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Self-stabilization with Byzantine tolerance for global tasks∗

Swan Dubois† Toshimitsu Masuzawa‡ Sébastien Tixeuil§

Abstract

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to

recover from any transient fault that arbitrarily corrupts the contents of all memories in the system.

Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary

malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the

spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation

and tree construction.

We present and illustrate a new concept of Byzantine containment in stabilization. Our property,

called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform

too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly

stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number

of Byzantine nodes that can be tolerated in a self-stabilizing context.

Keywords Byzantine fault, Distributed algorithm, Fault tolerance, Stabilization, Spanning tree construc-
tion

1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that tolerance to various kinds of faults
and hazards must be included from the very early design of such systems. Self-stabilization [5, 7, 15] is a
versatile technique that permits forward recovery from any kind of transient faults, while Byzantine Fault-
tolerance [10] is traditionally used to mask the effect of a limited number of malicious faults. Making
distributed systems tolerant to both transient and malicious faults is appealing yet proved difficult [8, 3, 13]
as impossibility results are expected in many cases.

Two main paths have been followed to study the impact of Byzantine faults in the context of self-
stabilization:

1. Byzantine fault masking. In completely connected synchronous systems, one of the most studied
problems in the context of self-stabilization with Byzantine faults is that of clock synchronization. In [1,
8], probabilistic self-stabilizing protocols were proposed for up to one third of Byzantine processors,
while in [6, 9] deterministic solutions tolerate up to one fourth and one third of Byzantine processors,
respectively.

2. Byzantine containment. For local tasks (i.e. tasks whose correctness can be checked locally, such as
vertex coloring, link coloring, or dining philosophers), the notion of strict stabilization was proposed [13,
14, 12]. Strict stabilization guarantees that there exists a containment radius outside which the effect
of permanent faults is masked, provided that the problem specification makes it possible to break the
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causality chain that is caused by the faults. As many problems are not local, it turns out that it is
impossible to provide strict stabilization for those.

Our Contribution In this paper, we investigate the possibility of Byzantine containment in a self-
stabilizing setting for tasks that are global (i.e. for with there exists a causality chain of size r, where
r depends on n the size of the network), and focus on two global problems, namely tree orientation and
tree construction. As strict stabilization is impossible with such global tasks, we weaken the containment
constraint by limiting the number of times that correct processes can be disturbed by Byzantine ones. Re-
mind that strict stabilization requires that processes beyond the containment radius eventually achieve their
desired behavior and are never disturbed by Byzantine processes afterwards. We relax this requirement
in the following sense: we allow these correct processes beyond the containment radius to be disturbed by
Byzantine processes, but only a limited number of times, even if Byzantine nodes take an infinite number of
actions.

The main contribution of this paper is to present new possibility results for containing the influence of
unbounded Byzantine behaviors. In more details, we define the notion of strong stabilization as the novel
form of the containment and introduce disruption times to quantify the quality of the containment. The
notion of strong stabilization is weaker than the strict stabilization but is stronger than the classical notion
of self-stabilization (i.e. every strongly stabilizing protocol is self-stabilizing, but not necessarily strictly
stabilizing). While strict stabilization aims at tolerating an unbounded number of Byzantine processes, we
explicitly refer the number of Byzantine processes to be tolerated. A self-stabilizing protocol is (t, c, f)-
strongly stabilizing if the subsystem consisting of processes more than c hops away from any Byzantine
process is disturbed at most t times in a distributed system with at most f Byzantine processes. Here c
denotes the containment radius and t denotes the disruption time.

To demonstrate the possibility and effectiveness of our notion of strong stabilization, we consider tree
orientation and tree construction. It is shown in [13] that there exists no strictly stabilizing protocol with
a constant containment radius for these problems. The impossibility result can be extended even when the
number of Byzantine processes is upper bounded (by one). In this paper, we first show that the problem of
tree orientation has no constant bound for the containment radius in a tree with two Byzantine processes
even when we allow processes beyond the containment radius to be disturbed a finite number of times. Then
we consider the case of a single Byzantine process and present a (∆, 0, 1)-strongly stabilizing protocol for
tree orientation, where ∆ is the maximum degree of processes. The containment radius of 0 is obviously
optimal. Also, we provide a (f∆d, 0, f)-strongly stabilizing protocol for rooted tree construction, provided
that correct processes remain connected, where n (respectively f) is the number of processes (respectively
Byzantine processes) and d is the diameter of the subsystem consisting of all correct processes. Notice that
each process does not need to know the number f of Byzantine processes and that f can be n − 1 at the
worst case. In other words, the algorithm is adaptive in the sense that the disruption times depend on the
actual number of Byzantine processes. The containment radius of 0 is also optimal. Both algorithms are
also optimal with respect to the number of tolerated Byzantine nodes.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P,L) consists of a set P = {v1, v2, . . . , vn} of processes and a set L of bidirectional
communication links (simply called links). A link is an unordered pair of distinct processes. A distributed
system S can be regarded as a graph whose vertex set is P and whose link set is L, so we use graph
terminology to describe a distributed system S.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of a process v is denoted by
Nv, and its cardinality (the degree of v) is denoted by ∆v(= |Nv|). The degree ∆ of a distributed system
S = (P,L) is defined as ∆ = max{∆v | v ∈ P}. We do not assume existence of a unique identifier for each
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process. Instead we assume each process can distinguish its neighbors from each other by locally arranging
them in some arbitrary order: the k-th neighbor of a process v is denoted by Nv(k) (1 ≤ k ≤ ∆v).

Processes can communicate with their neighbors through link registers. For each pair of neighboring
processes u and v, there are two link registers ru,v and rv,u. Message transmission from u to v is realized as
follows: u writes a message to link register ru,v and then v reads it from ru,v. The link register ru,v is called
an output register of u and is called an input register of v. The set of all output (resp. input) registers of u
is denoted by Outu (resp. Inu), i.e. Outu = {ru,v | v ∈ Nu} and Inu = {rv,u |v ∈ Nu}.

The variables that are maintained by processes denote process states. Similarly, the values of the variables
stored in each link register denote the state of the registers. A process may take actions during the execution
of the system. An action is simply a function that is executed in an atomic manner by the process. The actions
executed by each process is described by a finite set of guarded actions of the form 〈guard〉 −→ 〈statement〉.
Each guard of process u is a boolean expression involving the variables of u and its input registers. Each
statement of process u is an update of its state only.

A global state of a distributed system is called a configuration and is specified by a product of states of
all processes and all link registers. We define C to be the set of all possible configurations of a distributed

system S. For a process set R ⊆ P and two configurations ρ and ρ′, we denote ρ
R
7→ ρ′ when ρ changes to ρ′

by executing an action of each process in R simultaneously. Notice that ρ and ρ′ can be different only in the
states of processes in R and the states of their output registers. For completeness of execution semantics,
we should clarify the configuration resulting from simultaneous actions of neighboring processes. The action
of a process depends only on its state at ρ and the states of its input registers at ρ, and the result of the
action reflects on the states of the process and its output registers at ρ′.

A schedule of a distributed system is an infinite sequence of process sets. Let Q = R1, R2, . . . be a
schedule, where Ri ⊆ P holds for each i (i ≥ 1). An infinite sequence of configurations e = ρ0, ρ1, . . . is

called an execution from an initial configuration ρ0 by a schedule Q, if e satisfies ρi−1
Ri

7→ ρi for each i (i ≥ 1).
Process actions are executed atomically, and we also assume that a distributed daemon schedules the actions
of processes, i.e. any subset of processes can simultaneously execute their actions.

