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Abstract. We aim to accelerate the restarted generalized minimal residual (GMRES) method
for the solution of linear systems by combining two types of techniques. On the one hand, mixed
precision GMRES algorithms, which use lower precision in certain steps of the inner cycles, offer
significant reductions to computational and memory costs. On the other hand, augmented GMRES
algorithms, which recycle information on the eigenvalues of the matrix between restarts by incorpo-
rating additional vectors into the Krylov basis, can significantly speed up the convergence. In this
work, we investigate how to combine mixed precision and augmentation, in order to cumulate the
reduced per-iteration cost of the former with the reduced number of iterations of the latter. We
first explore the GMRES with deflated restarting (GMRES-DR) variant, which we show to present
limited mixed precision opportunities. Indeed, GMRES-DR can exploit a preconditioner constructed
in low precision, but requires a flexible paradigm to also apply it in low precision; moreover, the
matrix–vector product and orthonormalization steps must both be kept in high precision as other-
wise the method stagnates at low accuracy. We explain that this is because GMRES-DR is based
on some algebraic simplifications that are only valid in exact arithmetic, but fail to hold in finite
precision. This observation leads us to investigate a more general augmented GMRES framework
(AugGMRES) that avoids making these simplifications. AugGMRES is much more resilient to the
use of low precision, does not require a flexible paradigm, and successfully converges to high accuracy
even when low precision is used for all inner operations. Our numerical experiments illustrate the ro-
bustness and fast convergence of AugGMRES on a range of sparse matrices, including ill-conditioned
real-life ones.
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1. Introduction. The generalized minimal residual (GMRES) method is a pow-
erful iterative solver widely used for large sparse linear systems arising in various sci-
entific computing and engineering applications. While a unified convergence analysis
of GMRES is not fully developed, convergence bounds can be estimated based on the
eigenvalues of the matrix A, influenced by its normality (see [36, 21]). In some cases,
removing or deflating small eigenvalues can significantly accelerate the convergence.
This motivates the idea of augmenting the Krylov subspace with eigenvectors associ-
ated with small eigenvalues of A, which amounts to deflate the eigenvalue from A. In
the context of restarted GMRES, the Krylov subspaces built in the previous cycles
can be recycled to approximate these eigenvectors. Augmented GMRES approaches
are very general, and can incorporate in the Krylov basis any kind of vectors, not only
eigenvectors; see [18] for a more extensive discussion of augmented GMRES, and its
connection with deflated approaches.

While traditional numerical linear algebra has predominantly relied on double
precision floating-point arithmetic (fp64), in the recent years, mixed precision algo-
rithms have emerged as a promising solution to reduce computational and memory
costs without sacrificing accuracy [28]. These algorithms allow for the use of multiple
precision levels within a single computation. In particular, in the context of restarted
GMRES, not too ill-conditioned systems can be solved to high accuracy with a sig-
nificant usage of lower precision arithmetic. This is because restarted GMRES is a
form of iterative refinement, which allows the operations performed in the inner cy-
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cles (preconditioning, matrix–vector product, orthonormalization) to be carried out in
lower precision; it suffices to keep the outer operations (solution update and residual
computation) in high precision [16, 4]. This observation has been leveraged to obtain
significant speedups on modern hardware [3, 31, 1, 28]. For a more comprehensive
overview of mixed precision algorithms in GMRES, we refer the reader to [28, sect. 8]
and the references therein.

The main contribution of this paper is to show that (and how) mixed preci-
sion can be combined with the aforementioned augmented GMRES variants. We are
only aware of one existing work on the topic: the paper by Oktay and Carson [37],
which proposes a GCRO-DR [38] based iterative refinement that constructs the pre-
conditioner (an LU factorization) in lower precision. However, all other operations,
including the preconditioner application, are kept in high precision, and so the po-
tential acceleration is limited. In contrast, in this paper, we seek to develop mixed
precision augmented GMRES variants in a much more general framework, allowing
lower precision to be used not only in the preconditioner construction, but also in
the preconditioner application, the matrix–vector products, the orthonormalization,
and the eigenvalue problems that arise in augmented GMRES. Moreover, each of
these operations is parametrized by its own precision parameter, so that the choice
to switch them to low precision can be made independently of the other steps, and
so that different levels of low precision (such as fp32 and fp16) can be simultaneously
used within a given variant.

