
Information Processing Letters 111 (2011) 912–920
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Stabilizing data-link over non-FIFO channels with optimal fault-resilience

Shlomi Dolev a,1, Swan Dubois b, Maria Potop-Butucaru b,∗, Sébastien Tixeuil c,2

a Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
b UPMC Sorbonne Universités & INRIA, France
c UPMC Sorbonne Universités & IUF, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 October 2010
Received in revised form 16 June 2011
Accepted 18 June 2011
Available online 1 July 2011
Communicated by M. Yamashita

Keywords:
Self-stabilization
Distributed algorithms
Fault-tolerance

Self-stabilizing systems have the ability to converge to a correct behavior when started
in any configuration. Most of the work done so far in the self-stabilization area assumed
either communication via shared memory or via FIFO channels.
This paper is the first to lay the bases for the design of self-stabilizing message passing
algorithms over unreliable non-FIFO channels. We propose an optimal stabilizing data-
link layer that emulates a reliable FIFO communication channel over unreliable capacity
bounded non-FIFO channels (the channel capacity is known to the protocol).

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Self-stabilization [9,10,17] is one of the most versatile
techniques to sustain availability, reliability, and service-
ability in modern distributed systems. After the occurrence
of a catastrophic failure that placed the system compo-
nents in some arbitrary global state, self-stabilization guar-
antees recovery to a correct behavior in finite time without
external (i.e. human) intervention.

As self-stabilization is usually considered a hard prop-
erty to satisfy, most related works used a simple commu-
nication model where processes can determine the current
state of every neighbors (and update their own state ac-
cordingly) in an atomic manner (this model is referred to
in the literature as the state model or systems with cen-
tral/distributed daemon). Asynchronous message passing is

* Corresponding author.
E-mail addresses: dolev@cs.bgu.ac.il (S. Dolev), vasiliupotop@gmail.com

(M. Potop-Butucaru).
1 The work started while this author was a visiting professor at LIP6.

Research supported in part by the ICT Programme of the European Union
under contract number FP7-215270 (FRONTS), Deutsche Telekom, US Air-
Force and Rita Altura Trust Chair in Computer Sciences.

2 This work is supported in part by ANR projects SHAMAN, ALADDIN,
and SPADES.
0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.06.010
a more realistic way, compared to the state model, for the
communication of processes in distributed systems. In such
settings processes communicate by exchanging messages,
where sending and receiving message are two separate
atomic actions. Transformers for shared memory protocols
to act in message passing systems, assuming the existence
of FIFO channels, have been suggested, see e.g. [11,10].
At the core of those transformers are the data-link proto-
cols, that permit to reliably exchange information between
neighboring processes in the message passing model. In
addition, several self-stabilizing protocols (i.e. [13,2]) that
are directly written in the message-passing model use an
underlying data-link protocol as a building block.

1.1. Related works

The most studied data-link protocol, namely the alter-
nating bit protocol (ABP), was proved to satisfy some stabi-
lization properties [1,12,4]: in any execution of ABP, there
exists a suffix that satisfies the specification (i.e. the ABP
is pseudo-stabilizing). However, the impossibility to bound
the amount of time before this suffix is reached makes the
ABP unsuitable for most tasks. In [14,11], Gouda and Mul-
tari and Dolev, Israeli, and Moran independently prove that
for a wide class of problems (including data-link construc-
tion) guaranteeing self-stabilization when channels have

http://dx.doi.org/10.1016/j.ipl.2011.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dolev@cs.bgu.ac.il
mailto:vasiliupotop@gmail.com
http://dx.doi.org/10.1016/j.ipl.2011.06.010

S. Dolev et al. / Information Processing Letters 111 (2011) 912–920 913
unbounded initial capacity requires some kind of unbound-
edness in the protocol (either unbounded memory in [14],
the existence of some aperiodic function [1], or access
to a probabilistic variable [1]). In other words, those ap-
proaches require to implement unbounded capacities with
finite memory, and are thus unlikely to be actually used
in real systems. Also, the expected time before reaching a
stable global state depends on the initial contents of com-
munication channels, and is thus unbounded.

Most recent works took the more realistic approach
of assuming channels with bounded initial capacity. The
token passing protocol in [12] can be used as a self-sta-
bilizing ABP on bounded channels and only uses bound-
ed memory. Howell et al. [15] provide another data-link
protocol over bounded channels with the additional desir-
able property that the underlying communication channels
are unreliable (i.e. they may loose or duplicate messages).
Later, Varghese [18] presented self-stabilizing solutions for
a wide class of problems (including data-link) in the same
setting using only bounded memory. The FIFO ordering is
crucial for the stabilization since solution relies on the fact
that a sequence number that is unique in the system is
eventually generated and flushes every stale message in
transit. A common drawback of all aforementioned self-
stabilizing data-link solutions is that they assume a FIFO
order on messages in the underlying communication chan-
nels.

A notable exception are the protocols provided in [3]
that assumed a non-FIFO message passing system. The
main difference with our approach stands in the fact
that their system is enhanced with some failure detector
whereas we assume a fully asynchronous system.