The set of all possible executions from ρ0 ∈ C is denoted by Eρ0
. The set of all possible executions is

denoted by E, that is, E =
⋃

ρ∈C Eρ. We consider asynchronous distributed systems where we can make
no assumption on schedules except that any schedule is weakly fair : every process is contained in infinite
number of subsets appearing in any schedule.

In this paper, we consider (permanent) Byzantine faults : a Byzantine process (i.e. a Byzantine-faulty
process) can make arbitrary behavior independently from its actions. If v is a Byzantine process, v can
repeatedly change its variables and its output registers arbitrarily.

In asynchronous distributed systems, time is usually measured by asynchronous rounds (simply called
rounds). Let e = ρ0, ρ1, . . . be an execution by a schedule Q = R1, R2, . . .. The first round of e is defined

to be the minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk, such that
⋃k

i=1 R
i = P ′ where P ′ is the set of correct

processes of P . Round t (t ≥ 2) is defined recursively, by applying the above definition of the first round to
e′′ = ρk, ρk+1, . . .. Intuitively, every correct process has a chance to update its state in every round.

2.2 Self-Stabilizing Protocol Resilient to Byzantine Faults

Problems considered in this paper is so-called static problems, i.e. they require the system to find static
solutions. For example, the spanning-tree construction problem is a static problem, while the mutual exclu-
sion problem is not. Some static problems can be defined by a specification predicate (shortly, specification),
spec(v), for each process v: a configuration is a desired one (with a solution) if every process satisfies spec(v).
A specification spec(v) is a boolean expression on variables of Pv (⊆ P ) where Pv is the set of processes
whose variables appear in spec(v). The variables appearing in the specification are called output variables
(shortly, O-variables). In what follows, we consider a static problem defined by specification spec(v).

A self-stabilizing protocol is a protocol that eventually reaches a legitimate configuration, where spec(v)
holds at every process v, regardless of the initial configuration. Once it reaches a legitimate configuration,
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every process v never changes its O-variables and always satisfies spec(v). From this definition, a self-
stabilizing protocol is expected to tolerate any number and any type of transient faults since it can eventually
recover from any configuration affected by the transient faults. However, the recovery from any configuration
is guaranteed only when every process correctly executes its action from the configuration, i.e., we do not
consider existence of permanently faulty processes.

When (permanent) Byzantine processes exist, Byzantine processes may not satisfy spec(v). In addition,
correct processes near the Byzantine processes can be influenced and may be unable to satisfy spec(v).
Nesterenko and Arora [13] define a strictly stabilizing protocol as a self-stabilizing protocol resilient to un-
bounded number of Byzantine processes.

Given an integer c, a c-correct process is a process defined as follows.

Definition 1 (c-correct process) A process is c-correct if it is correct ( i.e. not Byzantine) and located at
distance more than c from any Byzantine process.

Definition 2 ((c, f)-containment) A configuration ρ is (c, f)-contained for specification spec if, given at
most f Byzantine processes, in any execution starting from ρ, every c-correct process v always satisfies
spec(v) and never changes its O-variables.

The parameter c of Definition 2 refers to the containment radius defined in [13]. The parameter f refers
explicitly to the number of Byzantine processes, while [13] dealt with unbounded number of Byzantine faults
(that is f ∈ {0 . . . n}).

Definition 3 ((c, f)-strict stabilization) A protocol is (c, f)-strictly stabilizing for specification spec if,
given at most f Byzantine processes, any execution e = ρ0, ρ1, . . . contains a configuration ρi that is (c, f)-
contained for spec.

An important limitation of the model of [13] is the notion of r-restrictive specifications. Intuitively, a
specification is r-restrictive if it prevents combinations of states that belong to two processes u and v that
are at least r hops away. An important consequence related to Byzantine tolerance is that the containment
radius of protocols solving those specifications is at least r. For some problems, such as the spanning tree
construction we consider in this paper, r can not be bounded to a constant. We can show that there exists
no (o(n), 1)-strictly stabilizing protocol for the spanning tree construction.

To circumvent the impossibility result, we define a weaker notion than the strict stabilization. Here, the
requirement to the containment radius is relaxed, i.e. there may exist processes outside the containment
radius that invalidate the specification predicate, due to Byzantine actions. However, the impact of Byzantine
triggered action is limited in times: the set of Byzantine processes may only impact the subsystem consisting
of processes outside the containment radius a bounded number of times, even if Byzantine processes execute
an infinite number of actions.

From the states of c-correct processes, c-legitimate configurations and c-stable configurations are defined
as follows.

Definition 4 (c-legitimate configuration) A configuration ρ is c-legitimate for spec if every c-correct
process v satisfies spec(v).

Definition 5 (c-stable configuration) A configuration ρ is c-stable if every c-correct process never changes
the values of its O-variables as long as Byzantine processes make no action.

Roughly speaking, the aim of self-stabilization is to guarantee that a distributed system eventually reaches
a c-legitimate and c-stable configuration. However, a self-stabilizing system can be disturbed by Byzantine
processes after reaching a c-legitimate and c-stable configuration. The c-disruption represents the period
where c-correct processes are disturbed by Byzantine processes and is defined as follows

Definition 6 (c-disruption) A portion of execution e = ρ0, ρ1, . . . , ρt (t > 1) is a c-disruption if and only
if the following holds:
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1. e is finite,

2. e contains at least one action of a c-correct process for changing the value of an O-variable,

3. ρ0 is c-legitimate for spec and c-stable, and

4. ρt is the first configuration after ρ0 such that ρt is c-legitimate for spec and c-stable.

Now we can define a self-stabilizing protocol such that Byzantine processes may only impact the subsystem
consisting of processes outside the containment radius a bounded number of times, even if Byzantine processes
execute an infinite number of actions.

Definition 7 ((t, k, c, f)-time contained configuration) A configuration ρ0 is (t, k, c, f)-time contained
for spec if given at most f Byzantine processes, the following properties are satisfied:

1. ρ0 is c-legitimate for spec and c-stable,

2. every execution starting from ρ0 contains a c-legitimate configuration for spec after which the values
of all the O-variables of c-correct processes remain unchanged (even when Byzantine processes make
actions repeatedly and forever),

3. every execution starting from ρ0 contains at most t c-disruptions, and

4. every execution starting from ρ0 contains at most k actions of changing the values of O-variables for
each c-correct process.

Definition 8 ((t, c, f)-strongly stabilizing protocol) A protocol A is (t, c, f)-strongly stabilizing if and
only if starting from any arbitrary configuration, every execution involving at most f Byzantine processes
contains a (t, k, c, f)-time contained configuration that is reached after at most l rounds. Parameters l and
k are respectively the (t, c, f)-stabilization time and the (t, c, f)-process-disruption time of A.

Note that a (t, k, c, f)-time contained configuration is a (c, f)-contained configuration when t = k =
0, and thus, (t, k, c, f)-time contained configuration is a generalization (relaxation) of a (c, f)-contained
configuration. Thus, a strongly stabilizing protocol is weaker than a strictly stabilizing one (as processes
outside the containment radius may take incorrect actions due to Byzantine influence). However, a strongly
stabilizing protocol is stronger than a classical self-stabilizing one (that may never meet their specification
in the presence of Byzantine processes).

