scheduler (also called daemon) is a predicate over the executions. Recall that, in any execution, each step γ −→ γ ′

results from a non-empty subset of enabled processors atomically executing a rule. This subset is chosen by the scheduler.
A scheduler is central if it chooses exactly one enabled processor in any particular step, it is distributed if it chooses at least
one enabled processor, and locally central if it chooses at least one enabled processor yet ensures that no two neighboring
processors are chosen concurrently. A scheduler is synchronous if it chooses every enabled processor in every step. A
scheduler is asynchronous if it is either central, distributed or locally central. A scheduler may also have some fairness
properties. A scheduler is strongly fair (the strongest fairness assumption for asynchronous schedulers) if every processor
that is enabled infinitely often is eventually chosen to execute a rule. A scheduler isweakly fair if every continuously enabled
processor is eventually chosen to execute a rule. Finally, the unfair scheduler has the weakest fairness assumption: it only
guarantees that at least one enabled processor is eventually chosen to execute a rule. As the strongly fair scheduler is the
strongest fairness assumption, any problem that cannot be solved under this assumption cannot be solved for all weaker
fairness assumptions. In contrast, any algorithm performing under the unfair scheduler also works for all stronger fairness
assumptions.

Fault-containment and stabilization. In a particular execution ϵ, we distinguish the set of processors V ∗ that never crash
in ϵ (i.e. the set of correct processors). By extension, for any part C ⊂ V , the set of correct processors in C is denoted by
C∗. As crashed processors cannot be distinguished from slow ones by their neighbors, we assume that variables of crashed
processors are always readable.

Let P be a problem to solve. A specification of P is a predicate that is satisfied by every algorithm solving the problem.
We recall definitions about stabilization and fault-tolerance.

Definition 1 (Self-Stabilization [8]). Let P be a problem, and SP a specification of P . An algorithm A is self-stabilizing for
SP if and only if for every configuration γ0 ∈ Γ , for every execution ϵ = γ0γ1 . . ., there exists a finite prefix γ0γ1 . . . γl of ϵ
such that all executions starting from γl satisfy SP .

Definition 2 ((f , r)-Containment [28]). Let P be a problem, and SP a specification of P . A configuration γ ∈ Γ is (f , r)-
contained for specification SP if and only if, given at most f crashed processors, every execution starting from γ , always
satisfies SP on the sub-graph induced by processors that are at distance r or more from any crashed processor.

Definition 3 (Fault-Tolerant Self-Stabilization (FTSS) [1,18]). Let P be a problem, and SP a specification of P . An algorithm
A is fault-tolerant and self-stabilizing with radius r for f crashed processors (and denoted by (f , r)-FTSS) for specification
SP if and only if, given at most f crashed processors, for every configuration γ0 ∈ Γ , for every execution ϵ = γ0γ1 . . ., there
exists a finite prefix γ0γ1 . . . γl of ϵ such that γl is (f , r)-contained for specification SP .

Unison. In the following, cp is the variable of processor p that represents its clock value. Values are taken in the set of natural
integers (that is, the number of states is unbounded, and a total order can be defined on clock values). Note that we do not
consider the case of bounded clocks in this paper.We nowdefine two notions related to local clock synchronization: the first
one restricts the safety property to correct processors, while the second one considers all processors. We call drift between
two processors p and q the absolute value of the difference between their clock values. In this paper, we deal with unison
that is a weak clock synchronization: we must ensure that clocks are eventually ‘‘close’’ from each other. More precisely,
two processors p and q are in unison if the drift between them is no more than 1. We say that a configuration of the system
is weakly synchronized if any correct processor is in unison with its correct neighbors. More formally,

Definition 4 (Weakly Synchronized Configuration). Let γ ∈ Γ . We say that γ is weakly synchronized, denoted by γ ∈ Γ ∗

1 ,
if and only if : ∀p ∈ V ∗

∀q ∈ N∗
p |cp − cq| ≤ 1.

We say that a configuration of the system is uniformly weakly synchronized if any processor is in unison with all its
neighbors (even with crashed ones). More formally,
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Fig. 1. Some examples of weakly synchronized configurations (the numbers represent clock values, the double circles represent crashed processors).
System G is in a weakly synchronized configuration but not in a uniformly weakly synchronized configuration whereas system G′ is in a uniformly weakly
synchronized configuration (and hence in a weakly synchronized configuration).

Definition 5 (Uniformly Weakly Synchronized Configuration). Let γ ∈ Γ . We say that γ is uniformly weakly synchronized,
denoted by γ ∈ Γ1, if and only if: ∀p ∈ V , ∀q ∈ Np, |cp − cq| ≤ 1.

Fig. 1 gives some examples of weakly synchronized configurations.
We now specify the two variants of our problem (depending whether safety property is extended to crashed processors

or not). Intuitively, asynchronous unison (respectively uniform asynchronous unison) ensures that the system is eventually
(and remains forever) in a weakly (respectively uniformly weakly) synchronized configuration (safety property) and that
clocks of correct processors are infinitely often incremented by 1 (liveness condition). More formally,
Definition 6 (Asynchronous Unison). Let γ0 ∈ Γ . An execution ϵ = γ0γ1 . . . is a legitimate execution for asynchronous
unison, denoted by AU, if and only if:

Safety: ∀i ∈ N, γi ∈ Γ ∗

1 .
Liveness: Each processor p ∈ V ∗ increments its clock (by 1) infinitely often in ϵ.

Definition 7 (Uniform Asynchronous Unison). Let γ0 ∈ Γ . An execution ϵ = γ0γ1 . . . is a legitimate execution for uniform
asynchronous unison, denoted by UAU, if and only if:

Safety: ∀i ∈ N, γi ∈ Γ1.
Liveness: Each processor p ∈ V ∗ increments its clock (by 1) infinitely often in ϵ.
Note that an algorithm that complies to specification of UAU also complies to that of AU (the converse is not true) since

Γ1 ⊆ Γ ∗

1 (if no processor is crashed, we have: Γ1 = Γ ∗

1 , but if at least one processor is crashed, we have: Γ1 ( Γ ∗

1 ).
Note also that these two specifications do not forbid decrementing clocks. Our specification generalizes the classical unison
specification [5] as any solution to the former is also a solution of ours. Unison protocols that are useful in a distributed
setting are those that do not know the underlying communication graph. We refer to universal protocols to denote the
fact that a protocol that can perform on every communication graph that matches a particular predicate (e.g. every graph
of degree less than two). To disprove universality of a protocol, it is thus sufficient to exhibit a particular communication
graph in its acceptance predicate such that at least one possible execution does not satisfy the specification.

We now present two key properties satisfied by all known self-stabilizing unison protocols. Those properties are used in
the impossibility results presented in Section 3. We called these properties respectivelyminimality and priority.

Minimality means that nodes maintain no extra variables but the digital clock value. This implies that the code of a
minimal unison can only refer to clocks or to predefined constants. We now state the formal definition of this property.
Definition 8 (Minimality). A unison isminimal if and only if every processor only maintains a clock variable.

Priority means that if, for a given processor, incrementing the clock value does not break the local safety predicate with
its neighbors, then its clock value is actually incremented in a finite number of activations, even if no neighbor modifies its
clock value. This property implies that, if a processor can increment its clock without breaking unison with its neighbors,
then it does so in finite time whether its neighbors are crashed or not. This property is similar to obstruction freedom in
the sense that the protocol only has very weak constraints about progress. We formally state this property in the following
definition.
Definition 9 (Priority). A unison is priority if and only if it satisfies the following property: if there exists a processor p such
that ∀q ∈ Np, (cq = cp or cq = cp + 1) in a configuration γi, then there exists a fragment of execution ϵ = γi . . . γi+k such
that:

- only p is chosen by the scheduler during ϵ.
- cp is not modified during γi+j −→ γi+j+1, for j ∈ {0, . . . , k − 2}.
- cp is incremented during γi+k−1 −→ γi+k.
For example, protocols proposed by [3–5,20] fall in the category of minimal and priority unison using these definitions.

Another example is the protocol of [29] that is priority but not minimal. To our knowledge, any existing unison protocol
satisfies either minimality or priority.



3422 S. Dubois et al. / Theoretical Computer Science 412 (2011) 3418–3439

3. Impossibility results

In this section we present a broad class of impossibility results related to the FTSS unison. First, we show a preliminary
result that states that a processor cannot modify its clock value if it has two neighbors q and q′ with cq = cp − 1 and
cq′ = cp + 1 (Lemma 1). This property is further used in the sequel of this section. Proposition 1 proves that there exists
no (f , r)-FTSS algorithm for any r value if f ≥ 2. Furthermore, in Proposition 2, we prove that there exists no (1, r)-FTSS
algorithm for AU under an unfair daemon for any r value. Then we study theminimal and priority asynchronous unison and
prove there exists no (1, r)-FTSS algorithm forminimal or priority AU under a weakly fair daemon for any r value (Lemma 2,
Propositions 3 and 4). Finally, we prove there exists no (1, r)-FTSS algorithm forminimal or priority AU under a strongly fair
daemon for any r value if the network has a maximal degree of at least 3 (Lemma 3, Propositions 5 and 6). In the following
we assume, for the sake of generality, the most constrained scheduler (the central one).

