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1. Introduction

Asynchronous unison [21,6] requires processors to maintain
synchrony between their counters called clocks. Specifically, each
processor has to increment its clock indefinitely while the clock
drift from its neighbors should not exceed 1. Asynchronous unison
is a fundamental building block for a number of principal tasks
in distributed systems such as distributed snapshots [5] and
synchronization [1,2].

A practical large-scale distributed system must counter a
variety of transient and permanent faults. A systemic transient
fault may perturb the system and leave it in an arbitrary
configuration. Self-stabilization [8,10] is a versatile technique for
transient fault forward recovery. Byzantine fault [23] is the most
generic permanent fault model: a faulty processor may behave
arbitrarily for an indefinite period of time. However, designing
distributed systems that handle both transient and permanent
faults proved to be rather difficult [7,11,25]. Some of the difficulty
is due to the inability of the system to counter Byzantine behavior
by relying on the information contained in the global system
configuration: a transient fault may place the system in an
arbitrary configuration (at the beginning of the execution).

In the context of the above discussion, considering joint
Byzantine and systemic transient fault tolerance for asynchronous
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unison appears futile (cf. impossibility results of [17]). Indeed, the
Byzantine processor may keep setting its clock to an arbitrary
value while the clocks of the correct processors are completely
out of synchrony. Hence, we are happy to report that the
problem is solvable in some cases. In this paper we present a
shared-memory Byzantine-tolerant self-stabilizing asynchronous
unison algorithm that operates on chain and ring system
topologies. The algorithm operates under a central strongly fair
scheduler. We show that the problem is unsolvable for any
other topology or under less stringent scheduler. Our algorithm
achieves minimal fault-containment radius: each correct processor
eventually synchronizes with its correct neighbors. We prove that
our algorithm is correct and demonstrate that its stabilization time
is asymptotically optimal.

Related work. The impetus of the present research is the result
by Dubois et al. [17]. They consider joint tolerance to crash
faults and systemic transient faults. The key observation that
enables this avenue of research is that the adopted definition of
asynchronous unison does not preclude the correct processors
from decrementing their clocks. This allows the processors to
synchronize and maintain unison even while their neighbors may
crash or behave arbitrarily.

There are several pure self-stabilizing solutions to the unison
problem [21,6,4]. None of those tolerate Byzantine faults. Clas-
sic Byzantine fault tolerance focuses on masking the fault. There
are self-stabilizing Byzantine-tolerant clock synchronization al-
gorithms for completely connected synchronous systems both
probabilistic [11,3] and deterministic [9,22]. The probabilistic and
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deterministic solutions tolerate up to one-third and one-fourth of
faulty processors respectively.

Another approach to joint transient and Byzantine tolerance is
containment. For tasks whose correctness can be checked locally,
such as vertex coloring, link coloring or dining philosophers,
the fault may be isolated within a region of the system. Strict
stabilization guarantees that there exists a containment radius
outside of which the processors are not affected by the fault
[25,24,26,20]. Yet some problems are not local and do not
admit strict stabilization. However, the tolerance requirements
may be weakened to strong-stabilization [15] which allows the
processors outside the containment radius to be affected by
Byzantine processors after the convergence of the system. The
faulty processors can affect these correct processors only a finite
number of times after the convergence of the system. Strong-
stabilization enables solution to several problems, such as tree
orientation and tree construction. Further weakening of the
Byzantine containment properties is expected as the problem
becomes narrower: for maximal metric trees and related problems,
both strict and strong stabilization need to be relaxed using
topology awareness [12-14].