The parameters t, k and c are introduced to quantify the strength of fault containment, we do not require
each process to know the values of the parameters. Actually, the protocols proposed in this paper assume
no knowledge on the parameters.

There exists some relationship between these parameters as the following proposition states:

Proposition 1 If a configuration is (t, k, c, f)-time contained for spec, then t ≤ nk.

Proof Let ρ0 be a (t, k, c, f)-time contained configuration for spec. Assume that t > nk.
If there exists no execution e = ρ0, ρ1, . . . such that e contains at least nk+1 c-disruptions, then ρ0 is in

fact a (nk, k, c, f)-time contained configuration for spec (and hence, we have t ≤ nk). This is contradictory.
So, there exists an execution e = ρ0, ρ1, . . . such that e contains at least nk + 1 c-disruptions.

As any c-disruption contains at least one action of a c-correct process for changing the value of an O-
variable by definition, we obtain that e contains at least nk+1 actions of c-correct processes for changing the
values of O-variables. There is at most n c-correct processes. So, there exists at least one c-correct process
which takes at least k + 1 actions for changing the value of O-variables in e. This is contradictory with the
fact that ρ0 is a (t, k, c, f)-time contained configuration for spec. �
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2.3 Discussion

There exists an analogy between the respective powers of (c, f)-strict stabilization and (t, k, c, f)-strong
stabilization for the one hand, and self-stabilization and pseudo-stabilization for the other hand.

A pseudo-stabilizing protocol (defined in [2]) guarantees that every execution has a suffix that matches
the specification, but it could never reach a legitimate configuration from which any possible execution
matches the specification. In other words, a pseudo-stabilizing protocol can continue to behave satisfying
the specification, but with having possibility of invalidating the specification in future. A particular schedule
can prevent a pseudo-stabilizing protocol from reaching a legitimate configuration for arbitrarily long time,
but cannot prevent it from executing its desired behavior for arbitrarily long time. Thus, a pseudo-stabilizing
protocol is useful since desired behavior is eventually reached.

Similarly, every execution of a (t, k, c, f)-strongly stabilizing protocol has a suffix such that every c-
correct process executes its desired behavior. But (t, k, c, f)-strongly stabilizing protocol could never reach
a configuration after which Byzantine processes cannot disturb the c-correct processes: all the c-correct
processes can continue to execute their desired behavior, but with having possibility that the system (resp.
each process) could be disturbed at most t (resp. k) times by Byzantine processes in future. A notable
but subtle difference is that the invalidation of the specification is caused only by the effect of Byzantine
processes in a (t, k, c, f)-strongly stabilizing protocol, while the invalidation can be caused by a scheduler in
a pseudo-stabilizing protocol.

3 Strongly-Stabilizing Tree Orientation

3.1 Problem definition

In this section, we consider only tree systems, i.e. distributed systems containing no cycles. We assume that
all processes in a tree system are identical and thus no process is distinguished as a root.

Informally, tree orientation consists in transforming a tree system (with no root) into a rooted tree
system. Each process v has an O-variable prntv to designate a neighbor as its parent. Since processes have
no identifiers, prntv actually stores k (∈ {1, 2, . . . , ∆v}) to designate its k-th neighbor as its parent. But
for simplicity, we use prntv = k and prntv = u (where u is the k-th neighbor of v) interchangeably.

The goal of tree orientation is to set prntv of every process v to form a rooted tree. However, it is
impossible to choose a single process as the root because of impossibility of symmetry breaking. Thus,
instead of a single root process, a single root link is determined as the root: link (u, v) is the root link when
processes u and v designate each other as their parents (Fig. 1(a)). From any process w, the root link can
be reached by following the neighbors designated by the variables prnt.

When a tree system S has a Byzantine process (say w), w can prevent communication between subtrees
of S − {w}1. Thus, we have to allow each of the subtrees to form a rooted tree independently. We define
the specification predicate spec(v) of the tree orientation as follows.

spec(v) : ∀u (∈ Nv)[(prntv = u) ∨ (prntu = v) ∨ (u is Byzantine faulty)].

Figure 1 shows examples of 0-legitimate configurations (a) with no Byzantine process and (b) with a
single Byzantine process w. The arrow attached to each process points the neighbor designated as its
parent. Notice that, from Fig. 1(b), subtrees consisting of correct processes are classified into two categories:
one is the case of forming a rooted tree with a root link in the subtree (T1 in Fig. 1(b)), and the other is
the case of forming a rooted tree with a root process, where the root process is a neighbor of a Byzantine
process and designates the Byzantine process as its parent (T2 in Fig. 1(b)).

1 For a process subset P ′ (⊆ P ), S−P ′ denotes a distributed system obtained by removing processes in P ′ and their incident
links.
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u v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

T1
T2

u vu v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

u v

w

T1
T2

Figure 1: Tree orientation

3.2 Impossibility for two Byzantine processes

Tree orientation seems to be a very simple task. Actually, for tree orientation in fault-free systems, we can
design a self-stabilizing protocol that chooses a link incident to a center process2 as the root link: in case
that the system has a single center, the center can choose a link incident to it, and in case that the system
has two neighboring centers, the link between the centers become the root link. However, tree orientation
becomes impossible if we have Byzantine processes. By the impossibility results of [13], we can show that
tree orientation has no (o(n), 1)-strictly stabilizing protocol; i.e. the Byzantine influence cannot be contained
in the sense of ”strict stabilization”, even if only a single Byzantine process is allowed.

An interesting question is whether the Byzantine influence can be contained in a weaker sense of ”strong
stabilization”. The following theorem gives a negative answer to the question: if we have two Byzantine
processes, bounding the number of disruptions is impossible. We prove the impossibility for more restricted
schedules, called the central daemon, which disallows two or more processes to make actions at the same time.
Notice that impossibility results under the central daemon are stronger than those under the distributed
daemon in the sense that impossibility results under the central daemon also hold for the distributed daemon.

Theorem 1 Even under the central daemon, there exists no deterministic (t, o(n), 2)-strongly stabilizing
protocol for tree orientation where t is any (finite) integer and n is the number of processes.

Proof Let S = (P,L) be a chain (or a special case of a tree system) of n processes: P = {v1, v2, . . . , vn}
and L = {(vi, vi+1) | 1 ≤ i ≤ n− 1}.

For purpose of contradiction, assume that there exists a (t, o(n), 2)-strongly stabilizing protocol A for
some integer t. In the following, we show, for S with Byzantine processes v1 and vn, that A has an execution
e containing an infinite number of o(n)-disruptions. This contradicts the assumption that A is a (t, o(n), 2)-
strongly stabilizing protocol.

In S with Byzantine processes v1 and vn, A eventually reaches a configuration ρ1 that is o(n)-legitimate
for spec and o(n)-stable. This execution to ρ1 constitutes the prefix of e.