While we propose a general mixed precision augmented GMRES framework, we
focus our study and experiments on two specific augmented GMRES variants. First,
we explore GMRES-DR [35], one of the most popular variants, and show it presents
significant limitations in the use of mixed precision. While lower precision arithmetic
can be used to construct the preconditioner, applying it in low precision requires the
use of a flexible paradigm. More importantly, low precision cannot be used at all for
other critical operations like the matrix–vector products and the orthonormalization,
as its use leads GMRES-DR to stagnate at a correspondingly low accuracy. We explain
that this is because GMRES-DR is based on some algebraic simplifications that only
hold in exact arithmetic, but not in finite precision. To address this issue, we turn
to a second mixed precision augmented GMRES (AugGMRES) variant, that is more
general and remains valid even in finite precision. We show that this AugGMRES
variant can converge to high accuracy when using low precision for all inner operations,
including the matrix–vector products and the orthonormalization; moreover, it does
not require the use of a flexible paradigm.

We perform extensive numerical experiments, using fp64 as the high precision and
both fp32 and fp16 as lower precisions, with a range of matrices, including real-life
ones. Overall, our proposed mixed precision AugGMRES method demonstrates sig-
nificant improvements in GMRES convergence rates while successfully incorporating
lower precision arithmetic in most of the operations.

The rest of this paper is structured as follows: section 2 covers the necessary
preliminaries on mixed precision and augmentation techniques for GMRES. Section 3
introduces the general mixed precision AugGMRES framework. Section 4 explores
the specialization of this framework to the mixed precision GMRES-DR method and
discusses its limitations. Section 5 presents numerical experiments illustrating the
success of AugGMRES. Section 6 concludes the paper and discusses future research
directions.

Notations. This work adopts a notation system suitable for complex-valued sys-
tems. Vectors are denoted by bold lowercase letters, such as x ∈ Cn for n ∈ N, while
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matrices are represented by uppercase letters. The ℓ2 norm of a vector x is denoted
as ∥x∥. A matrix transpose is indicated by XT , the Hermitian transpose by XH , and
the pseudo-inverse by X†. The smallest and largest singular values of X are denoted
as σmin(X) and σmax(X), while the condition number is κ(X) = σmax(X)/σmin(X).
The identity matrix of order n is denoted as In and 0n is a zero column vector of
length n. To make algorithm descriptions more comprehensible, MATLAB-style no-
tation is used, such as X(1 : i, 1 : j) to refer to the submatrix containing the first i
rows and j columns.

2. Preliminaries. Krylov subspace methods play a crucial role in solving large,
sparse linear systems, with GMRES standing out as a key algorithm for dealing with
nonsymmetric problems. In practice, GMRES is usually restarted to limit the size of
the Krylov basis, which improves efficiency and manages memory usage, but can slow
down the convergence. To enhance the convergence of restarted GMRES, augmented
techniques have been subsequently developed. At the same time, restarted GMRES
provides opportunities for mixed precision arithmetic, which can reduce computa-
tional costs while preserving accuracy. This section provides a brief overview of these
concepts, serving as the basis for the discussions and methods presented in this paper.

2.1. GMRES. In the GMRES method, we want to minimize the residual norm
over a Krylov subspace. Let Km(A, r0) be an m-dimensional Krylov subspace defined
by

Km(A, r0) = span
{
r0, Ar0, . . . , A

m−1r0
}
,

where r0 = b−Ax0 is an initial residual vector with an initial guess x0. Based on the
Gram–Schmidt algorithm, the Arnoldi process generates a set of orthonormal Krylov
basis vectors {v1, . . . ,vm}. Denoting as Vm the matrix formed by [v1, . . . ,vm], the
Arnoldi procedure yields the so-called Arnoldi identity,

AVm = Vm+1Hm,

where V H
m+1Vm+1 = Im+1 and Hm is an (m+1)×m upper Hessenberg matrix. Using

this identity and the orthonormality of Vm+1, the problem of minimizing the residual
norm can be rewritten as

min ∥rm∥ = min ∥b−Axm∥ = min ∥c−Hmym∥ ,

where xm ∈ x0 +Km(A, r0), c = V H
m+1r0, and ym ∈ Cm+1. Since v1 = r0/ ∥r0∥, we

can simplify c as c = ∥r0∥ e1 with the first canonical basis vector e1 of Rm+1.