3.1. Preliminaries

First, we introduce a preliminary result that shows that in any execution of a universal (f , r)-ftss algorithm for AU (under
an asynchronous daemon) a processor cannot modify its clock value if it has two neighbors q and q′ such that: cq = cp − 1
and cq′ = cp + 1.

Lemma 1. Let A be a universal (f , r)-ftss algorithm for AU (under an asynchronous daemon). Let γ be a configuration where a
processor p (such that cp ≥ 1) has two neighbors q and q′ such that: cq = cp − 1 and cq′ = cp + 1. If p executes an action of A
during the step γ −→ γ ′, then this action does not modify the value of cp. If A is also minimal, then the processor p is not enabled
for A in γ .

Proof. Let A be a universal (f , r)-ftss algorithm for AU (under an asynchronous daemon). Let G be a network and γ be a
configuration of G such that no processor is crashed, γ ∈ Γ1 and there exists a processor p (such that cp ≥ 1) that has two
neighbors q and q′ such that: cq = cp − 1 and cq′ = cp + 1.

Assume p executes an action of A during the step γ −→ γ ′ (and only p) such that this action modifies the value of cp.
Note that cq and cq′ are identical in γ and γ ′. Let α be the value of cp in γ and α′ be the value of cp in γ ′. Values of α and α′

satisfy one of the two following relations:

Case 1: α < α′.
This implies that |α′

− cq| = |α′
− α| + |α − cq| > 1 (since |α′

− α| ≥ 1 by hypothesis and |α − cq| = 1).
Case 2: α′ < α.

This implies that |α′
− cq′ | = |α′

− α| + |α − cq′ | > 1 (since |α′
− α| ≥ 1 by hypothesis and |α − cq′ | = 1).

In the two above cases, γ ′ /∈ Γ1, hence the safety property of A is not satisfied.
If A is also minimal, then the previous result implies that p is not enabled for A in γ . �

3.2. Impossibility result due to the number of crashed processors

Proposition 1. For any natural number r, there exists no universal (f , r)-ftss algorithm for AU under an asynchronous daemon
if f ≥ 2.

Proof. Let r be a natural number. Let A be a universal (2, r)-ftss algorithm for AU (under an asynchronous daemon).
Consider a network represented by the following graph: G = (V , E) with V = {p0, . . . , p2(r+1)} and E = {{pi, pi+1}

|i ∈ {0, . . . , 2r +1}}. Let γ be the following configuration of the network: p0 and p2(r+1) are crashed and ∀i ∈ {0, . . . , 2(r +

1)}, cpi = i (all the other variables may have any value).
By Lemma 1, no processor between p2 and p2r+1 can change its clock value in every execution starting from γ . This

contradicts the definition of A. Indeed, pr+1 must eventually satisfy the specification of AU since the closest crashed
processor is at r hops away. In particular, any execution starting from γ must contain a suffix where the clock of pr+1 is
infinitely often incremented. This contradiction shows us the result. �

3.3. Impossibility result due to unfair daemon

Proposition 2. For any natural number r, there exists no universal (1, r)-ftss algorithm for AU under an unfair daemon.

Proof. Let r be a natural number. Assume that there exists a universal (1, r)-ftss algorithmA forAUunder an unfair daemon.
Consider a network G, of diameter greater than 2r + 2 (note that in this case, at least one processor must eventually satisfy
the specification of the AU problem). Let p be a processor of G. Since the daemon is unfair, it can choose to never activate p
in an execution ϵ unless this processor becomes the only enabled processor of G in a configuration of ϵ by definition.

For the sake of contradiction, assume that there exists a configuration γ such that no processor is crashed and where p
is the only enabled processor of the network. Denote by γ ′ the same configuration when p is crashed. Note that the set of
enabled processors is identical in γ and γ ′ by construction. As we assumed that only p is enabled in γ , this implies that no
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Fig. 2. The three configurations used in the proof of Lemma 2 (the numbers represent clock values and the double circles represent crashed processors).

correct processor is enabled in γ ′. Hence, the system is deadlocked in γ ′ and the specification of AU is not satisfied since
no clock of correct processor can be updated. This contradiction implies that, for any configuration where no processor is
crashed, at least two processors are enabled.

Since there exists no configurationwhere p is the unique enabled processor (in every execution starting from an arbitrary
configuration), the unfair daemon can starve p infinitely (if no crash occurs). This contradicts the liveness property ofA since
p cannot update its clock in this execution. �

3.4. Impossibility results due to weakly fair daemon

In this section we prove there exists no universal (1, r)-ftss algorithm for minimal or priority AU under a weakly fair
daemon for any r value.

The first impossibility result uses the following property: if there exists a universal algorithm A that is (1, r)-ftss for
minimal AU under a weakly fair daemon for a natural number r , then an arbitrary processor p is not enabled for A if it has
only one neighbor p′ and if cp = cp′ (proved in Lemma 2 formally stated below). Then, we show that A starves the network
reduced to a two-correct-processor chain where all clock values are identical (see Proposition 3).

Lemma 2. If there exists a universal algorithm A that is (1, r)-ftss for minimal AU under a weakly fair daemon for a natural
number r, then an arbitrary processor p is not enabled for A if it has only one neighbor p′ and if cp = cp′ .

Proof. Let r be a natural number. Let A be a universal (1, r)-ftss algorithm for the minimal AU under a weakly fair daemon.
Let G be the network reduced to a chain of length r + 2. Assume processors in G labeled as follows: p0, p1, . . . , pr+2.

Consider the following configurations of G (see Fig. 2):

• γ1 defined by ∀i ∈ {0, . . . , r + 1}, cpi = i and cpr+2 = r + 1 and p0 crashed.
• γ2 defined by ∀i ∈ {0, . . . , r + 1}, cpi = 2r + 2 − i and cpr+2 = r + 1 and p0 crashed.
• γ3 defined by ∀i ∈ {0, . . . , r + 2}, cpi = i and p0 crashed.

By Lemma 1, processors from p1 to pr are not enabled in such configurations (and remain not enabled until one of the
processors within p0 . . . pr+1 executes a rule).

Note that for the processor pr+2, the configurations γ1 and γ2 are indistinguishable (otherwise the unison would not be
minimal). We are going to prove the result by contradiction. Assume pr+2 is enabled in γ1 and γ2. The safety property of
A implies that the enabled rule for pr+2 modifies its clock either to r + 2 or to r . In the following we discuss these cases
separately:

Case 1: The enabled rule for pr+2 modifies its clock into r + 2.
Assume without loss of generality that pr+2 is the only activated processor. Hence its clock takes the value r + 2.
The following cases are possible in the obtained configuration:
Case 1.1: pr+2 is not enabled.

If an execution started from γ1, then no processor is enabled, which contradicts the liveness property of AU.
Case 1.2: pr+2 is enabled and the enabled rule modifies its clock into r + 1.

Let ϵ be an execution starting from γ1 where only pr+2 is activated. Consequently, the clock of the processor
pr+2 takes infinitely the following sequence of values: r + 1, r + 2. In this execution, pr+2 executes infinitely
often while processors from p0 to pr are never enabled. Note that pr+1 is not enabled when cpr+2 = r +2, hence
this processor is never infinitely enabled. In conclusion, this execution is allowed by the weakly fair scheduler.
Note that this execution starves pr+1, which contradicts the liveness property of A.

Case 1.3: pr+2 is enabled and the enabled rule modifies its clock into r .
The execution of this rule leads to Case 2.
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Fig. 3. Initial configuration used in the proof of Proposition 4 (the numbers represent clock values and the double circles represent crashed processors).

Case 2: The enabled rule for pr+2 modifies its clock into r .
Assume without loss of generality that pr+2 is the only activated processor and after its execution the new
configuration satisfies one of the following cases:
Case 2.1: pr+2 is not enabled.

If an execution started from γ2, then no processor is enabled, which contradicts the liveness property (the
network is starved).

Case 2.2: pr+2 is enabled and the enabled rule modifies its clock into r + 1.
Let ϵ be an execution starting from γ2 that contains only actions of pr+2 (its clock takes infinitely the following
value sequence : r+1, r). In this execution, pr+2 executes a rule infinitely often (by construction) and processors
from p0 to pr are never enabled. Note that pr+1 is not enabledwhen cpr+2 = r , so this processor is never infinitely
enabled. In conclusion, this execution satisfies the weakly fair scheduling.

Note that this execution starves pr+1, which contradicts the liveness property of A.
Case 2.3: pr+2 is enabled and the enabled rule modifies its clock into r + 2.

The execution of these rule leads to Case 1.

Overall, the only two possible cases (Cases 1.3 and 2.3) are the following:

1. pr+2 is enabled for modifying its clock value into r when cpr+2 = r + 2 and cpr+1 = r + 1.
2. pr+2 is enabled for modifying its clock value into r + 2 when cpr+2 = r and cpr+1 = r + 1.

Let ϵ be an execution starting from γ3 that contains only actions of pr+2 (its clock takes infinitely the following sequence
of values: r + 2, r). In this execution, pr+2 executes a rule infinitely often (by construction) and processors in p0 . . . pr are
never enabled. Note that pr+1 is not enabled when cpr+2 = r + 2, so this processor is never infinitely enabled. In conclusion,
this execution satisfies the weakly fair scheduling.