To construct e after ρ1, consider another chain S′ = (P ′, L′) of 3n processes and an execution of A on S′,
where let P ′ = {u1, u2, . . . , u3n} and L′ = {(ui, ui+1) | 1 ≤ i ≤ 3n−1}. We consider the initial configuration
ρ′1 of S′ that is obtained by concatenating three copies (say S′

1, S
′
2 and S′

3) of S in ρ1 where only the central
copy S′

2 is reversed right-and-left (Fig. 2). Letting w be a center process of S (i.e. w = v⌈n/2⌉), w is copied to
w′

1 = u⌈n/2⌉, w
′
2 = u2n+1−⌈n/2⌉ and w′

3 = u2n+⌈n/2⌉, but only prntw′

2
designates the neighbor in the different

direction from prntw′

1
and prntw′

3
. From the configuration ρ′1, protocol A eventually reaches a legitimate

2A process v is a center when v has the minimum eccentricity where eccentricity is the largest distance to a leaf. It is known
that a tree has a single center or two neighboring centers.
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u1 u2 unw’1 u2nw’2 u3nw’3

S’

S’1 S’2 S’3

v1 v2 vnw

S

v1 v2 vnw

S
ρ1

ρ’1

u1 u2 unw’1 u2nw’2 u3nw’3

S’
ρ’’1

Convergence to a legitimate configuration. w’3 changes prnt.

(a) Construction of S’ from three copies of S and convergence of S’.

v1 v2 vnw

S

v1 v2 vnw

S

ρ1

w

w changes prnt.

ρ2

(b) Execution of S where w changes its parent.

Figure 2: Construction of execution where w of S changes its parent infinitely often.

configuration ρ′′1 of S′ when S′ has no Byzantine process. In the execution from ρ′1 to ρ′′1 , at least one prnt
variable of w′

1, w
′
2 and w′

3 has to change. Assume w′
i changes prntw′

i
.

Now, we construct the execution e on S after ρ1. Since v1 and vn are Byzantine processes in S, v1 and
vn can simulate behavior of the end processes of S′

i (i.e. u(i−1)n+1 and uin), and thus, S can behave in the
same way as S′

i (containing w′
i) does from ρ′1 to ρ′′1 . The execution constitutes the second part of e, where

prntw changes at least once. Letting the resulting configuration be ρ2 (that coincides with the configuration
of S′

i in ρ′′i ), ρ2 is clearly o(n)-legitimate for spec and o(n)-stable. Thus, the second part of e contains an
o(n)-disruption.

By repeating the argument, we can construct the execution e of A on S that contains an infinite number
of o(n)-disruptions. �

3.3 A strongly stabilizing protocol for a single Byzantine process

3.3.1 Protocol ss-TO

In the previous subsection, we proved that there is no strongly stabilizing protocol for tree orientation if
two Byzantine processes exist. In this subsection, we consider the case with at most a single Byzantine
process, and present a (∆, 0, 1)-strongly stabilizing tree orientation protocol ss-TO. Note that we consider
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the distributed daemon for this possibility result.
In a fault-free tree system, tree orientation can be easily achieved by finding a center process. A simple

strategy for finding the center process is that each process v informs each neighbor u of the maximum distance
to a leaf from u through v. The distances are found and become fixed from smaller ones. When a tree system
contains a single Byzantine process, however, this strategy cannot prevent perturbation caused by wrong
distances the Byzantine process provides: by reporting longer and shorter distances than the correct one
alternatively, the Byzantine process can repeatedly pull the chosen center closer and push it farther.

The key idea of protocol ss-TO to circumvent the perturbation is to restrict the Byzantine influence to
one-sided effect: the Byzantine process can pull the chosen root link closer but cannot push it farther. This
can be achieved using a non-decreasing variable levelv as follows: when a process v finds a neighbor u with
a higher level, u chooses v as its parent and copies the level value from u. This allows the Byzantine process
(say z) to make its neighbors choose z as their parents by increasing its own level. However, z can not make
neighbor change their parents to other processes by decreasing its own level. Thus, the effect the Byzantine
process can make is one-sided.

Protocol ss-TO is presented in Fig. 3. For simplicity, we regard constant Nv as denoting the neighbors
of v and regard variable prntv as storing a parent of v. Notice that they should be actually implemented
using the ordinal numbers of neighbors that v locally assigns.

constants of process v
∆v = the degree of v;
Nv = the set of neighbors of v;

variables of process v
prntv: a neighbor of v; // prntv = u if u is a parent of v.
levelv: integer;

variables in shared register rv,u
r-prntv,u: boolean; // r-prntv,u = true iff u is a parent of v.
r-levelv,u: integer; // the value of levelv

predicates

pred1 : ∃u ∈ Nv[r-levelu,v > levelv]
pred2 : ∃u ∈ Nv − {prntv}[(r-levelu,v = levelv) ∧ (r-prntu,v = false)]
pred3 : ((r-prntv,prntv , r-levelv,prntv) 6= (true, levelv))∨

(∃u ∈ Nv − {prntv}, (r-prntv,u, r-levelv,u) 6= (false, levelv))
atomic actions // represented in form of guarded actions

GA1:pred1 −→
Let u be a neighbor of v s.t. r-levelu,v = maxw∈Nv

r-levelw,v;
prntv := u; levelv := r-levelu,v;
(r-prntv,u, r-levelv,u) := (true, levelv);
for each w ∈ Nv − {u} do (r-prntv,w, r-levelv,w) := (false, levelv);

GA2:¬pred1 ∧ pred2 −→
Let u be a neighbor of v s.t. (r-levelu,v = levelv) ∧ (r-prntu,v = false);
prntv := u; levelv := levelv + 1;
(r-prntv,u, r-levelv,u) := (true, levelv);
for each w ∈ Nv − {u} do (r-prntv,w, r-levelv,w) := (false, levelv);

GA3:¬pred1 ∧ ¬pred2 ∧ pred3 −→
(r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w , r-levelv,w) := (false, levelv);

Figure 3: Protocol ss-TO (actions of process v)
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3.3.2 Legitimate Configurations of ss-TO

We refine legitimate configurations of protocol ss-TO and show their properties. We cannot make any
assumption on the initial values of register variables. But once a correct process v executes its action,
variables of its output registers have values consistent with the process variables: r-prntv,prntv = true, r-
prntv,w = false (w ∈ Nv − {prntv}), and r-levelv,w = levelv (w ∈ Nv) hold. In the following, we assume
that all the variables of output registers of every correct process have consistent values.

First we consider the fault-free case.

Definition 9 (legitimate configurations LC0) In a fault-free tree, a configuration is legitimate if (a) spec(v)
holds for every process v and (b) levelu = levelv holds for any processes u and v. The set of all legitimate
configurations in a fault-free tree is denoted by LC0.

In any legitimate configuration in LC0, variables prntv of all processes form a rooted tree with a root
link as Fig. 1(a), and all variables levelv have the same value.

Lemma 1 In a fault-free tree, once protocol ss-TO reaches a configuration ρ in LC0, it remains at ρ.

Proof Consider any configuration ρ in LC0. Since all variables levelv have the same value, the guard of GA1
cannot be true in ρ. Since spec(v) holds at every process in ρ, there exist no neighboring processes u and v
such that prntu 6= v and prntv 6= u holds. It follows that the guard of GA2 cannot be true in ρ. Once each
process executes an action, all the variables of its output registers are consistent with its local variables, and
thus, the guard of GA3 cannot be true. �

For the case with a single Byzantine process, legitimate configurations are refined as follows.

Definition 10 (0-legitimate configurations LC1) Let z be the single Byzantine process in a tree system. A
configuration is 0-legitimate if every subtree (or a connected component) of S-{z} satisfies either the following
(C1) or (C2).