Outline. This paper is structured as follows. In Section 2, we
formally state the model used in the remainder, Section 3 sums
up previous impossibility results while Section 4 presents our
algorithm. We prove its correctness and its time optimality
respectively in Section 5 and in Section 6. Section 7 concludes this

paper.
2. Model, definitions and notation

Program syntax and semantics. A distributed system consists of n
processors that form a communication graph. The processors are
nodes in this graph. The edges of this graph are pairs of processors
that can communicate with each other. Such pairs are neighbors.
A distance between two processors is the length of the shortest
path between them in this communication graph. Each processor
contains variables and rules. A variable ranges over a fixed domain
of values. A rule is of the form (label) : (guard) —> (command). A
guard is a Boolean predicate over processor variables. A command
is a sequence of assignment statements. However, the left-hand-
side of an assignment statement any command of p may not
mention the variables of its neighbors. That is, p can read and
update its variables. However, p may not mention the variables of
its neighbors on the left-hand-side of the assignment statements
of its commands. That is, p may read but not update the variables
of its neighbors.

A processor is either correct or faulty. In this paper we consider
crash faults and Byzantine faults. A crashed processor stop the
execution of its rules for the remainder of the run. A processor
affected by a Byzantine fault may disregard its program and change
the values of its variables arbitrarily. Note that in shared memory
even for a Byzantine processor, if a variable holds a certain value,
then all its neighbors read this value. That is, the neighbors of a
faulty processor cannot simultaneously read different values of the
variable. When the fault type is not explicitly mentioned, the fault
is Byzantine.

An assignment of values to all variables of the system is
a configuration. A rule whose guard is true in some system
configuration is enabled in this configuration, the rule is disabled
otherwise. An atomic execution of a subset of enabled rules
transitions the system from one configuration to another. This
transition is a step. Note that a Byzantine processor is assumed
to always have an enabled rule and its step consists of writing
arbitrary values to its variables. A run of a distributed system is a
sequence of such transitions.

Schedulers. A scheduler, also called daemon, is a restriction on
the runs to be considered. The schedulers differ by execution
semantics and by fairness [19]. The scheduler is synchronous if in
every run each step contains the execution of every enabled rule of
any correct processor. The scheduler is asynchronous otherwise.
There are several types of asynchronous schedulers. In the runs
of distributed scheduler, also called powerset, a step may contain
the execution of an arbitrary subset of enabled rules of correct
processors. This is the least restrictive scheduler. In the runs of a
central scheduler, every step contains the execution of exactly one
enabled rule of one correct processor. In the runs of locally central
scheduler, the step may contain the execution of multiple enabled
rules of correct processors as long as none of the rules belong
to neighbor processors. Central and locally central schedulers are
equivalent. That is, they define the same set of runs. In this paper
we consider these two types of schedulers.

With respect to fairness, the schedulers are classified as follows.
The most restrictive is a strongly fair scheduler. In every run of this
scheduler, a rule of a correct processor is executed infinitely often if
it is enabled in infinitely many configurations of the run. Note that
the strongly fair scheduler requires that the rule is executed even if
it continuously keeps being enabled and disabled throughout the
run. A less restrictive is the weakly fair scheduler. In every run of
this scheduler, a rule of a correct processors is executed infinitely
often if it is enabled in all but finitely many configurations of the
run. That is, the rule has to be executed only if it is continuously
enabled. An unfair scheduler places no fairness restrictions on the
runs of the distributed system. Faulty processors are not subject to
scheduling restrictions of any of the schedulers: a faulty processor
may take no steps during a run or it may take infinitely many steps.

Predicates and specifications. A predicate is a Boolean function
over program configurations. A configuration conforms to some
predicate R, if R evaluates to true in this configuration. The
configuration violates the predicate otherwise. Predicate R is
closed in a certain program &, if every configuration of a run
of # conforms to R provided that the program starts from a
configuration conforming to R. Note that if a program configuration
conforms to R and, after the execution of any step of &, the
resultant configuration also conforms to R, then R is closed in .

A processor specification for a processor p defines a set of
configuration sequences. These sequences are formed by variables
of some subset of processors in the system. This subset always
includes p itself. A problem specification, or just problem, defines
specifications for each processor of the system. A problem
specification in the presence of faults defines specifications for
correct processors only. Program & solves problem 4§ under a
certain scheduler if every run of & satisfies the specifications
defined by §. A closed predicate I is an invariant of program #
with respect to problem 4 if every run of # that starts in a state
conforming to I satisfies 4. An f-fault d-distance invariant I is a
particular invariant of & such that if the system has no more than
f faulty processors then in every run that starts in a configuration
conforming to Iy, each processor in the distance of strictly more
than d hops away from any fault satisfies the problem 4. That
is, only correct processors at distance d or higher from a faulty
processor have to satisfy the specification.