This execution starves pr+1, which contradicts the liveness property of A and proves the result. �

Proposition 3. For any natural number r, there exists no universal (1, r)-ftss algorithm for minimal AU under a weakly fair
daemon.

Proof. Let r be a natural integer. Assume there exists a universal (1, r)-ftss algorithm A for the minimal AU under a weakly
fair daemon. By Lemma 2, an arbitrary processor p is not enabled for A if it has only one neighbor p′ and if cp = cp′ .

LetG be a network reduced to a chain of 2 processors p and p′. Let γ be a configuration ofGwhere cp = cp′ with no crashed
processor. Notice that no processor is enabled in γ that contradicts the liveness property of A and proves the result. �

The secondmain result of this section is that there exists no universal (1, r)-ftss algorithm for priorityAU under aweakly
fair daemon for any natural number r (see Proposition 4).

We prove this result by contradiction. We construct an execution starting from the configuration γ 0
0 shown in Fig. 3

allowed by a weakly fair scheduler. We prove that this execution starves pr+1 that contradicts the liveness property of the
algorithm.

Proposition 4. For any natural number r, there exists no universal (1, r)-ftss algorithm for priority AU under a weakly fair
daemon.

Proof. Let r be a natural number. Assume that there exists a universal (1, r)-ftss algorithmA for priority AU under aweakly
fair daemon. Let G be the network reduced to a chain of length r + 2. Assume that processors in G are labeled as follows:
p0, p1, . . . , pr+2. Let γ 0

0 be a configuration such that p0 is crashed and ∀i ∈ {0, . . . , r + 2}, cpi = i (see Fig. 3). Note that all
the other variables may have any value.

We construct a fragment of execution ϵ′

0 = γ 0
0 γ 0

1 γ 0
2 . . . γ 0

r+1 starting from γ 0
0 such that ∀i ∈ {0, 1, . . . , r}, the step

γ 0
i → γ 0

i+1 contains only an action of pi+1 if pi+1 is enabled. By Lemma 1, this fragment does not modify the clock value of
any processor in {p0 . . . pr+1}.

We also construct a fragment of execution, ϵ′′

0 , starting from γ 0
r+1 using the following cases:

Case 1: pr+2 is not enabled in γ 0
r+1.

Let ϵ′′

0 be ϵ (empty word).
Case 2: pr+2 is enabled in γ 0

r+1.
We distinguish now the following sub-cases:
Case 2.1: There exists a rule of pr+2 enabled in γ 0

r+1 that does not modify the clock value of pr+2.
Let ϵ′′

0 be γ 0
r+1γ

0
r+2 where step γ 0

r+1 → γ 0
r+2 contains only the execution of this rule by pr+2.
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Case 2.2: Any enabled rule of pr+2 in γ 0
r+1 modifies its clock value.

Note that the safety property of A implies that the clock of pr+2 takes the value r or r + 1. Let us study the
following cases.
Case 2.2.1: There exists a rule of pr+2 enabled in γ 0

r+1 that modifies its clock value into r + 1.
Since A is a priority unison, there exists by definition a fragment of execution ϵ′′

0 = γ 0
r+1γ

0
r+2 . . . γ 0

r+k that
contains only actions of pr+2 such that (i) pr+2 executes one of the rules that modifies its clock value into
r + 1 in the step γ 0

r+1 → γ 0
r+2 (ii) in the steps from γ 0

r+2 to γ 0
r+k−1 the clock value of pr+2 is not modified

while (iii) in the step γ 0
r+k−1 → γ 0

r+k the clock value of pr+2 is incremented.
Case 2.2.2: Any enabled rule of pr+2 in γ 0

r+1 modifies its clock value into r .
Since A is a priority unison, there exists by definition a fragment of execution ϵa = γ 0

r+1γ
0
r+2 . . . γ 0

r+k that
contains only actions of pr+2 such that (i) pr+2 executes one of the rules that modifies its clock value into
r in the step γ 0

r+1 → γ 0
r+2 (ii) in the steps from γ 0

r+2 to γ 0
r+k−1 the clock value of pr+2 is not modified and

(iii) in the step γ 0
r+k−1 → γ 0

r+k the clock of pr+2 takes the value r + 1.
Since A is a priority unison, there exists by definition a fragment of execution ϵb = γ 0

r+kγ
0
r+k+1 . . . γ 0

r+j

that contains only actions of pr+2 such that (i) in the steps from γ 0
r+k to γ 0

r+j−1 the clock value of pr+2 is not
modified and (ii) in the step γ 0

r+j−1 → γ 0
r+j the clock value of pr+2 is incremented.

Let ϵ′′

0 be ϵaϵb.

In all cases, we construct a fragment of execution ϵ0 = ϵ′

0ϵ
′′

0 such that its last configuration (let us denote it by γ 1
0 )

satisfies: the value of any clock is identical to the one in γ 0
0 (the others variables may have changed). Then, we can reiterate

the reasoning and obtain a fragment of execution ϵ1, ϵ2 . . . (respectively starting from γ 1
0 , γ 2

0 , . . .) that satisfies the same
property.

We finally obtain an execution ϵ = ϵ0ϵ1 . . . that satisfies:

• No processor is infinitely enabled without executing a rule (since all enabled processors in γ i
0 execute a rule or are

neutralized during ϵi). Consequently ϵ is an execution that satisfies the weakly fair scheduling.
• The clock of processor pr+1 never changes (whereas d(p0, pr+1) = r + 1).

This execution contradicts the liveness property of A that is a (1, r)-ftss algorithm for priority AU under a weakly fair
daemon by hypothesis. �

3.5. Impossibility results due to strongly fair daemon

In this section we prove that there exists no universal (1, r)-ftss algorithm for minimal or priority AU under a strongly
fair daemon if the degree of the network is at least 3.

In order to prove the first impossibility result, we use the following property: if a processor p has only one neighbor q such
that cq = r + 1 and if |cp − cq| ≤ 1, then p is enabled in any universal (1, r)-ftss algorithm for minimal AU (see Lemma 3).
Then we construct a strongly fair infinite execution that starves a processor such that the closest crashed processor is at
more than r hops away. This execution contradicts the liveness property of the AU problem (see Proposition 5).

Lemma 3. LetA be a universal (1, r)-ftss algorithm for minimal AU. If a processor p has only one neighbor q such that cq = r+1
and if |cp − cq| ≤ 1, then p is enabled in A.

Proof. Assume that there exists a universal algorithm A that is (1, r)-ftss for minimal AU. Let G be a network that executes
A and that contains at least one processor p that has only one neighbor q. Assume that cq = r + 1 and |cp − cq| ≤ 1. Then,
we have:

1. If cp = r , then p is enabled for at least one rule of A. Otherwise, all processors are starved in the network reduced to the
chain p0, . . . , pr , q, p in the configuration γ1 defined by ∀i ∈ {0, . . . , r}, cpi = 2r + 2 − i, cq = r + 1, cp = r where p0 is
crashed (see Fig. 4) since no correct processor is enabled (by Lemma 1).

2. If cp = r + 1, then p is enabled for at least one rule of A. Otherwise, all processors are starved in the network reduced to
the chain q, p in the configuration γ2 defined by cq = cp = r + 1 and where no processor is crashed (see Fig. 4). Indeed,
the symmetry of the configuration implies that q is enabled if and only if p is enabled.

3. If cp = r + 2, then p is enabled for at least one rule of A. Otherwise, all processors are starved in the network reduced to
the chain p0, . . . , pr , q, p in the configuration γ3 defined by ∀i ∈ {0, . . . , r}, cpi i, cq = r + 1, cp = r + 2 and p0 crashed
(see Fig. 4) since no correct processor is enabled (by Lemma 1). �

Proposition 5. For any natural number r, there exists no universal (1, r)-ftss algorithm for minimal AU under a strongly fair
daemon if the system has a maximal degree of at least 3.
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Fig. 5. The three configurations used in the proof of Proposition 5 (the numbers represent clock values and the double circles represent crashed processors).

Proof. Let r be a natural number. Assume that there exists a universal (1, r)-ftss algorithm A for the minimal AU under a
strongly fair daemon in a network with a degree of at least 3. Let G be the network defined by: V = {p0, . . . , pr+1, q, q′

} and
E = {{pi, pi+1}, i ∈ {0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q′

}}.
As A is deterministic and the system anonymous, q and q′ must behave identically if they have the same clock value (in

this case, their local configurations are identical). If cpr+1 = r +1 and |cpr+1 − cq| ≤ 1, there exists three local configurations
for q: (1) cq = r , (2) cq = r + 1 or (3) cq = r + 2 (the same property holds for q′).

By Lemma 3, processor q (respectively q′) is enabled in any configuration where cpr+1 = r + 1 and |cpr+1 − cq| ≤ 1
(respectively |cpr+1 − cq′ | ≤ 1). Moreover, in this case, the enabled rule for q (respectively q′) modifies its clock into a value
in {r, r + 1, r + 2} − {cq} (respectively {r, r + 1, r + 2} − {cq′}) by the safety property of A.