(C1) (a) spec(u) holds for every correct process u, (b) prntv = z holds for the neighbor v of z, and (c)
levelw ≥ levelx holds for any neighboring correct processes w and x where w is nearer than x to z.

(C2) (d) spec(u) holds for every correct process u, and (e) levelv = levelw holds for any correct processes v
and w.

The set of all 0-legitimate configurations for a single Byzantine process is denoted by LC1.
When every subtree of S-{z} satisfies (C1), the configuration is said to be strictly 0-legitimate.

In a strictly 0-legitimate configuration, every subtree forms the rooted tree with the root process neigh-
boring the Byzantine process z. For strictly 0-legitimate configurations, the following lemma holds.

Lemma 2 Once protocol ss-TO reaches a strictly 0-legitimate configuration ρ, it remains in strictly 0-
legitimate ones and, thus, no correct process u changes prntu afterward. That is, any strictly 0-legitimate
configuration is (0, 1)-contained.

Proof Consider any execution e starting from a strictly 0-legitimate configuration ρ. In ρ, every subtree
of S − {z} forms the rooted tree with the root process neighboring the Byzantine process z. As long as no
correct process u changes prntu in e, action GA2 cannot be executed at any correct process. On the other
hand, levelprntu ≥ levelu necessarily holds immediately after u executes action GA1. Thus, we can see that
every configuration of e is strictly 0-legitimate, if no correct process u changes prntu in e (by execution of
GA1). In the following, we show that any correct process u never changes prntu in e.

For contradiction, assume that a correct process u changes prntu first among all correct processes. Notice
that every correct process v can execute GA1 or GA3 but cannot change prntv before u changes prntu. Also
notice that u changes prntu to its neighbor (say w) by execution of GA1 and w is a correct process. From
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the guard of GA1, levelw > levelu holds immediately before u changes prntu. On the other hand, since w is
a correct process, w never changes prntw before u. This implies that prntw = u holds immediately before u
changes prntu, and thus levelu ≥ levelw holds. This is a contradiction. �

Notice that a correct process u may change levelu by execution of GA1 even after a strictly 0-legitimate
configuration. When the Byzantine process z increments levelz infinitely often, every process u may also
increment levelu infinitely often.

Lemma 3 Any configuration ρ in LC1 is (∆z , 1, 0, 1)-time contained where z is the Byzantine process.

Proof Consider any execution e starting from ρ. By the same discussion as the proof of Lemma 2, we can
show that any subtree satisfying (C1) at ρ always keeps satisfying the condition and no correct process u in
the subtree changes prntu afterward.

Consider a subtree satisfying (C2) at ρ and let y be the neighbor of the Byzantine process z in the subtree.
From the fact that variables prntu form a rooted tree with a root link and all variables levelu have the same
value in the subtree at ρ, no process u in the subtree changes prntu or levelu unless y executes prnty := z
in e. When prnty := z is executed, levely becomes larger than levelu of any other process u in the subtree.
Since the value of variable levelu of each correct process u is non-decreasing, every correct neighbor (say v)
of y eventually executes prntv := y and levelv := levely (by GA1). By repeating the argument, we can show
that the subtree eventually reaches a configuration satisfying (C1) in O(d′) rounds where d′ is the diameter
of the subtree. It is clear that any configuration before reaching the first configuration satisfying (C1) is not
0-legitimate, and that each process u changes prntu at most once during the execution.

Therefore, any execution e starting from ρ contains at most ∆z 0-disruptions where each correct process
u changes prntu at most once. �

3.3.3 Convergence of ss-TO

We first show convergence of protocol ss-TO to legitimate configurations in a fault-free case.

Lemma 4 In a fault-free tree system, protocol ss-TO eventually reaches a legitimate configuration of LC0
from any initial configuration.

Proof We prove the convergence to a legitimate configuration by induction on the number of processes n.
It is clear that protocol ss-TO reaches a legitimate configuration of LC0 from any initial configuration in
case of n = 2.

Now assume that protocol ss-TO reaches a legitimate configuration of LC0 from any initial configuration
in case that the number of processes is n− 1 (inductive hypothesis), and consider the case that the number
of processes is n.

Let u be any leaf process and v be its only neighbor. After v executes its action, levelv ≥ levelu holds.
Process u can execute only guarded action GA1 or GA3 since prntu = v always holds. Thus, after the first
round completes, prntu = v and levelv ≥ levelu always hold. It follows that v never executes prntv := u in
the second round and later. This implies that, after some configuration ρ, (a) prntv 6= u always holds, or
(b) prntv = u always holds.

In case (a), the behavior of v after ρ is never influenced by u: v behaves exactly the same even when
u does not exist. From the inductive hypothesis, protocol ss-TO eventually reaches a configuration ρ′ such
that S − {u} satisfies the condition of LC0 and remains in ρ′ afterward (from Lemma 1). After u executes
its action at ρ′, levelu = levelv holds and thus the configuration of S is in LC0.

Now consider case (b), where we do not use the inductive hypothesis. The fact that prntv = u (and
prntu = v) always holds implies that levelv (and also levelu) remains unchanged. From the fact that
prntv = u always holds and levelv remains unchanged, it follows for any neighbor w (6= u) that either (i)
levelw < levelv or (ii) levelw = levelv and prntw = v always holds; otherwise v changes prntv. But the case
(i) is impossible to keep since the action of w changes levelw so that levelw ≥ levelv holds. Thus, the case
(ii) always holds. This implies that the fragment of S consisting of processes within distance two from u
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reaches a configuration satisfying the condition of LC0 and remains unchanged. By repeating the argument,
we can show that ss-TO eventually reaches a legitimate configuration in LC0 where link (u, v) is the root
link.

Consequently, protocol ss-TO reaches a legitimate configuration of LC0 from any initial configuration.
�

Now, we consider the case with a single Byzantine process.

Lemma 5 In a tree system with a single Byzantine process, protocol ss-TO eventually reaches a 0-legitimate
configuration of LC1 from any initial configuration.

Proof Let z be the Byzantine process, S′ be any subtree (or a connected component) of S − {z} and y be
the process in S′ neighboring z (in S).

We prove, by induction on the number of processes n′ of S′, that S′ eventually reaches a configuration
satisfying the condition (C1) or (C2) of Definition 10.

It is clear that S′ reaches a configuration satisfying (C1) from any initial configuration in case of n′ = 1.
Now assume that S′ reaches a configuration satisfying (C1) or (C2) from any initial configuration in case

of n′ = k − 1 (inductive hypothesis), and consider the case of n′ = k (≥ 2).
From n′ ≥ 2, there exists a leaf process u in S′ that is not neighboring the Byzantine process z. Let v

be the neighbor of u. Since processes u and v are correct processes, we can show the following by the same
argument as the fault-free case (Lemma 4): After some configuration ρ, (a) prntv 6= u always holds, or (b)
prntv = u always holds. In case (a), we can show from the inductive hypothesis that S′ eventually reaches
a configuration satisfying (C1) or (C2). In case (b), we can show that S′ eventually reaches a configuration
satisfying (C2) where link (u, v) is the root link.

Consequently, protocol ss-TO reaches a 0-legitimate configuration of LC1 from any initial configuration.
�

The following main theorem is obtained from Lemmas 1, 2, 3, 4 and 5.

Theorem 2 Protocol ss-TO is a (∆, 0, 1)-strongly stabilizing tree-orientation protocol.