Another drawback of previously mentioned self-stabi-
lizing data-link solutions is that they do not consider
the quantitative impact of faults from the perspective of
the upper layer protocol (i.e. the layer that actually uses
the data-link). Indeed, starting from an arbitrary global
state where channels may initially contain messages of
arbitrary content, being able to bound the number of mes-
sages sent that are lost or duplicated, or the number of
fake messages that are actually delivered to the destina-
tion is a very important matter. The bound on the number
of faulty messages delivered by a data-link protocol is an
important criteria for the data-link usability in larger appli-
cation, in order to ensure the fault-resiliency of the global
protocol stack. To our knowledge, only [13,8] addresses, to
some extent, this concern. A snap-stabilizing data-link (and
global reset) for bounded capacity FIFO channels appears
in [13]. In [8] a snap-stabilizing solution to the propagation
of information with feedback (PIF) problem is presented.
The solution can be seen as a data-link protocol when re-
duced to a 2-processes system. Snap-stabilization implies
that any message that is actually sent by the sender pro-
cess is eventually received by the receiver process, so the
number of lost messages is 0. However, we cannot provide
bounds on the number of duplications of a given message
or on the number of ghost messages (that is, messages that
are not sent by the sender but received by the receiver due
to the arbitrary content of communication channels in the
initial configuration). Concerning the self-stabilizing proto-
cols, only an order of magnitude on those numbers can
be inferred from the stabilization time (if m messages sent
or received are required to enter a legitimate global state
from any arbitrary initialization, then at most m messages
could be lost, duplicated, or wrongly delivered). To our
knowledge, the question of fault-resilience optimality for
data-link protocols has never been raised before, although
it has important practical consequences.

1.2. Our contribution

Our contribution in this paper is twofold:

1. We define complexity metrics that are related to the
fault-resilience of data-link protocols, and present im-
possibility results in the context of self-stabilization
(i.e. the ability to recover from any arbitrary initial
global state). In particular, we prove that no data-link
protocol can prevent one message duplication, the de-
livery of a single fake message, or the reordering of a
single message.

2. We present a data-link protocol that is optimal with
respect to all presented fault-resilience metrics. More-
over, unlike previous self-stabilizing solutions that op-
erate assuming the underlying communication chan-
nels preserve FIFO ordering, the channels we consider
may indeed reorder messages, having some of them
remain in the channel for an arbitrary long time. The
strong fault-resilience property exhibited by our pro-
tocol makes it particularly suitable for inclusion as a
building block in more complex applications.

1.3. Paper organization

The paper is organized as follows. Section 2 proposes
the network model and hypothesis and then, the data-link
problem specification. Section 3 introduces three lower
bounds results that justify our optimality claim. In Sec-
tion 4, we propose our optimal stabilizing data-link pro-
tocol altogether with its correctness proof.

2. Model

2.1. System model

A message-passing distributed system consists of n pro-
cesses, p0, p1, p2, . . . , pn−1, connected by communication
links through which messages are sent and received. Two
processes connected through a communication link are re-
ferred in the following as neighboring processes.

As emphasized in [1] the purpose of a data-link pro-
tocol is to reliably transmit messages from one end of a
communication medium (link) to the other end. Ideally,
messages have to arrive without duplication or loss and in
the order they have been sent. Therefore, we focus in the
following on the communication between two neighbor-
ing processes pi and p j where pi acts as the sender and
p j acts as the receiver. The communication link between
the two processes pi and p j is denoted in the following
(pi, p j) and is composed of two virtual directed channels
(i, j) and (j, i). The channel (i, j) is used to send messages

914 S. Dolev et al. / Information Processing Letters 111 (2011) 912–920
from pi to p j while the channel (j, i) is used to send ac-
knowledgments from p j to pi . In systems where p j is also
message sender, two additional virtual channels are used
to carry the messages from p j to pi and acknowledgments
from pi to p j .

We assume in the following that the capacity of each
directed channel is c packets (i.e. low level messages). We
assume that c is known to the protocol. Note that in the
scope of self-stabilization, where the system copes with an
arbitrary starting configuration, there is no deterministic
data-link simulation that uses bounded memory when the
capacity of channels is unbounded [14,12].

The channels are non-FIFO and not necessarily reli-
able (i.e. packets may not follow the FIFO order and may
be lost). Additionally, their delivery time is unbounded.
That is, any non-lost packet is received in a finite but
unbounded time. Each channel (i, j) is weakly fair in the
sense that if the sender sends infinitely often a packet on
the channel, then the receiver receives this packet an infi-
nite number of time. Sending a packet to a channel whose
capacity is exhausted (i.e. the channel already contains c
packets) results in loosing a packet (either a packet already
in the channel or the packet being sent).

As we deal with arbitrary initial corruption, a channel
may initially contain up to c ghost packets (i.e. packets that
have never been sent and contain arbitrary content).

A processor is modeled by a state machine that ex-
ecutes steps. Channels are modeled as sets (rather than
queues to reflect the non-FIFO order). For example, the c-
bounded channel (i, j) (used to send messages from pi to
p j) is modeled by a c-sized set denoted by si j .