A program & is self-stabilizing [8] to specification 4 if every
run of & that starts in an arbitrary configuration contains a
configuration conforming to an invariant of # with respect to
problem . A program & is strictly stabilizing [25] for f faults and
distance d, denoted (f, d)-strictly stabilizing, to problem 4§ if P
converges to an f-fault d-distance invariant of # with respect to
problem 4.

Unison specification. Consider the system of processors each of

which has a natural number variable c called clock. The clock drift
between two processors is the absolute difference between their
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clock values. Two neighboring processors are in unison if their drift
is no more than one.

The classical definition of asynchronous unison [21,6], specifies
that, for every (correct) processor p, every program run has to
comply with the following two properties.

Safety: in every configuration, processor p is in unison with its
neighbors;

Liveness: the clock of p is incremented infinitely often and never
decremented.

Proposition 1. There does not exist a strictly stabilizing solution to
Byzantine faults for classic asynchronous unison (even when there is
only one Byzantine processor).

An informal argument follows. Consider the following initial
configuration: the Byzantine processor b has a clock value of 0
and any correct processor has a clock value equal to the distance
between it and b. Then, this configuration satisfies the safety
requirement of the problem. Assume now that the Byzantine
processor takes no actions and keeps its clock value to 0.
Remember that asynchronism of the system implies that this
execution is indistinguishable from the one where b is a correct
processor and is very slow. Consequently, no correct processor can
increment its clock without violating the safety requirement of the
problem from this configuration. Hence, no correct processor can
increment its clock infinitely often in any run starting from this
configuration.

To make the problem solvable we weaken the specification of
asynchronous unison as follows. For every correct processor p,
every program run has to satisfy the following properties.

Safety: in every configuration, processor p is in unison with its
correct neighbors;

Liveness: the clock of processor p is incremented infinitely often.

This specification is weaker than the classic one since it allows
both increments and decrements as long as the processors remain
in synchrony.

At this step, one may think about a very simple solution to
the problem. The idea of this solution is to allow clocks of correct
processors to cycle between the values 0 and 1 whatever is the
clock of the Byzantine processor. This solution is composed of
two rules. The first one sets the clock value of the processor to
1 when its value is 0. The second one sets the clock value of
the processor to 0 when its value is not 0. This simple solution
ensures our liveness property but is not strictly stabilizing since
the closure of the safety property is not guaranteed. Consider
the following counter-example: in the initial configuration of the
system, any clock has the same value (strictly greater than 2), say
15 for example and there is no Byzantine processor (remember
that clock values are unbounded integers by specification). Note
that this configuration satisfies the safety condition of our problem
(the drift clock between any two correct processors is at most
one). Then, any correct processor is enabled by the algorithm.
Assume now that the scheduler chooses only one correct processor,
the next configuration does not satisfy the safety condition (since
the chosen processor takes the clock value 0 whereas its correct
neighbors keep the clock value 15).

A program that solves the asynchronous unison problem is
minimal if the only variable that each processor has is its clock.
However, note that it may have some constants.

3. Impossibility results and model justification

Dubois et al. [17] established a number of impossibility
results for asynchronous unison and crash faults. These results
are immediately applicable to Byzantine faults as a Byzantine
processor may emulate the crash fault by never executing a step.
We summarize their results in the theorem below.

Theorem 1 ([17]). There does not exist a minimal (f, d)-strictly
stabilizing solution to the asynchronous unison problem in shared
memory for any distance d > 0 if the communication graph of the
distributed system contains processors of degree greater than two or
if the number of faults is greater than one or if the scheduler is either
unfair or weakly fair.