3.3.4 Round complexity of ss-TO

In this subsection, we focus on the round complexity of ss-TO. First, we show the following lemma.

Lemma 6 Let v and u be any neighbors of S. Let S′ be the subtree of S − {v} containing u and h(v, u) be
the largest distance from v to a leaf process of S′. If S′ ∪ {v} contains no Byzantine process, prntv := u of
GA1 or GA2 can be executed only in the first 2h(v, u) rounds. Moreover, in round 2h(v, u)+1 or later, levelv
remains unchanged as long as prntv = u holds.

Proof We prove the lemma by induction on h(v, u).
First consider the case of h(v, u) = 1, where u is a leaf process. When the first round completes, all the

output registers of every process becomes consistent with the process variables. Since u is a leaf process,
prntu = v always holds. It follows that process v can execute prntv := u only in GA1. Once v executes
its action in the second round, levelv ≥ levelu holds and prntv := u of GA1 cannot be executed afterward.
Thus, prntv := u of GA1 can be executed only in the first and second rounds. It is clear that in round 3 or
later, levelv remains unchanged as long as prntv = u holds.

We assume that the lemma holds when h(v, u) ≤ k − 1 (inductive hypothesis) and consider the case of
h(v, u) = k. We assume that prntv := u of GA1 or GA2 is executed in round r, and show that r ≤ 2k holds
in the following. Variable levelv is also incremented in the action, and let ℓ be the resultant value of levelv.
In the following, we consider two cases.

• Case that prntv := u of GA1 is executed in round r: When prntv := u is executed, levelu = ℓ holds.
But levelu < ℓ holds when v executes its action in round r − 1; otherwise, v reaches a state with
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levelv ≥ ℓ in round r − 1 and cannot execute prntv := u (with levelv := ℓ) in round r. This implies
that u incremented levelu to ℓ in round r − 1 or r.

In the case that u makes the increment of levelu by GA1, u executes prntu := w for w (6= v) in the
same action. Since h(u,w) < h(v, u) holds, the action is executed in the first 2h(u,w) rounds from the
inductive hypothesis. Consequently, prntv := u of GA1 is executed in round 2h(u,w) + 1 (< 2h(v, u))
at latest.

In the case that u makes the increment of levelu by GA2, u executes prntu := w for some w (∈ Nu) in
the same action, where w = v may hold. For the case of w 6= v, we can show, by the similar argument
to the above, that prntv := u is executed in round 2h(u,w) + 1 (< 2h(v, u)) at latest. Now consider
the case of w = v. Then levelv = levelu = ℓ− 1, prntv 6= u and prntu 6= v hold immediately before u
executes prntu := v and levelu := ℓ. Between the actions of levelu := ℓ− 1 (with prntu := w (w 6= v))
and levelu := ℓ (with prntu := v), v can execute its action at most once; otherwise, levelv ≥ ℓ − 1
holds after the first action, and levelv ≥ ℓ or prntv = u holds after the second action. This implies
that levelu := ℓ − 1 with prntu := w (w 6= v) is executed in the previous or the same round as the
action of levelu := ℓ, and thus, in round r − 2 or later. Since h(u,w) < h(v, u) holds, the action is
executed in the first 2h(u,w) rounds from the inductive hypothesis. Consequently, prntv := u of GA1
is executed in round 2h(u,w) + 2 (≤ 2h(v, u)) at latest.

• Case that prntv := u is executed in GA2: Then levelv = levelu = ℓ− 1, prntv 6= u and prntu 6= v hold
immediately before v executes prntv := u and levelv := ℓ. Between the executions of levelv := ℓ − 1
and levelv := ℓ, u can execute its action at most once, and u executes prntu := w for some w (6= v) in
the action. Since h(u,w) < h(v, u) holds, this action is executed in the first 2h(u,w) rounds from the
inductive hypothesis. Consequently, prntv := u is executed in round 2h(u,w) + 1 (< 2h(v, u)).

It remains to show that levelv remains unchanged in round 2h(v, u)+1 or later, as long as prntv = u
holds. Now assume that prntv = u holds at the end of round 2h(v, u).

• Case that prntu = v holds at the end of round 2h(v, u): Since h(u,w) < h(v, u) for any w ∈ Nu −{v},
prntu := w cannot be executed in round 2h(v, u) + 1 or later from the inductive hypothesis, and so
prntu = v holds afterward. Thus, it is clear that levelv remains unchanged as long as prntv = u (and
prntu = v) holds.

• Case that prntu 6= v holds at the end of round 2h(v, u): Let prntu = w hold for some w ∈ Nu − {v}
at the end of round 2h(v, u). Since h(u,w) < h(v, u), levelu remains unchanged as long as prntu = w
holds from the inductive hypothesis. It follows that levelv remains unchanged as long as prntv = u
and prntu = w hold. Since h(u, x) < h(v, u) for any x ∈ Nu − {v}, prntu := x cannot be executed in
round 2h(v, u)+1 or later, but prntu := v can be executed. Immediately after execution of prntu := v,
levelv = levelu holds if prntv remains unchanged. Thus, it is clear that levelv remains unchanged as
long as prntv = u (and prntu = v) holds.

�

The following lemma holds for the fault-free case.

Lemma 7 In a fault-free tree system, protocol ss-TO reaches a legitimate configuration of LC0 from any
initial configuration in O(d) rounds where d is the diameter of the tree system S.

Proof Lemma 6 implies that, after round 2d + 1 or later, no process v changes prntv or levelv and thus
the configuration remains unchanged. Lemma 4 guarantees that the final configuration is a legitimate
configuration in LC0. �

For the single-Byzantine case, the following lemma holds.

Lemma 8 In a tree system with a single Byzantine process, protocol ss-TO reaches a 0-legitimate configu-
ration of LC1 from any initial configuration in O(n) rounds.

13



Proof Let z be the Byzantine process and S′ be any subtree of S − {z}. Let v be the neighbor of z in S′.
From Lemma 6, v cannot execute prntv := w for any w ∈ Nv −{z} in round 2d′ +1 or later, where d′ is the
diameter of S′. We consider the following two cases depending on prntv.

• Case that prntv = w for some w ∈ Nv − {z} at the end of round 2d′ and prntv remains unchanged
during the following d′ rounds (from round 2d′ + 1 to round 3d′): From Lemma 6, levelv also remains
unchanged during the d′ rounds. By the similar discussion to that in proof of Lemma 6, we can show
that S′ reaches a configuration satisfying the condition (C2) of Definition 10 by the end of round 3d′.

• Case that prntv = z holds at the end of round 2d′ or in some configuration during the following d′

rounds (from round 2d′ + 1 to round 3d′): Let c be the configuration where prntv = z holds. From
Lemma 6, prntv = z always holds after c. We can show, by induction of k that, a fraction of S′

consisting of processes with distance up to k from v satisfies the condition (C1) at the end of k rounds
after c. Thus, S′ reaches a configuration satisfying the condition (C1) of Definition 10 by the end of
round 4d′.

After a subtree reaches a configuration satisfying the condition (C2), its configuration may change into
one satisfying the condition (C1) and the configuration may not satisfy (C1) or (C2) during the transition.
However, Lemma 3 guarantees that the length of the period during the subtree does not satisfy (C1) or (C2)
is O(d′) rounds, where d′ is the diameter of the subtree. Since the total of diameters of all the subtrees in
S − {z} is O(n), the convergence to a 0-legitimate configuration satisfying (C1) or (C2) can be delayed at
most O(n) rounds. �

Finally, we can show the following theorem.