In each step, a processor changes its local state (i.e. the
state of its local memory), and executes a single commu-
nication operation, which is either a send operation or a
receive operation. The communication operation changes
the state of an attached channel. In case the communica-
tion operation is a send operation from pi to p j then si j
is a union of si j in the previous state with the sent packet.
If the obtained union does not respect the bound |si j| � c
then an arbitrary message in the obtained union is deleted.
In case the communication operation is a receive operation
of a (non-null) packet m (m must exist in s ji of the previ-
ous state), then m is removed from s ji . A receive operation
by pi from p j may result in a null packet even when the
s ji is not empty, thus allowing unbounded delay for any
particular packet. Packet losses are modeled by allowing
spontaneous packet removals from the set.

A configuration of the system is the product of the lo-
cal states of processes in the system and of their incident
channels.

An execution is a sequence of configurations, E =
(C1, C2, . . .) such that Ci , i > 1, is obtained from Ci−1
when at least one process in the system executes a step.

2.2. Problem specification

The specification we provide in this section is borrowed
from [16] but we adapt it to the self-stabilizing context. In
particular, we introduce the idea to bound the number of
lost, duplicated, ghost and re-ordered messages by some
constants.
Consider a system of two processors pi and p j . A dis-
tributed application needs to send some messages from pi
to p j . We say that the application layer of pi sends a mes-
sage when it requests the communication protocol to carry
this message to p j . This message is delivered to p j when
the communication protocol releases this message to the
application layer of p j . A ghost message is a message de-
livered to p j whereas pi did not send it previously (due
to the arbitrary content of communication channels in the
initial configuration). A duplicated message is a message
that is delivered several times to p j whereas pi sent it
only once. A message is lost when pi sends it but p j never
delivers it. A message m is reordered when it is delivered to
p j before a message m′ whereas m has been sent after m′
by pi . Intuitively, the goal of a Stabilizing Data-Link proto-
col is to provide a communication black box that ensures
some properties on the number of lost, duplicated, ghost
and reordered messages starting from any arbitrary config-
uration. In the sequel, we formally specify the Stabilizing
Data-Link problem.

We associate to any execution E the sequence S(E) =
m0m1m2 . . . of messages sent by pi in E and the sequence
R(E) = m′

0m′
1m′

2 . . . of messages delivered to p j in E . Note
that we consider that all sent messages are different (even
if their actual content are identical, we can distinguish
them as external observer of the system). We introduce
the following notations. For any sequence W and any in-
tegers i and j, W j is the prefix of W of length j and
W i is the suffix of W such that W = W i−1.W i (where .

denotes the concatenation operator). The notation ε de-
notes the empty sequence. For example, R(E)0 = ε . For any
message m, we define the m∗ as the repetition of m an ar-
bitrary number of times (possibly 0). For any sequence W ,
the sequence W ∗ is the result of the application of the ∗
operator to each message of W .

For any non-negative integers α, β , γ , and δ, the (α,β,

γ , δ)-Stabilizing Data-Link communication over c-bounded
channels satisfies the following properties starting from an
arbitrary configuration (with pi and p j being respectively
the sender and the receiver) for any execution E:

• α-Loss: The first α messages sent by pi (in the worst
case) may be lost

∃a � α, ∀m ∈ S(E)a, m ∈ R(E).

• β-Duplication: The first β messages delivered to p j
(in the worst case) may be duplicated ones

∃b � β, ∀m ∈ S(E),
∣∣{m′

i = m
∣∣ m′

i ∈ R(E)
}∣∣ > 1 ⇒ m ∈ R(E)b.

• γ -Creation: The first γ messages delivered to p j
(in the worst case) may be ghost messages

∃c � γ , ∀m ∈ R(E), m /∈ S(E) ⇒ m ∈ R(E)c .

• δ-Reordering: The first δ messages delivered to p j (in
the worst case) may be reordered.

∃d � δ, R(E)d ∈ S(E)∗.

S. Dolev et al. / Information Processing Letters 111 (2011) 912–920 915
In the following section, we show that it is impossible
to perform a (α,β,γ , δ)-Stabilizing Data-Link communica-
tion with β = 0, γ = 0, or δ = 0. Then, we can deduce that
a (0,1,1,1)-Stabilizing Data-Link communication achieves
optimal fault-resiliency. The above definitions imply that
such a communication protocol ensures that R(E) = S(E)

or R(E) = m.S(E) (where m is an arbitrary message, it may
be present in S(E) and . denotes the concatenation oper-
ator) for any execution E . In other words, the sequence
of received messages by p j is identical to the sequence of
emitted messages by pi excepted the first delivery in the
worst case.

3. Lower bounds

In this section, we propose three impossibility results
related to the possible values for the parameters β , γ ,
and δ. We prove that the lower bounds for β , γ , and δ

parameters is 1. These results confirm the claim that the
protocol we propose is optimal since it implements a
(0,1,1,1)-Stabilizing data-link.

Theorem 1. There exists no (α,β,γ , δ)-Stabilizing Data-
Link communication algorithm over c-bounded channels with
γ = 0.

Proof. By contradiction, let A be any (α,β,0, δ)-Stabili-
zing Data-Link communication algorithm over c-bounded
channels must have an instruction that delivers messages
to the receiver processor. As the program counter may be
corrupted and channels may contain up to c ghost mes-
sages in the initial configuration, the receiver processor
may execute this instruction during the first step of an
execution E . In consequence, the first message of R(E)

may be a ghost message m. Hence, we can assume that
R(E)1 = m.