2.2. Augmented GMRES. In the following, we first explain the principle be-
hind augmented GMRES for a generic augmentation subspace. Then we focus on the
special case where this subspace consists of the approximate eigenvectors computed
via the harmonic Ritz formulation, and we explain the algebraic simplifications that
can be operated in this case to obtain the GMRES-DR method.

Augmented GMRES framework. In the augmented GMRES framework, we
aim to find the approximate solution xm in a search space Sm to minimize the residual
norm such that

xm ∈ x0 + Sm and rm ∈ r0 +ASm,

with the Galerkin orthogonal condition rm ⊥ ASm (also known as the minimal resid-
ual principle). In GMRES, the search space Sm is given by the Krylov subspace
Km(A, r0).
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In this paper, we construct the augmented subspace such that

Sm := Km−k(A, r0) + Pk,

where Pk is an arbitrary k-dimensional subspace whose basis vectors form a matrix
Pk. Using Arnoldi iterations, we can generate the Krylov basis vectors and impose
the Galerkin orthogonal condition. Hence, we derive the Arnoldi-like identity such
that

AWm = Vm+1Hm, where Wm = [Vm−k, Pk].

Here, the column vectors of Vm−k and Wm are the basis vectors of Km−k(A, r0) and
Sm, respectively. Note that while Vm−k is orthonormal, Wm is not.

A common choice in defining Pk is the use of eigenvectors. In [33], Morgan pro-
posed the augmented GMRES with eigenvectors, called GMRES-E, using Rayleigh–
Ritz method. The Rayleigh–Ritz method computes the approximate eigenvectors and
eigenvalues as follows: for B ∈ Cn×n and an m-dimensional subspace S of Cn, find
an eigenpair (p, λ) ∈ Cn × C of B with respect to S satisfying

p ∈ S and Bp− λp ⊥ S. (2.1)

In our work, we consider B = A−1 and S = ASm, which gives the harmonic Ritz
pairs of A. Therefore, using the basis vectors of S generated by the Arnoldi process,
(2.1) yields

A−1 (AWmg)− λAWmg ⊥ S ⇔ WH
mAH (Wmg − λAWmg) = 0

⇔ HH
mV H

m+1Wmg − λHH
mHmg = 0, (2.2)

by the Arnoldi-like identity and the orthonormality of Vm+1. Here, λ is a harmonic
Ritz value and the associated harmonic Ritz vector p is Wmg.

Remark 2.1. In general, the search space Sm is not a Krylov subspace but in case
of employing the harmonic Ritz pairs, we have

Sm = span(r0, . . . , A
m−kr0,p1, . . . ,pk) = Km(A, r̃0),

for some starting vector r̃0. For the existence of r̃0 and more details, please see [34].

Remark 2.2. One of the advantages of augmented GMRES is the flexibility in
selecting vectors to define the augmentation subspace Pk. For instance, by defining
B = AHA and S = range(Wm), we can obtain approximate singular vectors; see
[19, 30] for SVD-based methods. In [10, 39], pk is chosen as the error vector xk−xk−1.
Additional strategies for defining Pk can be found in [9]. While augmented GMRES
allows for various choices of Pk, this paper primarily focuses on augmentation as
formulated in (2.2).

Deriving GMRES-DR. In the specific case where the augmented subspace
corresponds to the harmonic Ritz vectors, Morgan [35] has shown with his method
GMRES-DR that we can operate some simplifications in order to recover an actual
Krylov subspace with the familiar Arnoldi identity; see [35, Theorem 3.3]. The key
simplifications that are operated by GMRES-DR are based on the fact that the har-
monic residual vectors tj , defined by

tj = AVmgj − λjVmgj ∈ span(Vm+1), for j = 1, . . . , k,
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are collinear with the GMRES residual vector, denoted rm. That is, there exists αj

such that tj = αjrm [34, Theorem 5.5]. Morgan exploits this observation to derive
the GMRES-DR method [35] as follows. Since rm = Vm+1ρ with ρ = c−Hmym, we
have

tj = αjrm = αjVm+1ρ.

Denoting Gk = [g1, . . . , gk], we obtain

AVmGk = VmGkΛk + Vm+1ρaT
k = Vm+1

[
Gk ρ
0T
k

] [
Λk

aT
k

]
= Vm+1Gk+1

[
Λk

aT
k

]
, (2.3)

where Λk = diag(λ1, . . . , λk) and aT
k = [α1, . . . , αk].