The intuition behind the impossibility results is as follows. If
the system contains a processor p with at least three neighbors,
the neighbors can cycle through their states such that all three
are always in unison with p yet p cannot update its clock without
breaking unison with at least one neighbor. If the system allows
two faults, then the faulty processors may contain clock values
so far apart that if the correct processors stay in unison with the
faulty ones then they are not able to synchronize with each other.
If the execution scheduler is either unfair or weakly fair, then one
correct processor may cycle through its unison states such that its
neighbor is never given an opportunity to update its clock.

Theorem 1 implies that the execution model that may still
admit a solution to the asynchronous unison problem is as follows.
The system has a maximum degree of two, that is the system is
a ring or a chain. There is at most one fault and the scheduling is
strongly fair. We pursue solutions for this particular model in the
remainder of the paper.

4. 88U: a strictly stabilizing unison for chains and rings

In this section we present the (1, 0)-strictly stabilizing minimal
unison algorithm, §48U. We prove its correctness and evaluate its
performance in the following sections.

The algorithm can operate on either chain or ring system
topologies. For the description of the algorithm, let us introduce
some topological terminology. A middle processor has two
neighbors. An end processor has only one. In a ring, every processor
is amiddle processor. A chain has two end processors. We consider
the system of processors to be laid out horizontally left to right.
We, therefore, speak of left and right neighbors for a processor and
left and right ends of a chain. This global orientation of the chain
is only assumed for the purposes of exposition, we do not require
that the local orientation of processors is globally consistent (that
is, the labeling of right and left neighbor is arbitrary).

Recall that drift between two processors p and q is the absolute
value of the difference between their clock values. Two processors
p and q are in unison if the drift between them is no more than
1. An island is a segment of correct processors such that for each
processor p, if its neighbor q is also in this island, then p and q are in
unison. A processor with no in-unison neighbors is assumed to be a
single-processor island. Note that a faulty processor never belongs
to an island. The width of an island is the number of processors in
this island.

The main idea of the algorithm is as follows. Processors form
islands (of processors with synchronized clocks by definition).
The algorithm is designed such that the clocks of the processors
with adjacent islands drift closer to each other and the islands
eventually merge. If a faulty processor restricts the drift of one such
island, for example by never changing its clock, the other islands
still drift and synchronize with the affected island.

Operation description. A description of §8U is shown in Fig. 1.
Specifically, 88U operates as follows. Each processor p maintains
a single variable ¢, where it stores its current clock value. That is,
our algorithm is minimal.

We grouped the processor rules into end processor rules and
middle processor rules. Middle processor rules are further grouped
into: operation - executed when the processor is in unison with
at least one of its neighbors, and synchronization - executed
otherwise.
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processor p
constants I,r: left and right neighbors of p (this labelling is arbitrary
and we do not require that it is consistent with the one
of neighborhood processors)
dgp: degree of p

variable ¢, + natural number, clock value of p
rules
end processor rules
leftEndUp: (dgp=1)AN((cp=¢)V(cp=¢,—1) — =, +1

leftEndDouwn:  (dg, = 1) A ((cp > ¢, +1) V

rightEndUp and rightEndDown are similar
middle processor operation rules

middleLeftUp:  (dg, =2)A(cy = Ve, = —1) A (<) —cpi=cp+ 1

middleLeftDown: (dg, =2) N (¢, =a Ve, =a+1)A(e, >¢) — cpi=c,— 1

middleRightUp and middleRightDown are similar

(,,<c, 1) —e=c-1

middle processor synchronization rules
syneUp: (dgy =2) N (cp <1 —1)A(cp < ¢p — 1) —> ¢ == man{c;, ¢}
syncDown: (dgy =2) N (cp >+ 1) Ay > ¢ + 1) — ¢ := maz{c, ¢}

Fig.1. $$U: minimal (1, 0)-strictly stabilizing asynchronous unison algorithm for
chains and rings.
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Fig. 2. An example operation sequence of $8U on a chain with a faulty processor.
Numbers are processor clock values. The faulty processor is in double circles. The
squared processor has an enabled rule to be executed.