It is possible to construct the execution E such that m /∈
S(E). In conclusion, we have: ∃m ∈ R(E), m /∈ S(E) ∧ m /∈
R(E)0 = ε (recall that ε denotes the empty sequence). This
is contradictory with the 0-Creation property of A and im-
plies that γ � 1 for any (α,β,γ , δ)-Stabilizing Data-Link
communication algorithm over c-bounded channels. �
Theorem 2. There exists no (α,β,γ , δ)-Stabilizing Data-Link
communication algorithm over c-bounded channels with β = 0.

Proof. By contradiction, let A be any (α,0, γ , δ)-Stabiliz-
ing Data-Link communication algorithm over c-bounded
channels. Following Theorem 1, we have γ > 0. This im-
plies that the first message delivered to p j in an execu-
tion E by A may be a ghost message m. Hence, we can
assume that R(E)1 = m.

It is possible to construct the execution E such that
the first (real) message sent by pi to p j and delivered
to p j by A is the same message m. This message has
been sent by pi only once but has been delivered to p j
at least twice. In conclusion, we have: ∃m ∈ S(E), |{m′

i =
m | m′

i ∈ R(E)}| > 1 ∧ m /∈ R(E)0 = ε (recall that ε denotes
the empty sequence). This is contradictory with the 0-
Duplication property of A and implies that β � 1 for any
(α,β,γ , δ)-Stabilizing Data-Link communication algorithm
over c-bounded channels. �
Theorem 3. There exists no (α,β,γ , δ)-Stabilizing Data-Link
communication algorithm over c-bounded channels with δ = 0.

Proof. By contradiction, let A be any (α,β,γ ,0)-Stabiliz-
ing Data-Link communication algorithm over c-bounded
channels. Following Theorem 1, we have γ > 0. This im-
plies that the first message delivered to p j by A in an
execution E may be a ghost message m. Hence, we can as-
sume that R(E)1 = m.

It is possible to construct the execution E such that
S(E)α+2 = m0m1 . . .mα−1mαm and ∀i ∈ {0, . . . ,α},mi 	= m.
As A satisfies the α-Loss and the 0-Reordering properties,
it follows that ∃i ∈ {0, . . . ,α}, R(E)1 = mi (otherwise, we
have a contradiction since either A lost at least α + 1
messages or reordered at least one message, that is contra-
dictory). As mi 	= m, we obtain a contradiction that shows
that δ � 1 for any (α,β,γ , δ)-Stabilizing Data-Link com-
munication algorithm over c-bounded channels. �

In the next section, we present a protocol that is opti-
mal with respect to α, β , γ , and δ parameters. That is, our
protocol satisfies the (0,1,1,1)-Stabilizing Data-Link spec-
ification.

4. A (0,1,1,1)-Stabilizing Data-Link protocol

4.1. Presentation of the protocol

4.1.1. Key ideas of the protocol
The rationale of the protocol consists in adding safety

extensions to the well-known alternating bit protocol
(a.k.a. ABP). The concept used in the design of the data-link
protocol is to let the sender use a mechanism based on the
capacity c of communication channels so that the sender
can ensure the execution of an operation in the receiver
side. More precisely, the receiver acts only upon receiving
a packet from the sender. The sender may repeatedly send
a particular packet, and each time the receiver receives a
packet it acknowledges the packet arrival.

First, the receiver can deliver a message only if c + 1
copies of this message have been previously received: this
ensures that at least one of them is genuine (i.e. was actu-
ally sent by the sender). Moreover, a message is delivered
only if the expected bit alternates with the one of the pre-
viously received message (similarly to the ABP) in order to
ensure that no message is duplicated. Indeed, the sender
may still send copies of the message with the same al-
ternating bit value until it receives a sufficient number of
acknowledgments.

Second, the sender will expect for each message sent
at least 3c + 2 acknowledgments with a matching alternat-
ing bit. As up to c acknowledgments could be ghost, this
implies that 2c + 2 of these acknowledgments were actu-
ally sent by the receiver. One such acknowledgment could
be sent by the received due to bad initialization, c of them
could be due to c initial ghost messages in the reverse di-
rection, and the remaining c + 1 can only originate from

916 S. Dolev et al. / Information Processing Letters 111 (2011) 912–920
Fig. 1. General organization of our system.
genuine messages from the sender, that triggered a deliv-
ery at the receiver.

At this stage, the protocol does not ensure the 0-Loss
property due to the use of the alternating bit. Indeed, if
the alternating bit values of the sender and of the re-
ceiver are not synchronized at the first delivery, the re-
ceiver drops the first message. To avoid this message loss,
the sender alternates between actual messages and syn-
chronization messages. In other words, to send a message
m, the sender first sends a synchronization message (de-
noted by 〈SYNCHRO〉) until it receives 3c + 2 acknowledg-
ments of this synchronization message and then send the
actual message m until it receives 3c +2 acknowledgments
of m. It follows that only the synchronization message may
be lost and the actual message is always delivered to the
receiver.

4.1.2. General organization of the system
Our system is organized as follows. The application

layer generates messages to be send from pi to p j . To per-
form this goal, it invokes our stabilizing data-link protocol.
Furthermore, this layer invokes procedures provided by the
physical channel.