Theorem 3 Protocol ss-TO is a (∆, 1, 0, 1)-strongly stabilizing tree-orientation protocol. The protocol reaches
a legitimate configuration of LC0∪LC1 from any initial configuration. The protocol may move from a legit-
imate configuration to an illegitimate one because of the influence of the Byzantine process, but it can stay
in illegitimate configurations during the total of O(n) rounds (that are not necessarily consecutive) in the
whole execution.

Proof Theorem 2 shows that ss-TO is a (∆, 1, 0, 1)-strongly stabilizing tree-orientation protocol. Lemma 7
and 8 guarantee that ss-TO reaches a legitimate configuration of LC0 ∪ LC1 from any initial configuration
within O(n) rounds. For the case with a single Byzantine process (say z), each subtree of S − {z} may
experience an illegitimate period (not satisfying the condition (C1) or (C2)) after the legitimate configuration.
However, Lemma 3 guarantees that the length of the illegitimate period is O(d′) where d′ is the diameter
of the subtree. Since the total of diameters of all the subtrees in S − {z} is O(n), the total length of the
periods that does not satisfy (C1) or (C2) is O(n) rounds. �

4 Strongly-Stabilizing Spanning Tree Construction

4.1 Problem definition

In this section, we consider only distributed systems in which a given process r is distinguished as the root
of the tree.

For spanning tree construction, each process v has an O-variable prntv to designate a neighbor as its
parent. Since processes have no identifiers, prntv actually stores k (∈ {1, 2, . . . , ∆v}) to designate its k-th
neighbor as its parent. No neighbor is designated as the parent of v when prntv = 0 holds. For simplicity, we
use prntv = k (∈ {1, 2, . . . , ∆v}) and prntv = u (where u is the k-th neighbor of v Nv(k)) interchangeably,
and prntv = 0 and prntv = ⊥ interchangeably.

The goal of spanning tree construction is to set prntv of every process v to form a rooted spanning tree,
where prntr = 0 should hold for the root process r.

14



m
m

m

mm

m

m
mm

>
��

I ?

r

b

5

5

6

1

0

1

6

2

7 -

}

Figure 4: A legitimate configuration for spanning tree construction (numbers denote the level of processes).
r is the (real) root and b is a Byzantine process which acts as a (fake) root.

We consider Byzantine processes that can behave arbitrarily. The faulty processes can behave as if
they were any internal processes of the spanning tree, or even as if they were the root processes. The first
restriction we make on Byzantine processes is that we assume the root process r can start from an arbitrary
state, but behaves correctly according to a protocol. Another restriction on Byzantine processes is that we
assume that all the correct processes form a connected subsystem; Byzantine processes never partition the
system.

It is impossible, for example, to distinguish the (real) root r from the faulty processes behaving as the
root, we have to allow that a spanning forest (consisting of multiple trees) is constructed, where each tree is
rooted with a root, correct or faulty one.

We define the specification predicate spec(v) of the tree construction as follows.

spec(v) :

{

(prntv = 0) ∧ (levelv = 0) if v is the root r

(prntv ∈ {1, . . . , ∆v}) ∧ ((levelv = levelprntv + 1) ∨ (prntv is Byzantine)) otherwise

Notice that spec(v) requires that a spanning tree is constructed at any 0-legitimate configuration, when
no Byzantine process exists.

Figure 4 shows an example of 0-legitimate configuration with Byzantine processes. The arrow attached
to each process points the neighbor designated as its parent.

4.2 Protocol ss-ST

In many self-stabilizing tree construction protocols, each process checks locally the consistence of its level
variable with respect to the one of its neighbors. When it detects an inconsistency, it changes its prnt
variable in order to choose a ”better” neighbor. The notion of ”better” neighbor is based on the global
desired property on the tree (e.g. BFS, DFS...).

When the system may contain Byzantine processes, they may disturb their neighbors by providing alter-
natively ”better” and ”worse” states.

The key idea of protocol ss-ST to circumvent this kind of perturbation is the following: when a correct
process detects a local inconsistency, it does not choose a ”better” neighbor but it chooses another neighbor
according to a round robin order (along the set of its neighbor).

Figure 5 presents our strongly-stabilizing spanning tree construction protocol ss-ST that can tolerate any
number of Byzantine processes other than the root process (providing that the subset of correct processes
remains connected).
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constants of process v
∆v = the degree of v;
Nv = the set of neighbors of v;

variables of process v
prntv ∈ {0, 1, 2, . . . ,∆v}: integer; // prntv = 0 if v has no parent,

// prntv = k ∈ {1, 2, . . . ,∆v} if Nv[k] is the parent of v.
levelv: integer; // distance from the root.

variables in shared register rv,u
r-prntv,u: boolean; // r-prntv,u = true iff u is a parent of v.
r-levelv,u: integer; // the value of levelv

predicates

pred0 : prntv 6= 0 or levelv 6= 0 or ∃w ∈ Nv, [(r-prntv,w , r-levelv,w) 6= (false, 0)]
pred1 : prntv /∈ {1, 2, . . . , ∆v} or levelv 6= r-levelprntv,v + 1
pred2 : (r-prntv,prntv , r-levelv,prntv) 6= (true, levelv)

or ∃w ∈ Nv \ {prntv}, [(r-prntv,w , r-levelv,w) 6= (false, levelv)]
atomic action of the root v = r // represented in form of guarded action

GA0:pred0 −→
prntv := 0;
levelv := 0;
for each w ∈ Nv do (r-prntv,w, r-levelv,w) := (false, 0);

atomic actions of v 6= r // represented in form of guarded actions
GA1:pred1 −→

prntv := nextv(prntv) where nextv(k) = (k mod ∆v) + 1;
levelv := r-levelprntv,v + 1;
(r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w , r-levelv,w) := (false, levelv);

GA2:¬pred1 and pred2 −→
(r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w , r-levelv,w) := (false, levelv);

Figure 5: Protocol ss-ST (actions of process v)
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4.3 Proof of strong stabilization of ss-ST

We cannot make any assumption on the initial values of register variables. But, we can observe that if an
output register of a correct process has inconsistent values with the process variables then this process is
enabled by a rule of ss-ST . By fairness assumption, any such process takes a step in a finite time.

Once a correct process v executes one of its action, variables of its output registers have values consistent
with the process variables: r-prntv,prntv = true, r-prntv,w = false (w ∈ Nv − {prntv}), and r-levelv,w =
levelv (w ∈ Nv) hold.

Consequently, we can assume in the following that all the variables of output registers of every correct
process have consistent values with the process variables.

We denote by LC the following set of configurations:

LC =
{

ρ ∈ C
∣

∣

∣(prntr = 0) ∧ (levelr = 0)∧
(

∀v ∈ V \ (B ∪ {r}), (prntv ∈ {1, . . . , ∆v}) ∧ (levelv = levelprntv + 1)
)

}

We interest now on properties of configurations of LC.

Lemma 9 Any configuration of LC is 0-legitimate and 0-stable.

Proof Let ρ be a configuration of LC. By definition of spec, it is obvious that ρ is 0-legitimate.
Note that no correct process is enabled by ss-ST in ρ. Consequently, no actions of ss-ST can be executed

and we can deduce that ρ is 0-stable. �

We can observe that there exists some 0-legitimate configurations which not belong to LC (for example
the one of Figure 5).