At least one rule is always enabled at an end processor.
Depending on the clock value of its neighbor, the left end
processor either increments or decrements its own clock using
rules leftEndUp and leftEndDown. The operation of the right end
processor is similar.

Let us describe the rules of a middle processor. If processor
p is in unison with its left neighbor, p can adjust ¢, to match
its right neighbor using rules middleLeftUp or middleLeftDown.
The execution of neither rule breaks the unison of p and its left
neighbor. Similar adjustment is done for the left neighbor using
middleRightUp and middleRightDown. Note that if p is in unison
with both of its neighbors and ¢; and ¢, differ by 2, none of these
rules of p are enabled as any changes of ¢, break the unison with
a neighbor of p. If p is in unison with neither of its neighbors, and
the clocks of the two neighbors are either both greater or both less
than the clock of p, the processor synchronizes its clock with one
of the neighbors using rule syncDown or syncUp.

Example operation. The operation of our algorithm is best under-
stood with an example. Fig. 2 illustrates the operation of $8U on
a chain with a faulty processor. Figs. 3 and 4 show the operation of
848U on rings respectively without and with a faulty processor.

5. Correctness proof of §8U

Chains. For chains it is sufficient to consider the operation of the
algorithm for the case where the faulty processor is at the end
of the chain. Indeed, if the faulty processor is in the middle of
the chain, the synchronization of the two segments of correct
processors is independent of each other due to the problem
specification. Thus, without loss of generality, we assume that if
there exists a faulty processor in the system, it is the right end
processor.

= ) =y
s‘a 9@ & — = O—E—6
7 Lo

syncDown middleLeft Down
t

= 7o
S. J—( -— S
(=== s O—8—-T—®

middlcRightDownl middleLeft Down

S = y [
= @ —h (5] — = O—O—0—©
N N/

middleLeftUp middleLe ft Down
t

Fig. 3. An example operation sequence of §4U on a ring with no faults. Numbers
represent clock values. The squared processor has an enabled rule to be executed.
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Fig. 4. An example operation sequence of 88U on a chain with a faulty processor.
Numbers are processor clock values. The faulty processor is in double circles. The
squared processor has an enabled rule to be executed.

Fig. 5. The transitions of in-unison neighbor processors [ and p. An illustration for
the proof of Lemma 2.

Lemma 1. If a run of 88U on a chain starts from a configuration
where two processors p and q belong to the same island, then the two
processors belong to the same island in every configuration of this run.

Lemma 1 states that an island is never broken. The validity of
the lemma can be easily ascertained by the examination of the
algorithm’s rules as a processor never de-synchronizes from its in-
unison neighbor.

Lemma 2. In every run of $8U on a chain, each processor in the
leftmost island takes an infinite number of steps.

Proof. The proof is by induction on the width of the island. In
every configuration, the left end processor has either leftEndUp
or leftEndDown enabled. Due to the strongly fair scheduler, this
processor takes an infinite number of steps in every run.

Assume that the left neighbor [ of processor p that belongs to
the leftmost island takes an infinite number of steps in the run.
According to Lemma 1, l and p are in unison in every configuration
of this run. That is, | and p transition between the three sets
of states: ¢, =¢, +1,¢ =¢, and ¢ = ¢, — 1. See Fig. 5 for an
illustration. Observe that, regardless of the clock value of the
right neighbor of p, if ¢, = ¢, then p has either middieLeftUp or
middleLeftDown rule enabled. If p executes this rule, the system
goes either in the state where ¢, = ¢, + 1 or ¢ = ¢, — 1. Since
I executes infinitely many steps in the run a configuration where
) = ¢p repeats infinitely often. That is, one of p’s rules are enabled
infinitely often in this run. Since the scheduler is strongly fair, p
executes infinitely many steps. O
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Lemma 3. If a run of 88U on a chain starts from a configuration
where processor p belongs to the leftmost island while its right correct
neighbor r does not, then this run contains a configuration where both
p and r belong to the same island.

Lemma 3 claims that every two adjacent islands eventually
merge.