In more details, the stabilizing data-link protocol is
composed of two functions: Send (which is executed on
the sender side) and Receive (which is executed on the
receiver side). When the application layer on the sender
side wants to send a message m, it invokes Send(m). Send
procedure is blocking, that is if Send is already in execu-
tion, the application layer waits its termination whereas
the Receive function is always executed on the receiver
side. When the Receive function has a message to deliver
at the application layer on the receiver side, it executes De-
liverMessage(m) that transmits m to the application layer.
When the Receive function wants to discard a synchro-
nization message (since this kind of messages is useless
to the application layer), it uses the DropMessage func-
tion that only deletes the message. Finally, each delivered
message is acknowledged to the application layer on the
sender side by DeliverAck(m).

Functions Send and Receive must interact with the
physical channel in order to exchange messages. For this,
we assume that the channel provides two operations. First,
it provides an operation to send a message or an ac-
knowledgment, respectively SendPacket(m,ab) and Send-
Packet(ack,(m,ab)) where m is the message and ab its al-
ternating bit value. This operation puts m (or its acknowl-
edgment) in the channel if it is possible (if this operation
leads to more than c messages in the channel, one of them
is arbitrarily deleted). Second, it provides an operation to
receive a message or an acknowledgment, respectively Re-
ceivePacket(m,ab) and ReceivePacket(ack,(m,ab)) where
m is the message and ab its alternating bit value. On the
receiver side, ReceivePacket(m,ab) is executed when the
channel has a message to deliver and when Receive is not
in execution. It sets then m and ab to actual values of
the delivered message. In other words, the reception (for
the data-link protocol) on the receiver side is message-
driven. On the sender side, ReceivePacket(ack,(m,ab)) is
executed by the data-link protocol and does polling. That
is it checks whether the first waiting message in the chan-
nel (if any) matches with an acknowledgment of the pa-
rameter (m,ab). It returns true if this is the case, false
otherwise. In any case, the first waiting message (if any)
is deleted from the channel. The architecture of our sys-
tem is summarized in Fig. 1.

4.1.3. Detailed presentation of the protocol
Our (0,1,1,1)-Stabilizing Data-Link protocol S D L is

presented as Fig. 2. In the following, we provide details
about the two functions Send and Receive.

S. Dolev et al. / Information Processing Letters 111 (2011) 912–920 917
Send

input:
m: message to be sent
persistent variable:
ab: boolean that states the current alternating bit value

01: ab := ¬ab
02: SendMessage(〈SYNCHRO〉,ab)

03: ab := ¬ab
04: SendMessage(m,ab)

05: DeliverAck(m)

SendMessage

input:
m′: message to be sent
ab: boolean that states the alternating bit value associated to m
variable:
ack: integer denoting the number of acknowledgments received for the current ab value

01: ack := 0
02: while ack < 3c + 2
03: SendPacket(m′,ab)

04: if ReceivePacket(ack, (m′,ab))

05: ack := ack + 1;

Receive

persistent variables:
last_delivered: boolean that states the alternating bit value of the last delivered message
Q : queue of size c + 1 of 3-tuples (m,ab, count), where m is a message, ab is an alternating bit value, and count
is an integer denoting the number of packets (m,ab) received for the corresponding m and ab since the last
DeliverMessage or DropMessage occurred.

01: upon ReceivePacket(m,ab)

02: Q [m,ab] := min(Q [m,ab] + 1, c + 1)

03: if Q [m,ab] � c + 1 then
04: if last_delivered 	= ab then
05: if m 	= 〈SYNCHRO〉 then
06: DeliverMessage(m)
07: else
08: DropMessage(m)
09: last_delivered := ab
10: Q := ⊥
11: SendPacket(ack, (m,ab))

Fig. 2. S D L, a (0,1,1,1)-Stabilizing Data-Link protocol.
The function Send takes a message m as parameter and
stores the current alternating bit value in the variable ab.
First, it alternates the value of ab (line 01) before send-
ing a synchronization message (line 02) using an auxiliary
function SendMessage. Then, lines 03 and 04 repeat these
instructions with the message m. Once the last invocation
of SendMessage returns, it delivers to the application layer
the acknowledgment of m using DeliverAck. Now, let us
describe the auxiliary function SendMessage. This function
repeatedly (while loop of line 02) sends its parameter mes-
sage m (line 03) until receiving 3c + 2 acknowledgment for
this message (lines 04–05).