Lemma 10 Given at most n − 1 Byzantine processes, for any initial configuration ρ0 and any execution
e = ρ0, ρ1, . . . starting from ρ0, there exists a configuration ρi such that ρi ∈ LC.

Proof First, note that if all the correct processes are disabled in a configuration ρ, then ρ belongs to LC.
Thus, it is sufficient to show that ss-ST eventually reaches a configuration ρi in any execution (starting from
any configuration) such that all the correct processes are disabled in ρi.

By contradiction, assume that there exists a correct process that is enabled infinitely often. Notice that
once the root process r is activated, r becomes and remains disabled forever. From the assumption that
all the correct processes form a connected subsystem, there exists two neighboring correct processes u and
v such that u becomes and remains disabled and v is enabled infinitely often. Consider execution after u
becomes and remains disabled. Since the daemon is weakly fair, v executes its action infinitely often. Then,
eventually v designates u as its parent. It follows that v never becomes enabled again unless u changes
levelu. Since u never becomes enabled, this leads to the contradiction. �

Lemma 11 Any configuration in LC is a (f∆d,∆d, 0, f)-time contained configuration of the spanning tree
construction, where f is the number of Byzantine processes and d is the diameter of the subsystem consisting
of all the correct processes.

Proof Let ρ0 be a configuration of LC and e = ρ0, ρ1, . . . be an execution starting from ρ0. First, we show
that any 0-correct process takes at most ∆d actions in e, where d is the diameter of the subsystem consisting
of all the correct processes.

Let F be the set of Byzantine processes in e. Consider a subsystem S′ consisting of all the correct
processes: S′ = (P − F,L′) where L′ = {l ∈ L | l ∈ (P − F ) × (P − F )}. We prove by induction on the
distance δ from the root in S′ that process v δ hops away from r in S′ executes its action at most ∆δ − 1
times in e.
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• Induction basis (δ = 1):
Let v be any process neighboring to the root r. Since ρ0 is a legitimate configuration, prntr = 0
and levelr = 0 hold at ρ0 and remain unchanged in e. Thus, if prntv = r and levelv = 1 hold in a
configuration σ, then v never changes prntv or levelv in any execution starting from σ. Since prntv = r
and levelv = 1 hold within the first ∆v − 1 actions of v, v can execute its action at most ∆− 1 times.

• Induction step (with induction assumption):
Let v be any process δ hops away from the root r in S′, and u be a neighbor of v that is δ − 1 hops
away from r in S′. From the induction assumption, u can execute its action at most ∆δ−1 − 1 times.

Process v executes prntv = u in the first ∆− 1 actions of v, and v executes prntv = u every ∆ actions
of v. Once prntv = u holds, v never changes prntv unless u changes levelu (and prntu). Thus, v can
execute its action at most (∆− 1) + ∆× (∆δ−1 − 1) = ∆δ − 1 times.

Consequently, any 0-correct process takes at most ∆d actions in e.
As a 0-disruption can be caused only by an action of a Byzantine process from a legitimate configuration,

we can bound the number of 0-disruptions by counting the total number of times that correct processes are
deceived of neighboring Byzantine processes (i.e. a correct process takes an action due to the (incoherent)
state of a neighboring Byzantine process).

If a 0-correct v is deceived by a Byzantine neighbor b, it takes necessarily ∆v actions before being
deceiving again by b (remind that we use a round-robin policy for prntv). As any 0-correct process v takes
at most ∆d actions in e, v can be deceived by a given Byzantine neighbor at most ∆d−1 times. A Byzantine
process can have at most ∆ neighboring correct processes and thus can deceive correct processes at most
∆ ×∆d−1 = ∆d times. We have at most f Byzantine processes, so the total number of times that correct
processes are deceived by neighboring Byzantine processes is f∆d.

Hence, the number of 0-disruption in e is bounded by f∆D. It remains to show that any 0-disruption
have a finite length to prove the result.

By contradiction, assume that there exists an infinite 0-disruption d = ρi, . . . in e. This implies that for
all j ≥ i, ρj is not in LC, which contradicts Lemma 10. Then, the result is proved. �

Theorem 4 (Strong-stabilization) Protocol ss-ST is a (f∆d, 0, f)-strong stabilizing protocol for the span-
ning tree construction, where f is the number of Byzantine processes and d is the diameter of the subsystem
consisting of all the correct processes.

Proof From Lemmas 9 and 11, it is sufficient to show that ss-ST eventually reaches a configuration in LC.
Lemma 10 allows us to conclude. �

4.4 Time complexities

Proposition 2 The (f∆d, 0, f)-process-disruption time of ss-ST is ∆d where d is the diameter of the sub-
system consisting of all the correct processes.

Proof This result directly follows from Theorem 4 and Lemma 11. �

Proposition 3 The (f∆d, 0, f)-stabilization time of ss-ST is O((n − f)∆d) rounds where f is the number
of Byzantine processes and d is the diameter of the subsystem consisting of all the correct processes.

Proof By the construction of the algorithm, any correct process v which has a correct neighbor u takes at
most ∆ steps between two actions of u.

Given two processes u and v, we denote by d′(u, v) the distance between u and v in the subgraph of
correct processes of S. We are going to prove the following property by induction on i > 0:

(Pi): any correct process v such that d′(v, r) = i takes at most 2 ∗
i
∑

j=1

∆j steps in any execution starting

from any configuration.
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• Induction basis (i = 1):
Let v be a correct neighbor of the root r. By the algorithm, we know that the root r takes at most
one step (because r is correct). By the previous remark, we know that v takes at most ∆ steps before
and after the action of r. Consequently, v takes at most 2∆ steps in any execution starting from any
configuration.

• Induction step (i > 1 with induction assumption):
Let v be a correct process such that d′(v, r) = i. Denote by u one neighbor of v such that d′(u, r) = i−1
(this process exists by the assumption that the subgraph of correct processes of S is connected).

By the previous remark, we know that v takes at most ∆ steps before the first action of u, between
two actions of u and after the last action of u. By induction assumption, we know that u takes at most

2 ∗
i−1
∑

j=1

∆j steps. Consequently, v takes at most A actions where:

A = ∆+



2 ∗

i−1
∑

j=1

∆j



 ∗∆+∆ = 2 ∗

i
∑

j=1

∆j

Since there is (n− f) correct processes and any correct process satisfies d′(v, r) < d, we can deduce that the
system reach a legitimate configuration in at most O((n− f)∆d) steps of correct processes.

As a round counts at least one step of a correct process, we obtain the result. �

5 Concluding remarks

We introduced the notion of strong stabilization, a property that permits self-stabilizing protocols to contain
Byzantine behaviors for tasks where strict stabilization is impossible. An interesting trade-off appears when
considering resilience to Byzantine actions: the more actually Byzantine actions are performed, the faster
the stabilization of our protocols is. Our work raises several important open questions:

1. is there a trade-off between the number of perturbations Byzantine nodes can cause and the containment
radius ?

2. is there a trade-off between the total number of perturbations Byzantine nodes can cause and the
number of Byzantine nodes, that is, is a single Byzantine node more effective to harm the system than
a team of Byzantine nodes, considering the same total number of Byzantine actions ?
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