We next orthonormalize the harmonic Ritz vectors and the residual vector to form
Vk+1. Denoting Gk+1 = Qk+1Rk+1 given by the QR decomposition, we can rewrite
it as

Gk+1 =

[
Qk qk+10T
k

] [
Rk r̃k+10T
k

]
.

It leads to

AVmQk = Vm+1Qk+1Rk+1

[
Λk

aT
k

]
R−1

k (2.4)

using (2.3). Then, the Arnoldi identity into (2.4) implies that

Vm+1HmQk = Vm+1Qk+1Rk+1

[
Λk

aT
k

]
R−1

k .

Hence, using the orthonormality of Vm+1 and Qk+1, we can define Vk+1 and Hk by

Vk+1 = Vm+1Qk+1 and Hk = QH
k+1HmQk,

to obtain
AVk = Vk+1Hk.

Then, performing (m−k) Arnoldi iterations with Vk+1 generates the remaining (m−k)
basis vectors to yield the familiar Arnoldi identity

AV new
m = V new

m+1H
new
m .

Remark 2.3. Morgan’s GMRES-DR [35] is algebraically equivalent to GCRO-DR
[38]. But it is not true for flexible GMRES-DR (FGMRES-DR) and flexible GCRO-
DR (FGCRO-DR). Only if a certain collinearity condition is satisfied, FGMRES-DR
and FGCRO-DR are equivalent [17]. We also refer to [23] for the analysis of FGMRES-
DR.

2.3. Mixed precision GMRES. Mixed precision algorithms utilize different
floating-point arithmetic within a given computation to improve performance while
maintaining acceptable accuracy. These techniques have become increasingly rele-
vant due to advancements in modern hardware that efficiently handle lower precision
arithmetic. Double precision (fp64) arithmetic does not always fully exploit modern
hardware capabilities, whereas lower precision arithmetic, such as single (fp32) or half
(fp16) precisions, can offer substantial speedups and reduced memory usage. For a
more comprehensive overview of mixed precision methods, we refer the reader to [28].
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In the specific case of GMRES, various mixed precision methods have been pro-
posed. Several studies have shown that lower (or mixed) precision can be exploited in
specific operations, such as the matrix–vector products [22, 25], the orthonormaliza-
tion [26, 2], or the preconditioner [7, 24, 6]. In the case of the preconditioner, we can
distinguish simply constructing the preconditioner in lower precision, or also applying
it in lower precision. The former reduces the time and memory costs of constructing
the preconditioner, but not always the cost of applying it during the iterations. While
memory accessor approaches [27, 5] have been proposed to translate the low storage
precision into time reductions, directly performing the application in low precision
may sometimes be more efficient. In this case, the rounding errors incurred in the
application depend on the vectors that the preconditioner is applied to, which makes
the preconditioner behave like a variable preconditioner. To address this, the flexible
variant becomes essential; see also [13, 14]. Please refer to [13], which is based on the
modular framework of [12], for a comprehensive analysis of a single cycle of GMRES
in mixed precision.

Importantly, across multiple cycles, GMRES presents even more opportunities
to use lower/mixed precision. Indeed, (potentially all) the operations in the Arnoldi
process can often be switched to low precision while preserving a convergence to high
accuracy. This is because restarted GMRES is a form of iterative refinement. Such
GMRES-based iterative refinement approaches have been extensively analyzed [15,
16, 4] and practical implementations have been shown to significantly reduce the time
and memory costs [3, 32, 31, 40]

Finally, we mention the work of Oktay and Carson [37] that, to our knowledge,
is the first and so far only attempt at combining mixed precision with augmentation
techniques. They propose a mixed precision GCRO-DR based iterative refinement,
which however only exploits low precision for the preconditioner construction. We
will discuss in detail how it compares with our proposed methods in the next section;
the main point is that we aim to develop a more general method that considers the
use of low precision in each (potentially all) inner operations.

3. Mixed precision augmented GMRES framework. In this section, we
present a general mixed precision augmented GMRES framework, outlined in Algo-
rithm 3.1, where the Arnoldi process is based on the modified Gram–Schmidt al-
gorithm. After completing one cycle of GMRES, we define the augmented Krylov
subspace using an arbitrary set of vectors Pk and compute an approximate solution
by minimizing the residual norm. This process is repeated until the convergence
criterion is satisfied.