For each of the three possible local configurations for q or q′ (studied in the proof of Lemma 3),A can only allow 2moves.
Hence, there exists 8 possible moves for A. Let us denote each of these possibilities by a triplet (a, b, c) where a, b and c are
the clock value of q after the allowed move when cq = r , cq = r + 1, and cq = r + 2 respectively. Note that, due to the
determinism of A, moves allowed for q′ and q are identical. There exists the following cases:

Case 1: (r + 1, r, r)
Let γ1 be the configuration of G defined by: ∀i ∈ {0, . . . , r + 1}, cpi = 2r + 2 − i, cq = r + 1 and cq′ = r and p0
crashed (see Fig. 5). Note that only q and q′ are enabled (by Lemma 1). Assume q executes. Hence, its clock takes
the value r . By Lemma 1, only q and q′ are enabled. Assume now that q′ executes. Its clock takes the value r + 1.
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Fig. 6. Example of the execution constructed in Case 1 of Proposition 5 when r = 1 (the numbers represent clock values and the double circles represent
crashed processors).

This configuration is identical to γ1 (since processors are anonymous), we can repeat the above reasoning in order
to obtain an infinite execution where processors p1, . . . , pr+1 are never enabled (see Fig. 6 for an illustration when
r = 1).

Case 2: (r + 1, r + 2, r)
Let γ2 be the configuration ofGdefined by:∀i ∈ {0, . . . , r+1}, cpi i, cq = r and cq′ = r+2 and p0 crashed (see Fig. 5).
Note that only q and q′ are enabled (by Lemma 1). Assume q executes. Its clock takes the value r + 1. By Lemma 1,
only q and q′ are enabled. Assume q executes its rule again. Its clock takes the value r + 2. By Lemma 1, only q and
q′ are enabled. Assume now that q′ executes its rule. Its clock takes the value r . This configuration is identical to
γ2 (since processors are anonymous). We can repeat the reasoning in order to obtain an infinite execution where
processors in p1, . . . , pr+1 are never enabled.

Case 3: (r + 1, r, r + 1)
Similar to the reasoning of Case 1.

Case 4: (r + 1, r + 2, r + 1)
Let γ3 be the configuration of G defined by: ∀i ∈ {0, . . . , r + 1}, cpi = i, cq = r + 2 and cq′ = r + 1 and where p0 is
crashed (see Fig. 5). Note that only q and q′ are enabled (by Lemma 1). Assume q′ executes its rule. Its clock takes
the value r + 2. By Lemma 1, only q and q′ are enabled. Assume now that q executes its rule. Its clock takes the
value r + 1. This configuration is identical to γ3 (since processors are anonymous). We can repeat the reasoning in
order to obtain an infinite execution where processors in p1, . . . , pr+1 are never enabled.

Case 5: (r + 2, r, r)
Let γ2 be the configuration of G as defined in the Case 2 above. Note that only q and q′ are enabled (by Lemma 1).
Assume q executes its rule. Its clock takes the value r+2. By Lemma1, only q and q′ are enabled. Assumenow that q′

executes its rule. Its clock takes the value r . This configuration is identical to γ2 (since processors are anonymous).
We can repeat the reasoning in order to obtain an infinite execution where processors p1, . . . , pr+1 are never
enabled.

Case 6: (r + 2, r + 2, r)
The reasoning is similar to the Case 5.

Case 7: (r + 2, r, r + 1)
Let γ2 be the configuration of G as defined in the Case 2 above. Note that only q and q′ are enabled (by Lemma 1).
Assume q executes its rule. Its clock takes the value r+2. By Lemma1, only q and q′ are enabled. Assume q′ executes
its rule. Its clock takes the value r + 1. By Lemma 1, only q and q′ are enabled. Assume q′ executes again its rule. Its
clock takes the value r . This configuration is identical to γ2 (since processors are anonymous). We can repeat the
above scenario in order to obtain an infinite execution where processors p1, . . . , pr+1 are never enabled.

Case 8: (r + 2, r + 2, r + 1)
The proof is similar to the Case 4.

Overall,we can construct an infinite executionwhere processor p0 is crashed, processors from p1 to pr+1 are never enabled
and processors q and q′ execute a rule infinitely often. This execution satisfies the strongly fair scheduling. Notice that in this
execution pr+1 is never enabled, hence it is starved. This contradicts the liveness property of A and proves the result. �
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Fig. 7. The initial configuration for the proof of Proposition 6 (the numbers represent clock values and the double circles represent crashed processors).

The secondmain result of this section is that there exists no universal (1, r)-ftss algorithm for priorityAUunder a strongly
fair daemon for any natural number r if the degree of the graph modeling the network is at least 3. (see Proposition 6).

We prove this result by contradiction. We construct an execution starting from the configuration γ 0
0 of Fig. 7 satisfying

the strongly fair scheduling that starves pr+1, which contradicts the liveness of the algorithm.
Proposition 6. For any natural number r, there exists no universal (1, r)-ftss algorithm for priority AU under a strongly fair
daemon if the system has a maximal degree of at least 3.
Proof. Let r be a natural number. Assume that there exists a universal (1, r)-ftss algorithm A for priority AU under a
strongly fair daemon even if the graph modeling the network has a degree of at least 3. Let G be the network defined by:
V = {p0, . . . , pr+1, q, q′

} and E = {{pi, pi+1}, i ∈ {0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q′
}}. Note that G has a degree equal to 3.

Let γ 0
0 be the following configuration: ∀i ∈ {0, . . . , r + 1}, cpi = i, cq = cq′ = r + 2 and p0 crashed (see Fig. 7). Note

that, for any execution ϵ starting from γ 0
0 , one of the processors q and q′ must be enabled to modify its clock in a finite

time (otherwise the network would be starved following Lemma 1). This implies the existence of a fragment of execution
ϵ0
a = γ 0

0 γ 0
1 . . . γ 0

k with the following properties:

1. k ≥ 1 if there exists i ∈ {0, . . . , r + 1} such that pi is enabled in γ 0
0 , k = 0 otherwise;

2. ϵ0
a contains no modification of clock values;

3. γ 0
k is the first configuration where q or q′ is enabled to modify its clock value.

Assume now that the scheduling of ϵ0
a satisfies the following property: at each step, the daemon chooses the processor

that was last activated among enabled processors. Note that this scenario is compatible with a strongly fair scheduling.
Let us study the following cases:

Case 1: q is enabled in γ 0
k for a modification of its clock value. The safety property of A implies that the value of cq should

be modified either to r or to r + 1.
Case 1.1: The value of cq is modified to r .

Since A is a priority unison, there exists by definition a fragment of execution ϵ0
b1 = γ 0

k γ 0
k+1 . . . γ 0

k+r that
contains only actions of q such that (i) in the steps from γ 0

k to γ 0
k+r−1 the clock value of q is not modified and

(ii) in the step γ 0
k+r−1 → γ 0

k+r the clock value of q is incremented.
Since A is a priority unison, there exists by definition a fragment of execution ϵ0

b2 = γ 0
k+rγ

0
k+r+1 . . . γ 0

k+j that
contains only executions of a rule by q such that (i) in the steps from γ 0

k+r to γ 0
k+j−1 the clock value of q is not

modified and (ii) in the step γ 0
k+j−1 → γ 0

k+j the clock value of q is incremented.
Let ϵ0

b be ϵ0
b1ϵ

0
b2.

Case 1.2: The value of cq is modified to r + 1.
SinceA is a priority unison, there exists by definition a fragment of execution ϵ0

b = γ 0
k γ 0

k+1 . . . γ 0
k+r that contains

only actions of q such that (i) in the steps from γ 0
k to γ 0

k+r−1 the clock value of q is not modified and (ii) in the
step γ 0

k+r−1 → γ 0
k+r the clock value of q increments.

If q′ is enabled in the last configuration of ϵ0
b ,

1 we can construct ϵ0
c similarly to ϵ0

b using processor q′. Otherwise,
let ϵ0

c be ϵ (the empty word).
Case 2: q′ is enabled in γ 0

k for a modification of its clock value.
We can construct ϵ0

b and ϵ0
c similar to the Case 1 by reversing the roles of q and q′.

Let us define ϵ0
= ϵ0

a ϵ
0
bϵ

0
c . Notice that the clock values are identical in the first and the last configuration of ϵ0. This implies

that we can infinitely repeat the previous reasoning in order to obtain an infinite execution ϵ = ϵ0ϵ1 . . . that satisfies:

• No correct processor is infinitely often enabled without executing a rule (since q and q′ execute a rule infinitely often and
others processors are chosen in function of their last execution of a rule, which implies that an infinitely often enabled
processor executes a rule in a finite time). This execution satisfies a strongly fair scheduling.

• The clock value of pr+1 is never modified (whereas d(p0, pr+1) = r + 1).

This execution contradicts the liveness property of A, which implies the result. �

1 In this case, q′ was already enabled in the last configuration of ϵ0
a .
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Algorithm 1 (UF T SS): universal (1, 0)-FTSS AU for chains and rings.
Data:
- Np: set of neighbors of p.
Variable:
- cp: natural integer representing the clock of the processor.
Macros:

- For A ⊆ N and a ∈ N, next(A, a) =


a + 1 if a + 1 ∈ A
min{A} otherwise.