The function Receive takes no parameter and uses two
variables. The first one is the alternating bit value of the
last delivered or dropped message stored in last_delivered
and the second one is a queue Q that stores the number
of receptions of at most c + 1 different messages. Each el-
ement of this queue is a 3-tuple (m,ab, count), where m is
a message, ab is an alternating bit value, and count is an
integer denoting the number of packets (m,ab) received
for the corresponding m and ab since the last Deliver-
Message or DropMessage occurred. The queue [] operator
takes a message m and a boolean b as operands, and ei-
ther enqueues (m,ab,0) (if (m,ab,∗) is not present in Q ,
then if the queue contained c + 1 elements, the last el-
ement of the queue is dequeued) or returns a pointer to
the count value associated to m and ab in Q . Any time
a tuple value is changed in the queue, this tuple is pro-
moted at the top of the queue (in order to keep in memory
the c + 1 latest received messages), and the size of the
queue does not change. The ⊥ assignment to a queue Q
denotes the fact that Q is emptied. At each reception of a
message (m,ab) (line 01), the corresponding entry in the
queue is updated (or created if needed) by line 02. If p j

918 S. Dolev et al. / Information Processing Letters 111 (2011) 912–920
already received c + 1 copies of m since the last Deliver-
Message or DropMessage occurred (test on line 03) then
the queue is emptied (line 10). Moreover, if the alternat-
ing bit value of the message is different from last_delivered
(test on line 04), then the message is either delivered with
DeliverMessage (line 06) or dropped with DropMessage
(line 08) depending if it is a synchronization message or
not (test on line 05). Then, the last_delivered value is up-
dated by line 09. Finally, in any case, the message is ac-
knowledged to the sender with line 11.

4.2. Correctness proof

In this section, let pi and p j be two neighboring nodes
that execute S D L, pi being the sender and p j the receiver.
Let E = (C1, C2, . . .) be an execution starting from an arbi-
trary configuration.

We say that a message m′ is processed by p j when p j
executes DeliverMessage(m′) (line 06 of Receive function)
if m′ is a normal message or when p j executes DropMes-
sage(m′) (line 08 of Receive function) if m′ is a 〈SYNCHRO〉
message.

First, we need two preliminaries results related to the
result of the execution of the procedure SendMessage by
pi depending on the configuration in which pi starts to
execute this procedure.

Lemma 1. When pi starts to execute SendMessage(m′,ab) in a
configuration where ab 	= last_delivered, the message m′ (either
a 〈SYNCHRO〉 message or a normal message) and every message
parameter to a subsequent invocation of SendMessage is pro-
cessed by p j in a finite time.

Proof. Consider a configuration Ck where ab 	= last_
delivered. Assume that pi starts to execute SendMes-
sage(m′,ab) in Ck . By contradiction, assume m′ is never
processed by p j in the remainder of E . That is, p j never
executes lines 06 or 08 in the Receive procedure. In turn,
tests on lines 03 or 04 never evaluate to true simultane-
ously.

As last_delivered 	= ab in Ck and last_delivered may
change only when m′ is processed (line 09), we know that
the test on line 04 is always true (since m is never pro-
cessed by assumption).

This implies that Q [m′,ab] � c + 1 never evaluates to
true (test on line 03). This implies that the sender stops
sending (m′,ab) before the (m′,ab) counter reached c + 1,
which is impossible. The reason is as follows. In order to
stop sending the same message, pi must get 3c + 2 ac-
knowledgments with the expected content (ack, (m′,ab)).
If such 3c + 2 acknowledgments are indeed received, this
implies that the receiver issued at least 2c + 2 of those ac-
knowledgments, and thus received 2c + 2 packets (m′,ab).
Consider the first such packet (m′,ab) received by p j .
If there is no reset of p j ’s queue following this packet,
the head of the queue now contains an entry (m′,ab,∗)

that cannot be deleted until the receiver resets the entire
queue. Indeed, at most c packets are initially present in
the receiver’s input channel, that can create at most c en-
tries in the queue. Since the queue is of size c + 1, the
(m′,ab,∗) tuple remains. Now, if the receiver sends c + 1
packets (ack, (m′,ab)), it implies that the receiver’s queue
for entry (m′,ab,∗) was incremented c + 1 times, which
invalidates the assumption. It follows that m′ is processed
in a finite time.

Note that after the processing of m′ , ab and last_
delivered have the same value with the execution of the
line 09 of Receive procedure. Hence the next invocation of
the SendMessage primitive by pi will make the values ab
and last_delivered different. Applying the above reasoning,
the lemma follows. �
Lemma 2. When pi starts to execute SendMessage(m′,ab)

in a configuration where ab = last_delivered, only m′ (either
a 〈SYNCHRO〉 message or a normal message) is not processed
by p j .

Proof. Consider a configuration Ck where ab = last_
delivered. Assume that pi starts to execute SendMes-
sage(m′,ab) in Ck .

Since the test in the line 04 of the Receive procedure
evaluates to false, the processing of m′ is not executed.
However, since pi keeps sending m′ and p j acknowledges
these packets the SendMessage procedure returns. Note
that pi executes line 01 or 03 of the Send procedure be-
fore the next invocation of SendMessage procedure.

It follows that the system reaches in a finite time a
configuration where ab 	= last_delivered. Then, Lemma 1
implies that every message that is parameter of subse-
quent invocations of SendMessage is eventually processed
by p j . �

Now, we can prove that S D L satisfies the four proper-
ties of the specification (see Section 2.2) starting from any
configuration.

Lemma 3. S D L satisfies the 0-Loss property.

Proof. Assume that pi has to send a message m to p j
starting from an arbitrary configuration. Note that proofs
of Lemmas 1 and 2 imply that any invocation of the Send
procedure eventually ends. This implies in turn that pi
starts to execute Send(m) in a finite time.