In our general framework, every main operation of the algorithm is parametrized
by its own specific precision, namely uf for setting up the preconditioner (for example,
this can be an approximate factorization), up for the preconditioner application, ua

for the matrix–vector product, uo for the orthonormalization, ue for the eigenvalue
problem if necessary, and ur for computing the residual; all other operations are
performed in the working precision u, which is also the precision used for storing
the matrix and the right-hand side and solution vectors. Table 3.1 summarizes these
precision parameters. The interest in using such a general framework is that the choice
to switch one type of operation to low precision can be made independently of the
other operations, and moreover different levels of low precision can be simultaneously
used within a given variant.

As mentioned earlier, Oktay and Carson [37] have proposed a mixed precision
GCRO-DR based iterative refinement. While their method shares some similari-



MIXED PRECISION AUGMENTED GMRES 7

Algorithm 3.1 Mixed precision augmented GMRES.

Input: matrix A, preconditioner M in precision uf , non-zero vector b, size of search
subspace m, size of augmentation k, tolerance ε > 0, maximum number of itera-
tions max it, initial vector x0, precisions (u, up, ua, uo, ue, ur).

Output: approximate solution x for Ax = b.
1: r0 = b−Ax0 in precision ur.
2: β = ∥r0∥ in precision u; c = [β,0T

m]T ; it = 1.
// Perform Arnoldi process with the starting vector r0/β:

3: v1 = r0/β in precision uo.
4: for j = 1 : m do
5: z = M−1vj in precision up.
6: q = Az in precision ua.
7: for i = 1 : j do
8: Hm(i, j) = vH

i q in precision uo.
9: q = q −H(i, j)vi in precision uo.

10: end for
11: Hm(j + 1, j) = ∥q∥ in precision uo.
12: vj+1 = q/H(j + 1, j) in precision uo.
13: end for
14: Set Vm+1 = [v1, . . . ,vm+1].
15: Solve y∗ = argmin ∥c−Hmy∥ in precision u.
16: d = M−1(Vmy∗) in precision min(uo, up).
17: Update x0 = x0 + d in precision u.
18: r0 = b−Ax0 in precision ur.
19: β = ∥r0∥ in precision u; Wm = Vm.
20: while β/ ∥b∥ > ε or it < max it do
21: Construct Pk = [p1, . . . ,pk] in precision uo.

(If required, compute Gk = [g1, . . . , gk] in precision ue for Pk = WmGk.)
// Perform Arnoldi process with v1 = r0/ ∥r0∥ and Pk:

22: for j = 1 : m do
23: if j ≤ m− k then
24: z = M−1vj in precision up.
25: else
26: z = M−1pj−m+k in precision up.
27: end if
28: q = Az in precision ua.
29: for i = 1 : j do
30: Hm(i, j) = vH

i q in precision uo.
31: q = q −Hm(i, j)vi in precision uo.
32: end for
33: Hm(j + 1, j) = ∥q∥ in precision uo.
34: vj+1 = q/Hm(j + 1, j) in precision uo.
35: end for
36: Set Vm+1 = [v1, . . . ,vm+1], Wm = [v1, . . . ,vm−k, Pk], and c = [β,0T

m]T .
37: Solve y∗ = argmin ∥c−Hmy∥ in precision u.
38: d = M−1(Vmy∗) in precision min(uo, up).
39: Update x0 = x0 + d in precision u.
40: r0 = b−Ax0 in precision ur.
41: β = ∥r0∥ in precision u.
42: it = it+ 1.
43: end while
44: x = x0.
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Table 3.1
List of precision parameters of our mixed precision framework.

Precision Description
u working precision
uf precision to set up the preconditioner M
up precision to apply M−1

ua precision of the matrix–vector product
uo precision of the orthonormalization
ue precision to solve the eigenvalue problem
ur precision to compute the residual vector

ties with our framework, it also presents significant differences. Oktay and Carson’s
method is an iterative refinement where the inner system is solved with GCRO-DR; it
therefore consists of three loops. GCRO-DR is especially suited for solving sequences
of linear systems where the right-hand side changes, as is the case in Oktay and Car-
son’s three-loop method. In contrast, Algorithm 3.1 only consists of two loops, and
can be seen as an iterative refinement method where the inner system is solved with
an augmented but single GMRES iteration. Thus, in our case, the right-hand side
is fixed so that GCRO-DR is less natural. Moreover, our Algorithm 3.1 considers
an unspecified augmentation subspace, and so is more general. Finally, and most
importantly, Oktay and Carson’s method only considers the use of low precision by
computing low precision LU factors of the matrix, that are then used as precondi-
tioner. All other operations performed during the actual iterations are kept in high
precision. In contrast, Algorithm 3.1 considers a general framework, which allows for
the use of multiple, independent (potentially low) precisions for each main operation.
Moreover, we consider a general preconditioner M .