Proof. We prove the lemma by demonstrating that the drift
between p and r decreases to one in every run of §8U. Let us
consider the rules of r. The execution of any rule by r can only
decrease the drift between the two processors. The execution of
the rules by p always decreases the drift as well. According to
Lemma 2, p takes infinitely many steps in this run. This means that
this run contains a configuration where the drift between p and r
iszero. O

Define the following predicate: INV = each correct processor is
in unison with its correct neighbors.

Theorem 2. Algorithm 88U on chains stabilizes to INV.

Proof (Sketch). If every correct processor is in unison with its
neighbors, all correct processors belong to a single island. The
closure of INV follows from Lemma 1. Note that Lemma 3
guarantees that the two leftmost islands eventually merge. The
convergence if $8U to INV can be proven by induction on the
number of islands in the initial configuration. O

Theorem 3. Predicate INV is an 1-fault O-distance invariant of $8U
on chains with respect to the asynchronous unison problem.

In other words, Theorem 3 states that every run of 88U starting
from a configuration conforming to INV satisfies the specification.

Proof. The safety property of the asynchronous unison follows
immediately from the closure of INV. Let us consider the liveness
property. Once in unison the only operation that a processor can
execute on its clock is increment or decrement. According to
Lemma 2, every correct processor of the system takes an infinite
number of steps. Since the clock values are natural numbers,
each processor is bound to execute an infinite number of clock
increments. Hence the liveness. O

Rings. Since there are no end processors on a ring, we only have to
consider the middle processor rules.

Lemma 4. If a run of 88U on a ring starts from a configuration
where two processors p and q belong to the same island, then the two
processors belong to the same island in every configuration of this run.

The above lemma is proven similarly to Lemma 1.

Lemma 5. In every run of 88U on a ring, there is an island where
every processor takes an infinite number of steps.

Proof (Sketch). Observe that in every configuration of 84U on a
ring, there are always a largest and a smallest clock value. Hence,
there is at least one correct processor whose clock holds the largest
or the smallest value in the system. Indeed, in the worst case, the
Byzantine processor holds only one of them. This correct processor
has a rule enabled. Consequently, in every configuration of $8U on
aring, there exists at least one enabled correct processor and then,
there are infinitely many steps executed by correct processors in
every run of 88U since we consider a strongly fair scheduler. Since
there are finitely many correct processors, at least one correct
processor takes infinitely many steps. Let us consider the island to
which this processor belongs. The rest of the lemma is proven by
induction on the width of this island similar to Lemma 2. O

Lemma 6. Ifa run of 88U starts from a configuration where there is
more than one island, then there exists two neighbor processors p and
q that belong to two distinct islands in this configuration such that this
run contains a configuration where both p and q belong to the same
island.

Proof (Sketch). Let us consider the initial configuration of $8U on
aring with more than one island. According to Lemma 5, there is at
least one island in this configuration where every processor takes
an infinite number of steps. Assume, without loss of generality, that
this island has an adjacent island to the right. An argument similar
to the one employed in the proof of Lemma 3 demonstrates that
these islands eventually merge. O

The two theorems below are similar to their equivalents for
chains.

Theorem 4. Algorithm §8U on rings stabilizes to INV.

Theorem 5. Predicate INV is an 1-fault O-distance invariant of $8U
on rings with respect to the asynchronous unison problem.

6. Stabilization time of §8U

In this section, we compute the stabilization time of $8U. We
estimate the stabilization time in the number of asynchronous
rounds. In general, this notion is somewhat tricky to define for a
strongly fair scheduler, as the actions of processors may become
disabled and then enabled an arbitrary number of times before
execution. However, this definition simplifies for the case of §8U
as every correct processor takes an infinite number of steps. We
define an asynchronous round to be the smallest segment of a run
of the algorithm where every correct processor executes a step.

Lemma 7. The stabilization time of 88U is in O(L) asynchronous
rounds where L is the largest clock drift between correct processors
in the initial configuration of the system.