- For q ∈ Np, poss(q) =


{cq − 1, cq, cq + 1} if cq ≠ 0
{cq, cq + 1} otherwise.

- Inter(Np) =

q∈Np

poss(q).

Rules:
/* Normal rule */
(N) :: |Inter(Np)| ≥ 2 −→ cp := next


Inter(Np), cp


/* Correction rules */

(C1) ::

|Inter(Np)| = 0


∧


cp ≠

 ∑
q∈Np

cq

|Np|


∧


cp ≠

 ∑
q∈Np

cq

|Np|


−→ cp :=

 ∑
q∈Np

cq

|Np|


(C2) :: (Inter(Np) = {h}) ∧ (cp ≠ h) −→ cp := h

4. A universal protocol for chains and rings

In the following we consider the only remaining possibility results (see Table 1) that are related to asynchronous unison
on chains and rings (i.e. networks with a degree inferior to 3). In this section, we propose an (1, 0)-FTSS algorithm for AU
under a locally central strongly fair daemon. The proposed algorithm is both minimal and priority.

The main difference between our protocol and the many self-stabilizing unison algorithms existing in the literature
[9,11,12,29] is that our correction rules use averaging rather than maximizing or minimizing, in order to not favor the clock
value of a particular neighbor. Indeed, using a maximum or a minimum strategy could make the chosen neighbor prevent
stabilization if it is crashed. The averaging ideawas previously studied in [24] in a non-stabilizing fault-free setting. [23] uses
also average to perform clock synchronization in a non-stabilizing Byzantine-tolerant system. The main difference with our
approach is that authors of [23] reject values that are too far from others (in order to avoid values proposed by Byzantine
neighbors). In our case, we cannot reject any value due to the arbitrary initial clock values and the small number of available
values (as our protocol operates on chains or rings, each processor has at most two neighbors).

4.1. Our algorithm

The main idea of our algorithm follows. Each processor checks if it is ‘‘locally synchronized’’, i.e. if the drift between its
clock value and the clock values of its neighbors does not exceed 1. If a processor p is ‘‘locally synchronized’’, it modifies its
clock value in a finite time in order to preserve this property. Otherwise, p corrects its clock value in finite time.

More precisely, each processor p has only one variable: its clock denoted by cp. At each step, every processor p computes a
set of possible clock values, i.e. the set of clock values that have a drift of at most 1 with respect to all neighbors of p (note that
computing this set relies only on the clock values of p’s neighbors, but not on the one of p). This set is denoted by Inter(Np).

Then, the following cases may appear:
- |Inter(Np)| = 0, then p has two neighbors and the drift between their clock values is strictly greater than 2. In this case,

p is enabled to take the average value between these two clock values if its clock does not have yet this value.
- |Inter(Np)| = 1, then p has two neighbors and the drift between their clock values is exactly 2. In this case, p is enabled

to take the average value between these two clock values if its clock does not have yet this value.
- |Inter(Np)| ≥ 2, then p has one neighbor or the drift between the clock values of its two neighbors is strictly less than

2. In this case, p is enabled to modify its clock value as follows: if cp + 1 ∈ Inter(Np), then cp is modified to cp + 1, otherwise
cp is modified tomin{Inter(Np)}.

The reader can find some examples of execution of our algorithm in Figs. 8–11.
The detailed description of our solution is proposed in Algorithm 1.

4.2. Correction proof road map

In this section, we present the key ideas in order to prove the correctness of our algorithm.
First, we introduce some useful notations:

Notation 1. Let p be a processor. If q denotes one of its neighbors, we denote the other neighbor by q̄ (if this neighbor exists).
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Fig. 8. An example of execution of UF T SS on a chain with no crash (the numbers represent clock values and squared processors in γi executed the
indicated rule during the step γi −→ γi+1).
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Fig. 9. An example of execution of UF T SS on a chain with a crash (the numbers represent clock values, the double circles represent crashed processors
and squared processors in γi executed the indicated rule during the step γi −→ γi+1).
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Fig. 10. An example of execution of UF T SS on a ring with no crash (the numbers represent clock values and squared processors in γi executed the
indicated rule during the step γi −→ γi+1).

Notation 2. We denote the value of cp for a processor p in a configuration γi by

cp
γi .

We denote the value of Inter(Np) for a processor p in a configuration γi by

Inter(Np)

γi .
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Fig. 11. An example of execution of UF T SS on a ring with a crash (the numbers represent clock values, the double circles represent crashed processors
and squared processors in γi executed the indicated rule during the step γi −→ γi+1).

In order to prove that UF T SS is a (1, 0)-ftss algorithm for AU under a locally central strongly fair daemon on a chain
and on a ring (see Proposition 11), we prove in what follows the following properties:

1. UF T SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon on a chain (Proposition 7).
2. UF T SS is a self-stabilizing algorithm forAUunder a locally central strongly fair daemonon a chain even if one processor

is crashed in the initial configuration (Proposition 8).
3. UF T SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon on a ring (Proposition 9).
4. UF T SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon on a ring even if one processor

is crashed in the initial configuration (Proposition 10).

The proof of each of these 4 propositions is deduced from 3 lemmas as follows:

1. Firstly, we prove that UF T SS satisfies the closure of the safety of UAU under the considered hypothesis (i.e. if there
exists a configurationγ such thatγ ∈ Γ1, then every configurationγ ′ reachable fromγ satisfies:γ ′

∈ Γ1, see respectively
Lemmas 4, 10, 13 and 19).

The idea of the proof is as follows: we first prove that only the normal rule is enabled in such a configuration and then,
we show that this rule ensures the closure of the safety property.

2. Secondly, we prove that UF T SS satisfies liveness of UAU under the considered hypothesis in every execution starting
from a legitimate configuration (i.e. every (correct) processor increments infinitely often its clock, see respectively
Lemmas 6, 11, 15 and 20).

This proof is done in the following way: we first show that every (correct) processor executes infinitely often the
normal rule in every execution starting from a configuration γ ∈ Γ1 and then, we show that if a processor executes
infinitely often the normal rule, it increments its clock in a finite time.

3. Finally, we prove thatUF T SS converges to a legitimate configuration ofUAU under the considered hypothesis in every
execution (i.e. there exists a configuration γ ∈ Γ1 in every execution, see respectively Lemmas 9, 12, 18 and 21).

In order to complete this proof we study a potential function.

4.3. Proof on a chain

In this section, we assume that our algorithm is executed on a chain under a strongly fair locally central daemon. In
the following we prove that UF T SS is a FTSS UAU (that implies that it is a FTSS AU) under these assumptions. The proof
contains two major steps:

• First, we prove that our algorithm is self-stabilizing.
• Second, we prove that our algorithm is self-stabilizing even if the initial configuration contains a crashed processor.

4.3.1. Proof of self-stabilization
In this section, ϵ = γ0, γ1 . . . denotes an execution of UF T SS where there is no crash.
Firstly, we are going to prove the closure of our algorithm.

Lemma 4. If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.
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Proof. Assume that there exists i ≥ 0 such that γi ∈ Γ1. This implies that ∀p ∈ V ,

Inter(Np)

γi
≠ ∅ and then the rule (C1)

is not enabled in γi. Assume rule (C2) is enabled in γi. This implies that

Inter(Np)

γi
= {h} and that


cp
γi

≠ h. Then, we
have γi /∈ Γ1 (since if


cp
γi

≠ h, then the following holds: ∃q ∈ Np, |

cp
γi

−

cq
γi

| ≥ 2). This contradiction allows us to
conclude that the enabled processors in γi are only enabled for rule (N).

Let p be a processor that executes a rule during the step γi → γi+1. Since the daemon is locally central, neighbors
of p do not execute a rule during this step (their clock values remain identical). Assume the following holds: ∃q ∈

Np,
cpγi+1

−

cq
γi+1

 ≥ 2. By construction of rule (N),

cp
γi+1

∈

Inter(Np)

γi . By construction,

Inter(Np)

γi
⊆


cq
γi

−1,

cq
γi , cqγi + 1


. It follows that ∀q ∈ Np,

cpγi+1
−

cq
γi+1

 < 2 for each processor p that executes a rule (since
∀q ∈ Np,


cq
γi

=

cq
γi+1 ). Overall, γi+1 ∈ Γ1. �

Secondly, we prove the liveness of our algorithm.

Lemma 5. ∀γ0 ∈ Γ1, ∀p ∈ V , p executes the rule (N) in a finite time in any execution starting from γ0.

Proof. Let γ ∈ Γ1. Following Lemma 4, the only enabled rule is (N). We prove this property by induction. To this end, we
define the following property (where p denotes a processor):
(Pd): If d is the distance between p and the closest end of the chain, then p executes the rule (N) in a finite time in any
execution starting from γ0.