Then, pi invokes first SendMessage with a 〈SYNCHRO〉
message as parameter (see line 02 of the Send proce-
dure). Note that this 〈SYNCHRO〉 message may be lost if
ab = last_delivered when pi starts to execute SendMessage
by Lemma 2.

Then, following Lemma 2 that we have ab 	= last_
delivered when pi starts to execute SendMessage with m
as parameter (see line 04 of the Send procedure) since it
has executed line 03 of the Send procedure. By Lemma 1,
it follows that m is eventually processed by p j . As m is a
normal message, this implies by definition that m is deliv-
ered to p j in a finite time.

As this result holds whatever the state of the system
when pi requests to send m, we obtain that ∀m ∈ S(E),
m ∈ R(E). It is sufficient to observe that S(E) = S(E)0 to
obtain the result. �
Lemma 4. S D L satisfies the 1-Duplication property.

S. Dolev et al. / Information Processing Letters 111 (2011) 912–920 919
Proof. By contradiction, assume that there exists an exe-
cution E of S D L such that ∀b � 1, ∃m ∈ S(E), |{m′

i = m |
m′

i ∈ R(E)}| > 1 ∧ m /∈ R(E)b . In particular, this property is
true for b = 1. Hence, ∃m ∈ S(E), |{m′

i = m | m′
i ∈ R(E)}| >

1 ∧ m /∈ R(E)1. In other words, there exists in E a message
m sent by pi delivered several times to p j . Moreover m is
not the first message received by p j .

This implies that the line 06 in the Receive procedure
is executed several times for the message m. It is im-
possible and the reason is the following. After the first
delivery of m the receiver empties the queue and makes
last_delivered = ab (see proof of Lemma 2). Note that pi

modifies ab only when it stops to send m. Even if pi keeps
invoking SendPacket(m,ab) until it receives the 3c + 2 ac-
knowledgments, none of these messages will be delivered
since for each of them the test in line 04 in the Receive
procedure returns false.

This contradiction implies that only the first message
received by p j may be duplicate. The lemma follows. �
Lemma 5. S D L satisfies the 1-Creation property.

Proof. By contradiction, assume that there exists an ex-
ecution E of S D L such that ∀c � 1, ∃m ∈ R(E), m /∈
S(E) ∧ m /∈ R(E)c . In particular, this property is true for
c = 1. Hence, ∃m ∈ S(E), m /∈ S(E) ∧ m /∈ R(E)1. In other
words, there exists in E a message m not sent by pi but
delivered to p j . Moreover m is not the first message re-
ceived by p j .

Initially the channel (i, j) may contain at most c ghosts
messages. In the worst case, the receiver’s queue also con-
tains an entry for each of the ghost with the counters
initialized to c or c + 1.

Let (g,ab) be the first ghost message received by p j

with alternated bit set to ab. Let us study the two pos-
sible cases. First, assume that ab 	= last_delivered. Then p j

delivers g (line 06 of Receive procedure) and empties the
queue (line 10 of Receive procedure). Second, assume that
ab = last_delivered. Then p j does not deliver g (due to the
test of line 04 of Receive procedure) but it empties the
queue (line 10 of Receive procedure).

In both cases, there is at most one ghost message de-
livered to p j and the queue has been emptied. In turn, it
remains now at most c − 1 ghosts messages in the channel
(i, j). If one of them is received by p j (after an invocation
of ReceivePacket), its associated counter cannot reach the
value c + 1 (unless pi starts to send the same message but
in this case, it is no longer a ghost message) since there are
at most c − 1 copies of the same message. Consequently,
none of the c − 1 remaining ghost messages can be deliv-
ered, that contradicts the construction of m and proves the
result. �
Lemma 6. S D L satisfies the 1-Reordering property.

Proof. Following Lemma 5, S D L delivers at most one
ghost message to p j in E . Let us consider the two follow-
ing possible cases.
Case 1. S D L delivers no ghost message to p j in E .
According to Lemmas 3 and 4, any message sent from pi
is delivered to p j exactly once in this case. Now, observe
that any message is delivered to p j between the begin-
ning and the end of the corresponding execution of the
procedure Send by pi . Indeed, the message is delivered to
p j when it receives the (c + 1)-th copy of the message
whereas pi waits to receive the (3c + 2)-th acknowledg-
ment of the message to stop sending it (see proof of Lem-
mas 1 and 2). Since the Send procedure is blocking for pi ,
R(E)0 = R E = S E for any execution E where S D L delivers
no ghost message to p j . Hence, ∃d = 0 � 1, R(E)d = S E .

Case 2. S D L delivers one ghost message to p j in E .
Assume that the ghost message delivered by S D L is m.
Lemma 5 allows us to state that m is the first message
delivered to p j . Then, a similar reasoning to the one of
case 1 allows us to conclude that R(E) = m.S(E) for any
execution E where S D L delivers one ghost message m to
p j and then, R(E)1 = S E . Hence, ∃d = 1 � 1, R(E)d = S E .

In both cases, we show that S D L satisfies the 1-Reor-
dering property. �

Now, we can conclude on the following corollary of
Lemmas 3, 4, 5 and 6.

Theorem 4. S D L satisfies the (0,1,1,1)-Stabilizing Data-
Link communication specification.