Building on the general augmented GMRES framework presented above, we now
turn to a specific variant, GMRES-DR. While our framework allows for general aug-
mentation and variable precision choices, GMRES-DR focuses on augmentation using
harmonic Ritz vectors based on the collinear relation. In the following section, we
examine how GMRES-DR can be extended to mixed precision settings and highlight
the limitations that arise when low precision is used for critical components.

4. Mixed precision GMRES-DR and its limitations. In GMRES-DR, as
introduced in section 2, the orthonormalization of the residual vector and harmonic
Ritz vectors is performed using the collinearity property (e.g., the existence of the
coefficient vector aT

k ), along with an additional QR decomposition on Gk+1. Other
components, such as the Arnoldi process and the minimization step, follow the stan-
dard GMRES framework. We refer the reader to [35] for the complete algorithm and
to [23] for its flexible variant.

It is worth noting that GMRES-DR and AugGMRES using harmonic Ritz vec-
tors are mathematically equivalent [35]. As described in Algorithm 3.1, GMRES-DR
can be extended to a mixed precision setting by assigning various precision levels
as listed in Table 3.1. In this paper, we first focus on low precision computations
in GMRES-DR, with particular attention to two key components: preconditioning
and the Rayleigh–Ritz formulation, both of which are examined through numerical
experiments.

Experimental setting. In this section, we will illustrate the behavior of spe-
cific instances of GMRES-DR with some numerical experiments. Our algorithm is
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implemented in MATLAB and uses the built-in operations, such as eig() for solving
eigenvalue problems, “\” (backslash) for applying preconditioners and solving least
squares problems, and ilu for constructing the incomplete LU (ILU(0), in our case)
preconditioner. Computations in fp64 and fp32 arithmetic use MATLAB’s double

and single types, while fp16 operations are simulated using the chop library [29].
When we apply chop() to complex variables, the real and imaginary parts are pro-
cessed separately.

For consistency, these illustrative experiments all use the same matrix fv3 taken
from the SuiteSparse Matrix Collection1. This matrix has a condition number κ(A) =
2.03×103. For the right-hand side vector, we use b = Ae/ ∥Ae∥, where e = [1, . . . , 1]T .
We then solve the system using GMRES with m = 10 and GMRES-DR with m = 10
and k = 2. For this matrix, GMRES-DR significantly enhances the convergence in a
uniform precision context (see, for example, Figure 4.1 below). Indeed, using deflated
restarting reduces the number of cycles from 19 to 11, for cycle lengths of 10 in both
cases and thus of comparable cost.

4.1. Lower precisions uf and up. While preconditioning plays a crucial role
in accelerating the convergence, constructing and applying the preconditioner are
often some of the most computationally expensive operations. This motivates the
interest of performing them in low precision. In the following illustrative experiments,
we consider an incomplete LU factorization without fill-in, ILU(0), to construct the
preconditioner M .
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GMRES with lower precision uf

GMRES (uniform fp64)
GMRES-DR (uniform fp64)
GMRES (fp32)
GMRES (fp16)
GMRES-DR (fp32)
GMRES-DR (fp16)

Fig. 4.1. Lower precision preconditioning (uf ): solve fv3 with m = 10 and k = 2.

In Figure 4.1, we first investigate constructing the preconditioner in a lower preci-
sion uf , set to either fp32 or fp16. All other operations, including the precondition ap-
plication, are kept in fp64. The figure illustrates that constructing the preconditioner
M in lower precision performs comparably to the uniform precision GMRES(-DR).
Remarkably, even when M is constructed in fp16, the GMRES solvers demonstrate
identical convergence rates to those using higher precision preconditioners. Clearly,

1https://sparse.tamu.edu/

https://sparse.tamu.edu/
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this observation is matrix-dependent, but we will provide additional experiments in
section 5 that confirm this behavior on various matrices. Thus, in this first mixed
precision setting, we are able to successfully combine the use of lower precision with
the faster convergence of GMRES-DR.