Initialization (d = 0): For all γ ′, configurations contained in an execution starting from γ0, p is enabled for rule (N) since
Inter(Np)

γ ′

⊇


cq
γ ′

,

cq
γ ′

+ 1

where q denotes the only neighbor of p. Since the daemon is strongly fair, p

executes a rule in a finite time.
Induction (d > 0): Assume (Pd−1) is true. Denote by q the neighbor of p that is on the half-chain starting with p of length

d. Assume for the sake of contradiction that p is never enabled for rule (N) in an execution ϵ starting from
γ0 ∈ Γ1. This implies that, for each configuration γ ′ that is contained in ϵ, we have

Inter(Np)
γ ′
 = 1 (since

if
Inter(Np)

γ ′
 = 0, then γ ′ /∈ Γ1). Let us study the following cases (remind that, if q denotes a neighbor of p, q̄

denotes the second neighbor of p as stated in Notation 1):
Case 1: q̄ never executes a rule in ϵ (this implies that cq̄ is a constant in ϵ).

It follows that: ∀γ ′
∈ ϵ,


cq
γ ′

=

cq̄
γ ′

+ 2 or

cq
γ ′

=

cq̄
γ ′

− 2.
As q executes infinitely often rule (N), its clockmoves at each activation from a value to the other. Hence, we

have

cq
γ ′

=

cq̄
γ ′

−2 in a finite time. Then, the next activation of qmoves its clock value to

cq̄
γ ′

+2, which
is contradictory with the construction of macro next (it can only increment the clock value by 1 or decrement
it).

Case 2: q̄ executes a rule in a finite time in ϵ.
Let γ → γ ′ be the first step when q̄ executes the rule (N). It is known that, for any γ ∈ Γ1:Inter(Np)

γ  = 1 ⇒



cq̄
γ

=

cp
γ

− 1

∧

cq
γ

=

cp
γ

+ 1


(A)

or
cq̄
γ

=

cp
γ

+ 1

∧

cq
γ

=

cp
γ

− 1


(B)

Let us study the following cases:
Case 2.1: (A) is true in γ and (B) is true in γ ′. The clock move of q̄ is in contradiction with the construction of

macro next .
Case 2.2: (B) is true in γ and (A) is true in γ ′. The clock move of q is in contradiction with the construction of

macro next .
This proves that Case 2 is contradictory.

Since the two cases are contradictory, we can conclude that p is enabled for rule (N) in a finite time in every
execution starting from a configuration γ ∈ Γ1. Since the daemon is strongly fair, we can say that p executes rule
(N) in a finite time in every execution starting from γ0. Consequently (Pd) is true. �

The above property implies that ∀γ0 ∈ Γ1, ∀p ∈ V , p executes the rule (N) infinitely often in every execution starting
from γ0.

Lemma 6. If γ ∈ Γ1, then any processor increments its clock in a finite time in any execution starting from γ .

Proof. Assume for the sake of contradiction that there exists a processor p and an execution ϵ starting from γ0 ∈ Γ1 such
that p never increments its clock in ϵ.

Let α =

cp
γ0 . By Lemma 5, p executes infinitely often (N). But, it never increments its clock, which implies that

next

Inter(Np)

γ
,

cp
γ 

= min


Inter(Np
γ

)

at each execution of a rule by p (in a configuration γ ). Since ∀γ ∈ Γ1, ∀q ∈

Np,
cpγ −


cq
γ  < 2 and ∀q ∈ Np,


Inter(Np)

γ
⊆


cq
γ

− 1,

cq
γ

,

cq
γ

+ 1

, we have:min


Inter(Np)

γ 
≤

cp
γ .
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Assume that there exists γ ∈ Γ1 such that min{

Inter(Np)

γ
} =


cp
γ . This implies that there exists q ∈ Np such that

cq
γ

=

cp
γ

+ 1.
Remind that, if q denotes a neighbor of p, q̄ denotes the second neighbor of p as stated in Notation 1. If q̄ does not exist or if

cq̄
γ

∈


cp
γ

,

cp
γ

+ 1

, then


cp
γ

+1 ∈

Inter(Np)

γ . This contradicts next(Inter(Np)
γ

,

cp
γ

) = min{

Inter(Np

γ
)}.

We deduce that q̄ exists and that

cq̄
γ

=

cp
γ

− 1. This implies that (N) is not enabled for p.
We can deduce that, if rule (N) is executed by a processor p in a configuration γ , then min


Inter(Np)

γ 
<

cp
γ . We

can now state that, in atmost α executions of p, cp = 0. The next execution of p increments its clock value, which contradicts
the assumption on p and the construction of ϵ. Then, we obtain the result. �

In the following we prove the convergence of our algorithm.
Let γ ∈ Γ , we define the following notations:

∀e = {p, q} ∈ E, ω(e, γ ) =
cpγ −


cq
γ 

∀p ∈ V , ϖ(p, γ ) = max
e∈E/p∈e

{ω(e, γ )}

∀i ∈ N, p(i, γ ) = |{e ∈ E/ω(e, γ ) = i}|.

Consider the following potential function:

P :


Γ −→ N∞

γ −→ (. . . , 0, 0, p(k, γ ), p(k − 1, γ ), . . . , p(2, γ )) with k = max
e∈E

{ω(e, γ )}.

To compare values of P , we define the following total order. If γ and γ ′ are two configurations such that P(γ ) =

(. . . , 0, pi, pi−1, . . . , p2) and P(γ ′) = (. . . , 0, qj, qj−1, . . . , q2), then

P(γ ) > P(γ ′) ⇔


i > j
or
(i = j) ∧ (∃t ∈ {2, . . . , i}, (∀k ∈ {t + 1, . . . , i}, pk = qk) ∧ (pk > qk)).

The following properties are satisfied:

∀γ ∈ Γ , P(γ ) ≥ (. . . 0, 0)
∀γ ∈ Γ , γ ∈ Γ1 ⇔ P(γ ) = (. . . , 0, 0)

∀γ ∈ Γ , γ ∈ Γ \ Γ1 ⇔ P(γ ) > (. . . , 0, 0).

Lemma 7. If γ ∈ Γ \ Γ1, then every step γ → γ ′, which contains the execution of a rule by a processor p such that ϖ(p) ≥ 2
satisfies P(γ ′) < P(γ ).

Proof. Let γ ∈ Γ \ Γ1. Let γ → γ ′ be a step that contains the execution of a rule by a processor p such that ϖ(p) ≥ 2
and γ ∈ Γ \ Γ1. Since the daemon is locally central, neighbors of p do not modify their clocks during this step. Consider the
following cases:

Case 1: p’s degree equals 1.
Let q be its only neighbor and j = ω({p, q}, γ ) =

cpγ −

cq
γ . Inter(Np)

γ
=


cq
γ

− 1,

cq
γ

,

cq
γ

+ 1

.

It follows that p executed rule (N). So, we have
cpγ ′

−

cq
γ ′
 ≤ 1. Then: ϖ({p, q}, γ ′) ≤ 1 and:

P(γ ) = (. . . , 0, 0, p(k, γ ), p(k − 1, γ ), . . . , p(j, γ ), . . . , p(2, γ ))
P(γ ′) = (. . . , 0, 0, p(k, γ ), p(k − 1, γ ), . . . , p(j, γ ) − 1, . . . , p(2, γ )) .

And then: P(γ ′) < P(γ ).
Case 2: p’s degree equals 2.

Let q be the neighbor of p such thatω({p, q}, γ ) = ϖ(p, γ ) ≥ 2 and denote j = ω({p, q̄}, γ ) ≤ ϖ(p, γ ), e = {p, q}
and ē = {p, q̄}. Consider the following cases:
Case 2.1: p executed the rule (N) during the step γ → γ ′.

By construction of

Inter(Np)

γ , we have ω(e, γ ′) ≤ 1 and ω(ē, γ ′) ≤ 1. Then:
P(γ ) = (. . . , 0, 0, p(k, γ ), p(k − 1, γ ), . . . , p(ϖ(p, γ ), γ ), . . . , p(j, γ ), . . . , p(2, γ ))
P(γ ′) = (. . . , 0, p(k, γ ), . . . , p(ϖ(p, γ ), γ ) − 1, . . . , p(j, γ ) − 1, . . . , p(2, γ )) .

And then: P(γ ′) < P(γ ).
Case 2.2: p executed the rule (C2) during the step γ → γ ′.

This case is similar to the Case 2.1.
Case 2.3: p executed the rule (C1) during the step γ → γ ′.
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Let us study the following cases:
Case 2.3.1: We have:


cq
γ

<

cq̄
γ .

By hypothesis, we know that ω(e, γ ) ≥ ω(ē, γ ) and then:
cp
γ

≥


cq
γ

+

cq̄
γ

2
.

(1) Assume that

cp
γ

>

cq̄
γ

+
(cq)

γ
+(cq̄)

γ

2 .
We can say that:

ω(e, γ ) >

cq̄
γ

−

cq
γ

+


cq
γ

+

cq̄
γ

2

ω(e, γ ′) =


cq
γ

+

cq̄
γ

2


.

Then: ω(e, γ ′) < ω(e, γ ).
On the other hand,

ω(ē, γ ) >


cq
γ

+

cq̄
γ

2

ω(ē, γ ′) =

cq̄
γ

−


cq
γ

+

cq̄
γ

2


.

Then: ω(ē, γ ′) ≤ ω(ē, γ ).
In conclusion, we have: P(γ ′) < P(γ ).