5. Conclusion

In this paper, we focused on stabilizing data-link pro-
tocols over channels of bounded capacity c. First, we in-
troduced some measures for fault-resilience following the
specification presented in [16] that is suitable to the self-
stabilizing setting. Then, we proved lowers bounds on
these parameters. Finally, we proposed a stabilizing data-
link protocol that emulates FIFO reliable links over unreli-
able bounded non-FIFO communication environment with
an optimal fault-resilience. To achieve this optimal fault-
resilience, our protocol sends 6c + 4 packets (and their
corresponding acknowledgments) to deliver one message
to the application layer.

Some interesting open questions follow. Is it possible to
achieve optimal fault-resilience with a (significantly) lower
message complexity for a given channel capacity c? Re-
cently, some works on snap-stabilizing point-to-point com-
munication [7,6,5] across multiples hops have been pre-
sented in a coarse grained communication model. Is it pos-
sible to extend these results to the more realistic message
passing model using our Stabilizing Data-link as a commu-
nication black box? If so, is it possible to provide optimal
fault resilience as in the one hop case?

References

[1] Yehuda Afek, Geoffrey M. Brown, Self-stabilization over unreliable
communication media, Distributed Computing 7 (1) (1993) 27–34.

[2] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-
Butucaru, Sébastien Tixeuil, Brief announcement: Sharing memory

920 S. Dolev et al. / Information Processing Letters 111 (2011) 912–920
in a self-stabilizing manner, in: Proceedings of DISC 2010, in: Lec-
ture Notes in Computer Science, Boston, MA, USA, September 2010,
Springer, Berlin/Heidelberg, 2010.

[3] Joffroy Beauquier, Synnöve Kekkonen-Moneta, Fault-tolerance and
self stabilization: Impossibility results and solutions using self-
stabilizing failure detectors, International Journal of Systems Sci-
ence 28 (11) (1997) 1177–1187.

[4] James E. Burns, Mohamed G. Gouda, Raymond E. Miller, Stabilization
and pseudo-stabilization, Distributed Computing 7 (1) (1993) 35–42.

[5] Alain Cournier, Swan Dubois, Anissa Lamani, Franck Petit, Vincent
Villain, Snap-stabilizing linear message forwarding, in: 12th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS 2010), 2010, pp. 546–559.

[6] Alain Cournier, Swan Dubois, Vincent Villain, How to improve snap-
stabilizing point-to-point communication space complexity? in: SSS
2009, pp. 195–208.

[7] Alain Cournier, Swan Dubois, Vincent Villain, A snap-stabilizing
point-to-point communication protocol in message-switched net-
works, in: IPDPS 2009, pp. 1–11.

[8] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, Sébastien
Tixeuil, Snap-stabilization in message-passing systems, Journal of
Parallel and Distributed Computing (JPDC) 70 (12) (December 2010)
1220–1230.

[9] Edsger W. Dijkstra, Self-stabilizing systems in spite of distributed
control, Communications of the ACM 17 (11) (1974) 643–644.
[10] Shlomi Dolev, Self-Stabilization, MIT Press, Cambridge, 2000.
[11] Shlomi Dolev, Amos Israeli, Shlomo Moran, Self-stabilization of dy-

namic systems assuming only read/write atomicity, Distributed Com-
puting 7 (1) (1993) 3–16.

[12] Shlomi Dolev, Amos Israeli, Shlomo Moran, Resource bounds for
self-stabilizing message-driven protocols, SIAM Journal on Comput-
ing 26 (1) (1997) 273–290.

[13] Shlomi Dolev, Nir Tzachar, Empire of colonies: Self-stabilizing and
self-organizing distributed algorithms, in: Alexander A. Shvartsman
(Ed.), OPODIS, in: Lecture Notes in Computer Science, vol. 4305,
Springer, 2006, pp. 230–243.

[14] Mohamed G. Gouda, Nicholas J. Multari, Stabilizing communica-
tion protocols, IEEE Transactions on Computers 40 (4) (1991) 448–
458.

[15] Rodney R. Howell, Mikhail Nesterenko, Masaaki Mizuno, Finite-state
self-stabilizing protocols in message-passing systems, in: Anish Arora
(Ed.), WSS, IEEE Computer Society, 1999, pp. 62–69.

[16] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1996.

[17] Sébastien Tixeuil, Self-stabilizing algorithms, in: Algorithms and The-
ory of Computation Handbook, second edition, in: Chapman &
Hall/CRC Applied Algorithms and Data Structures, CRC Press, Taylor
& Francis Group, 2009, pp. 26.1–26.45.

[18] George Varghese, Self-stabilization by counter flushing, SIAM Jounal
on Computing 30 (2) (2000) 486–510.

	Stabilizing data-link over non-FIFO channels with optimal fault-resilience
	1 Introduction
	1.1 Related works
	1.2 Our contribution
	1.3 Paper organization

	2 Model
	2.1 System model
	2.2 Problem speciﬁcation

	3 Lower bounds
	4 A (0,1,1,1)-Stabilizing Data-Link protocol
	4.1 Presentation of the protocol
	4.1.1 Key ideas of the protocol
	4.1.2 General organization of the system
	4.1.3 Detailed presentation of the protocol

	4.2 Correctness proof

	5 Conclusion
	References