Proof (Sketch). For this discussion we assume that the system
topology is a chain. The argument for a ring is similar. We first
argue that the largest drift between correct processors does not
increase. The only actions where a correct processor changes its
clock value by more than one are syncUp and syncDown. However,
in syncUp, the processor selects the minimum of the clock values of
its neighbors. Since the number of faults is no more than one, out of
the two neighbors one has to be correct. Therefore, the execution of
either rule does not increase the largest drift. A correct processor p
whose neighbor q does not share an island with it can only change
its clock to decrease the drift between p and q. That is, in every
round, this drift decreases by one. In the worst case it takes L rounds
to synchronize p and g. Hence the theorem. 0O

Then, we prove the optimality of $8U by providing the lower
bound of the stabilization time of the asynchronous unison.
Complete proofs are available in [18].

Lemma 8. If a run of any (1, 0)-strictly stabilizing solution to the
minimal asynchronous unison starts from a configuration where two
neighbor processors are in unison, these two processors are in unison
in every configuration of this run.

To rephrase the lemma, in a solution to the asynchronous unison a
processor cannot break unison.
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Proof. Assume the opposite. That is, there is an algorithm A
that solves the asynchronous unison problem yet there is a
run of A such that it starts from a configuration where two
neighbor processors u and v are in unison yet this run contains
a configuration where u and v are not in unison. That is, this run
contains two sequential configurations cn and cn;, such that u and
v are in unison in cny, then one of the two processors executes a
rule and moves the system into cn, where the two processors are
not in unison. Let this processor be u. If u has a neighbor besides v,
let w be the other neighbor of u. Consider a configuration cn; where
the clock values of u, v and w are as in cn; and all processors of the
system, except for possibly w, are in unison while w is faulty. Since
the states of u and its neighbors are the same in cn; and cns, the
rule of u that breaks the unison with v is enabled in cn3. However,
all correct processors are in unison in cns. Thus, the execution of a
rule that breaks the unison between two correct processors. This
violates the safety property of the asynchronous unison problem.
That means 4 is not a solution to the problem and our initial
assumption is incorrect. O

Lemma 9. Any (1, 0)-strictly stabilizing solution to the minimal
asynchronous unison requires $2(L) stabilization rounds where L
is the largest initial drift between correct processors in the initial
configuration of the system.

Proof. According to Lemma 8, no solution can break a unison
between correct neighbors during stabilization. This means in-
unison processors can increase or decrease their clock value by at
most one. Consider an initial configuration of the system where the
processors are grouped into two islands whose drift is L such that
there is at least a pair of processors in each group. This system then
can achieve unison in no less than L rounds. O

Let us review our conclusions so far. Lemma 7 proves that the
stabilization complexity of §8U is in O(L) while Lemma 9 shows
that any (1, 0)-strictly stabilizing algorithm requires at least that
many rounds to stabilize. The following theorem summarizes these
results.

Theorem 6. The stabilization complexity of 88U is optimal. It
stabilizes in ® (L) asynchronous rounds where L is the largest drift
between correct processors in the initial configuration of the system.

7. Conclusion

In this paper we explored joint tolerance to Byzantine and
systemic transient faults for the asynchronous unison problem in
shared memory. We presented a (1, 0)-strictly stabilizing solution
to this problem on chain and ring topologies under central strongly
fair scheduler. On the basis of previously published results, we
demonstrate that all the assumptions of the execution model of
the algorithm are necessary except for possible weakening of
the scheduler. Solutions under distributed scheduler, that allows
multiple concurrent steps, remain to be explored. Another way to
complete these results is to consider bounded clocks.

The existence of a solution for shared memory execution model
opens another avenue of research. It is interesting to consider the
existence of a solution in lower atomicity models such as shared
register or message-passing. We conjecture that a solution in such
model is more difficult to obtain as the lower atomicity tends to
empower faulty processors. Indeed, in the shared-register model a
Byzantine processor may report differing clock values to its right
and left neighbor. Such behavior makes a single fault ring topology
essentially equivalent to two fault chain topology. The latter is
proven unsolvable. Hence, we posit that in the lower atomicity
models, the only topology that allows a solution to asynchronous
unison to the chain.
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