(2) Assume that

cp
γ

≤

cq̄
γ

+
(cq)

γ
+(cq̄)

γ

2 .
We have then:

ω(e, γ ) >


cq
γ

+

cq̄
γ

2

ω(e, γ ′) =


cq
γ

+

cq̄
γ

2


.

Then: ω(e, γ ′) < ω(e, γ ).
In contrast, we have that: ω(ē, γ ′) ≥ ω(ē, γ ). But we can say that ω(ē, γ ′) < ω(e, γ ) (obvious if

cp
γ

>

cq̄
γ , due to the fact that


cp
γ

>


(cq)
γ
+(cq̄)

γ

2


in the contrary case).

In conclusion, we have: P(γ ′) < P(γ ).
Case 2.3.2: We have


cq
γ

>

cq̄
γ .

This case is similar to the Case 2.3.1 when we permute q and q̄.
That proves the result. �

Lemma 8. If γ0 ∈ Γ \ Γ1, then every execution starting from γ0 contains the execution of a rule by a processor p such that
ϖ(p, γ0) ≥ 2.
Proof. Let γ0 ∈ Γ \ Γ1. We prove the result by contradiction. Assume that there exists an execution ϵ = γ0γ1 . . . starting
from γ0, which contains no execution of a rule by processors p satisfying ϖ(p, γ0) ≥ 2.

In a first time, assume that one end of the chain (denote it by p) satisfies: ϖ(p, γ0) ≥ 2. Denote q the only neighbor of
p. If q is activated during ϵ, we obtain a contradiction (since ϖ(q, γ0) ≥ ϖ(p, γ0) ≥ 2). If q is not activated during ϵ, we
obtain that ∀i ∈ N,


Inter(Np)

γi
=


cq
γ0

− 1,

cq
γ0 ,


cq
γ0

+ 1

, p is so always enabled for rule (N). Since the daemon is

strongly fair, p executes a rule in a finite time, which is contradictory. We can deduce that the two ends of the chain satisfy:
ϖ(p, γ0) < 2.

Under a strongly fair daemon, the only way for a processor to never execute a rule is to be never enabled from a given
configuration. Here, we assume that all processors p satisfying ϖ(p, γ0) ≥ 2 never execute a rule, which implies that the
network satisfies:

∃k ∈ N, ∀j ≥ k, ∀p ∈ V/ϖ(p, γ0) ≥ 2,



Inter(Np)

γj
= ∅

and
cp
γj

∈


cq
γj

+

cq̄
γj

2


,


cq
γj

+

cq̄
γj

2


.

Number processors of the chain from p1 to pn. Let i be the smallest integer such that ϖ(pi, γk) ≥ 2 (remark that, by
hypothesis, pi+1 never execute a rule, which implies that its clock value never changes). All these constraints allows us to
say: 


cpi−1

γk
=

cpi
γk

+ 1 ∧

cpi+1

γk
=

cpi
γk

− 2 (A)

or
cpi−1

γk
=

cpi
γk

− 1 ∧

cpi+1

γk
=

cpi
γk

+ 2 (B)
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By a reasoning similar to these of the proof of Lemma 6, we can prove that all processors between p0 and pi−1 executes
infinitely often the rule (N) in every execution starting from γk even if pi never executes a rule (this is the case by hypothesis).
By a reasoning similar to the one of the proof of Lemma 6, we can state that cpi−1 not remains constant. The construction
of Inter(Npi−1) implies that


Inter(Npi−1)

γj
⊆


cpi
γk

− 1,

cpi
γk ,


cpi
γk

+ 1

for each j ≥ k (since cpi does not change by

hypothesis).
If we are in case (A), we can deduce that cpi−1 takes infinitely often the value


cpi
γk

− 1 or

cpi
γk . We can see that pi is

enabled by (N) and (C1) respectively. This contradicts the construction of k (recall that pi is never enabled in ϵ from γk).
If we are in case (B), we can deduce that cpi−1 takes infinitely often the value


cpi
γk

+ 1 or

cpi
γk . We can see that pi is

enabled by (N) and (C1) respectively. This contradicts the construction of k (recall that pi is never enabled in ϵ from γk).
This finishes the proof. �

Lemma 9. There exists i ≥ 0 such that γi ∈ Γ1.

Proof. The result follows directly from Lemmas 7 and 8. �

Finally, we can conclude:

Proposition 7. UF T SS is a self-stabilizing AU under a locally central strongly fair daemon.

Proof. Lemmas 4, 6 and 9 allows us to say thatUF T SS is a self-stabilizingUAUunder a locally central strongly fair daemon.
Then, we can deduce the result. �

4.3.2. Proof of self-stabilization in spite of a crash
In this section, ϵ = γ0, γ1 . . . denotes an execution of UF T SS such that a processor c is crashed in γ0.
Firstly, we are going to prove the closure of our algorithm under these assumptions.

Lemma 10. If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. We can repeat the reasoning of Lemma 4 since the fact that a processor is crashed or not does not modify the
proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.

Lemma 11. If γ0 ∈ Γ1, then every processor p ≠ c increments its clock in a finite time in ϵ.

Proof. We repeat the reasoning of Lemma 6 taking in account a processor p ∈ V ∗.
In order to prove the property of Lemma 5, we take d as the distance between p and the end e of the chain that satisfy: no

processor between p and e is crashed. This implies that the processor q is not crashed. The case where q̄ is crashed appear
in the Case 1 of the induction.

We can repeat the reasoning of the proof of Lemma 6 since the fact that a processor is crashed or not does not modify
the proof. �

Now, we are going to prove the convergence of our algorithm under these assumptions.

Lemma 12. There exists i ≥ 0 such that γi ∈ Γ1.

Proof. We repeat the reasoning of Lemma 9 taking in account a processor p ∈ V ∗.
We can repeat the reasoning of the proof of the property of Lemma 7 since the fact that a processor is crashed or not does

not modify the proof.
In order to prove the property of Lemma 8, we take a numbering of processors that ensures the following property: no

processor between p0 and pi (including) is crashed. It is always possible to choose such numbering since there exists at
least one edge e such that ω(e, γk) ≥ 2 by hypothesis, which implies that there exists at least two processors p such that
ϖ(p, γk) ≥ 2, which allows us to choose one that is not crashed. The case when pi+1 is crashed does not modify the proof
since we assumed that this processor never executes a rule. �

Finally, we can conclude:

Proposition 8. UF T SS is a self-stabilizing AU under a locally central strongly fair daemon even if a processor is crashed in the
initial configuration.

Proof. Lemmas 10–12 allows us to say that UF T SS is a self-stabilizing UAU under a locally central strongly fair daemon
even if a processor is crashed in the initial configuration. Then, we can deduce the result. �
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4.4. Proof on a ring

In this section, we assume that our algorithm is executed on a ring under a strongly fair locally central daemon. In fact,
we are going to show that UF T SS is a FTSS UAU (that implies that it is a FTSS AU) under these assumptions. The proof
contains two major steps:

• Firstly, we show that our algorithm is self-stabilizing under these assumptions.
• Secondly, we show that our algorithm is self-stabilizing even if the initial configuration contains a crashed processor

under these assumptions.

4.4.1. Proof of self-stabilization
In this section, ϵ = γ0, γ1 . . . denotes an execution of UF T SS where there is no crash.
Firstly, we are going to prove the closure of our algorithm under these assumptions.

Lemma 13. If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. We can repeat the reasoning of the proof of Lemma 4 since the topology of the network has no impact on the
proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.

Lemma 14. ∀γ0 ∈ Γ1, ∀p ∈ V , p executes rule (N) in a finite time in every execution starting from γ0.

Proof. Let γ0 ∈ Γ1 (we have seen in the proof of Lemma 4 that implies that only rule (N) can be enabled). Assume that
there exists a processor p and an execution ϵ = γ0, γ1 . . . starting from γ0 such that p never execute a rule in ϵ. Since the
daemon is strongly fair, which implies that ∃k ∈ N, ∀j ≥ k, p is not enabled in γj.

Since Processor p is not enabled, it satisfies: ∃q ∈ Np,

cp
γj

=

cq
γj

+ 1 and

cp
γj

=

cq̄
γj

− 1. Let i be the smallest
integer greater than k such that the step γi → γi+1 contains the execution of rule by at least one neighbor of p. Let us study
the following cases:

Case 1: q and q̄ simultaneously execute a rule during the step γi → γi+1.
Since p is not enabled in γi+1 (by hypothesis) and that the execution of rule (N) always modifies the clock values
(cf. proof of Lemma 6), we have:


cp
γi

=

cq
γi

+ 1 and

cp
γi

=

cq̄
γi

− 1
and
cp
γi+1

=

cq
γi+1

− 1 and

cp
γi+1

=

cq̄
γi+1

+ 1.

The clock move of q̄ contradicts the construction of rule (N) and

Inter(Np)

γi . Therefore, this case is impossible.
Case 2: Only q executes a rule during the step γi → γi+1.

By construction of rule (N),

Inter(Nq)

γi , and the fact that the execution of this rule must change the clock value,
we have:


cq
γi+1

∈


cp
γi , cpγi − 1


. Processor p is then enabled for rule (N) (since the clocks of p and q̄ have

not changed by hypothesis). This contradicts the construction of k. Therefore, this case is impossible.
Case 3: Only q̄ executes a rule during the step γi → γi+1.

This case is similar to Case 2.
Case 4: Neither q nor q̄ executes a rule during the step γi → γi+1.

By the three previous contradictions, it is the only possible case.

We can deduce that ∀j ≥ k, q and q̄ do not execute a rule in γj, which implies that their clock values remains constant
from γk. If we repeat the previous reasoning, we obtain that it is possible only if the second neighbor of q has a clock value
equal to


cp
γk

+ 2 and if the second neighbor of q̄ have a clock value equals to

cp
γk

− 2, etc.
Since the ring has a finite length n, we obtain (following the same reasoning) that there exists two neighboring processors

p1 and p2 such that

cp1
γk

=

cp
γk

+ α and

cp2
γk

=

cp
γk

− β (with α and β integers greater or equal to 1 depending
on the parity of n). Therefore,

cp1γk −

cp2
γk  = α + β ≥ 2. Then, we obtain that γk /∈ Γ1, which contradicts Lemma 13

and proves the lemma. �

Lemma 15. If γ0 ∈ Γ1, then every processor increments its clock in a finite time in ϵ.

Proof. The proof is similar to the one of Lemma 6 using Lemma 14 (instead of Lemma 5) since the topology of the network
has no impact on the proof. �

Now, we are going to prove the convergence of our algorithm under these assumptions.
In the following, we consider the potential function P previously defined and use similar arguments as for the proof of

Lemma 9.
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Lemma 16. If γ ∈ Γ \ Γ1, then every step γ → γ ′ that contains the execution of a rule of a processor p such that ϖ(p) ≥ 2
satisfies P(γ ′) < P(γ ).

Proof. The proof is similar to the proof of Lemma 7 since the topology of the network has no impact on the proof (note that
the Case 1 is impossible on a ring). �

Lemma 17. If γ0 ∈ Γ \ Γ1, then every execution starting from γ0 contains the execution of a rule of a processor p such that
ϖ(p, γ0) ≥ 2.

Proof. Let γ0 ∈ Γ \ Γ1. Assume, for the sake of contradiction, that there exists an execution ϵ = γ0γ1 . . . starting from γ0
that contains no execution of a rule by any processor p that satisfies ϖ(p, γ0) ≥ 2. Since the daemon is strongly fair, this
implies that ∃k ∈ N, ∀j ≥ k, p is not enabled in γj.

Let q be the neighbor of p satisfying ω({p, q}, γk) = ϖ(p, γk). By hypothesis, q never executes a rule. Therefore, its clock
value remains constant. Let us study the following cases:

Case 1:
cqγj − 

cq̄
γj  ≤ 1

It follows that p is enabled for the rule (N) since
Inter(Np)

γj  ≥ 2. This contradicts the construction of k.
Case 2:

cqγj − 
cq̄
γj  = 2

It follows that p is enabled for the rule (C1) since

Inter(Np)

γj
= {h} and


cp
γj

≠ h (because ϖ(p, γj) =

ϖ(p, γk) ≥ 2). This contradicts the construction of k.
Case 3:

cqγj − 
cq̄
γj  ≥ 3

By the two previous contradictions, it is the only possible case. Since p is not enabled (by hypothesis), we obtain
that:

∀j ≥ k,



Inter(Np)

γj
= ∅

and
cp
γj

∈


cq
γj

+

cq̄
γj

2


,


cq
γj

+

cq̄
γj

2


.

Since the clock values of p and q are constants by hypothesis, we can deduce that the one of q̄ remains also constant
(because, in the contrary case, p becomes enabled, which contradicts the hypothesis). It follows:


cq
γj <


cp
γj <

cq̄
γj or cqγj >


cp
γj >


cq̄
γj .

Since this reasoning holds for every processor on the ring, we can always label the nodes of any ring by p0, p1, . . . , pn
such that the following property is satisfied : cp0 < cp1 < · · · < cpn .

But, the previous reasoning for processor cp0 implies that we have: cpn < cp0 < cp1 . It is impossible to satisfy
simultaneously these two inequalities, which proves the lemma. �

Lemma 18. There exists i ≥ 0 such that γi ∈ Γ1.

Proof. The result follows directly from Lemmas 16 and 17. �

Finally, we can conclude:

Proposition 9. UF T SS is a self-stabilizing AU under a locally central strongly fair daemon.

Proof. Lemmas 13, 15 and 18 lead to the conclusion that UF T SS is a self-stabilizing UAU under a locally central strongly
fair daemon. �

4.4.2. Proof of self-stabilization in spite of a crash
In this section, ϵ = γ0, γ1 . . . denotes an execution of UF T SS such that a processor c is crashed in γ0.
First, we prove the closure of our algorithm, then we prove the convergence property.

Lemma 19. If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. This proof is similar to the proof of Lemma 13 since the fact that a processor is crashed or not does not modify the
proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.

Lemma 20. If γ0 ∈ Γ1, then every processor p ≠ c increments its clock in a finite time in ϵ.

Proof. This proof is similar to the proof of Lemma 15. �

In the following we prove the convergence of our algorithm.

Lemma 21. There exists i ≥ 0 such that γi ∈ Γ1.
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Proof. This proof is similar to the proof of Lemma 18 since the fact that a processor is crashed or not does not modify the
proof. �

Finally, we can conclude:

Proposition 10. UF T SS is a self-stabilizing AU under a locally central strongly fair daemon even if a processor is crashed in
the initial configuration.

Proof. Lemmas 19–21 allows us to say that UF T SS is a self-stabilizing UAU under a locally central strongly fair daemon
even if a processor is crashed in the initial configuration. Then, we can deduce the result. �

4.5. Conclusion

We are now in position to state our final result:

Proposition 11. UF T SS is a (0, 1)-ftss AU on a chain or a ring under a locally central strongly fair daemon.

Proof. This a direct consequence of Propositions 7–10. �

5. Concluding remarks

We presented the first study of FTSS protocols for dynamic tasks in asynchronous systems, and showed the intrinsic
problems that are induced by the wide range of faults that we address. The combination of asynchrony and maintenance of
liveness properties implies many impossibility results, and the deterministic protocol that we provided for one of the few
remaining cases is optimal with respect to all impossibility results and containment measures. Then, we can observe that
the results remain even if the weakly synchronized configuration definition is relaxed to allow neighbor clocks to be at most
κ away from each other, for some constant κ .

Generalization: κ-asynchronous unison. In this paragraph, we briefly explain how to generalize the above results to a
weaker problem. Assume that κ ∈ N∗. In the κ-asynchronous unison problem (κ-AU), a drift of at most κ units is allowed
between clocks of any two neighbors. Hence, the AU problem corresponds to the 1-AU.

Let us observe that a similar result to Lemma 1 holds in the case of κ-AU:

Lemma 22. LetA be a universal (f , r)-FTSS algorithm for κ-AU (under an asynchronous daemon). Let γ be a configurationwhere
a processor p with cp ≥ κ has two neighbors q and q′ such that: cq = cp − κ and cq′ = cp + κ . If p executes an action of A during
the step γ −→ γ ′, then this action does not modify the value of cp. If A is also minimal, then the processor p is not enabled for A
in γ .

As Lemma 1 is the basis of proofs of Section 3, we can deduce that all impossibility results presented in Section 3 still
hold in the case of κ-AU .

In order to solve the κ-AU problem in the remaining cases, wemodify AlgorithmUF T SS (see Section 4) in the definition
of macro poss(q) in the following way:

∀q ∈ Np, poss(q) =

max{cq − κ, 0},max{cq − κ, 0} + 1, . . . , cq, . . . , cq + κ − 1, cq + κ


.

This modified algorithm is a universal (0, 1)-FTSS κ-AU under a locally central strongly fair daemon on a chain or a ring
(the proof is a simple generalization of the correctness proof of Section 4).

Open questions. An immediate futurework is to generalize the possibility result (that assumes a central scheduler) to cope
with a distributed scheduler, or extend the impossibility proof in that case. There also remains the open case of protocols
that neither satisfy theminimality or the priority properties (see Table 1).We conjecture that at least one of those properties
is necessary for the purpose of deterministic self-stabilization, yet none of those could be required for deterministic weak
stabilization [19] (weak stabilization is a weaker property than self-stabilization since existence of execution reaching a
legitimate configuration is guaranteed). As recent results [7] hint that weak-stabilizing solutions can be easily turned into
probabilistic self-stabilizing ones, this raises the open question of the possibility of probabilistic FTSS for dynamic tasks in
asynchronous systems.

Another possible extension of our work is the feasibility of FTSS solutions for other reactive tasks, such as dining
philosophers andmutual exclusion. In the case of dining philosophers, [28] proposed a solution that canwithstand transient (it
is self-stabilizing) and Byzantine failures (with a containment radius of 2), so it is also a solution for tolerating transient and
crash faults. However, even in the case of crash faults, a containment radius of 2 is also a lower bound [30] when the system
is asynchronous. The same paper [28] shows that global tasks such asmutual exclusion cannot admit a constant radius fault-
containing solution when both transient and Byzantine fault are considered. It would be interesting to investigate whether
limiting the fault model to transient faults and process crashes permits to break this impossibility result.
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