As mentioned, in some contexts, it can be beneficial to not only construct but also
apply the preconditioner in lower precision. We investigate this variant in Figure 4.2,
by setting uf to fp16, up to either fp32 or fp16, and all other precisions to fp64. While
reducing the precision up does not degrade the convergence of standard GMRES,
GMRES-DR stagnates at an accuracy of order up.
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GMRES with lower precision uf and up

GMRES (uniform fp64)
GMRES-DR (uniform fp64)
GMRES (fp16, fp32)
GMRES (fp16, fp16)
GMRES-DR (fp16, fp32)
GMRES-DR (fp16, fp16)
FGMRES-DR (fp16, fp32)
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Fig. 4.2. Mixed precision preconditioning (uf , up): solve fv3 with m = 10 and k = 2.

We will explain the reason behind this stagnation in subsection 4.3, but let us
first immediately mention that this issue can be readily fixed by using the flexible
variant FGMRES-DR. Indeed, as illustrated Figure 4.2, FMGRES-DR preserves the
convergence of GMRES-DR while allowing the preconditioner to be applied in either
fp32 or fp16. Therefore, for this illustrative matrix, the preconditioner can be both
constructed and applied in a precision as low as fp16 while converging as fast as the
uniform precision GMRES-DR in fp64, but this comes at the expense of using the
flexible variant, which requires storing two Krylov bases of size m.

4.2. Lower precisions ue, uo, and ua. Next, we attempt to reduce the preci-
sion of the other inner operations, namely, ua for the matrix–vector product, uo for
the orthonormalization, and ue for the eigenvalue problem. Unfortunately, Figure 4.3
shows that lowering any of these precisions leads to a stagnation of FGMRES-DR
to an accuracy of corresponding order. The figure illustrates this by setting each of
these precisions individually to fp32 while keeping all other precisions in fp64; the
same conclusion is achieved when using fp16 instead of fp32, or when reducing more
than one precision simultaneously. Note that, unlike for the preconditioner applica-
tion precision up, using the flexible variant here does not resolve this issue. Thus,
while GMRES-DR may improve the convergence initially, using lower precision for
ua, uo, or ue eventually leads to stagnation and limits the attainable accuracy of the
solver.
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Fig. 4.3. Lower precision eigenvalue computation and Arnoldi iterations (ue, ua, uo): solve fv3
with m = 10 and k = 2.

Importantly, this is a limitation that is specific to GMRES-DR and, in particu-
lar, that is not shared by standard GMRES. Figure 4.3 shows indeed that standard
GMRES continues to converge at the same speed even with these reduced precisions.

We provide an explanation for this stagnation behavior in the next section.

4.3. Why GMRES-DR stagnates in low precision. As seen in subsec-
tion 2.2, the derivation of GMRES-DR is based on the fact that, in exact arithmetic,
using the Arnoldi identity and the orthonormality of Vm+1, the residual vector rm is
written as

rm = b−Axm = Vm+1ρ, (4.1)

where ρ = c−Hmym and c = V H
m+1r0.

In finite precision, however, (4.1) no longer holds exactly. Specifically, the Arnoldi
process with modified Gram–Schmidt yields

AVm = Vm+1Hm + Em and V H
m+1Vm+1 = Im+1 + Fm+1,

where ∥Em∥ ≤ p1(n,m) ∥A∥F max(ua, uo) and ∥Fm+1∥ ≤ p2(n,m)κ(A)uo for some
low-degree polynomials p1 and p2 in n and m; see [11] for further details.

As a result, we obtain

rm = b−Axm

= r0 −AVmym

= r0 − Vm+1Hmym − Emym

= Vm+1V
H
m+1r0 − Vm+1Hmym − Emym + (In − Vm+1V

H
m+1)r0

= Vm+1ρ+ δr,

with

δr = −Emym + (In − Vm+1V
H
m+1)r0.



12 Y. JANG, P. JOLIVET, AND T. MARY

Note that, in exact arithmetic, r0 ∈ span(Vm+1) and thus (In − Vm+1V
H
m+1)r0 = 0n.

However, this does not hold in inexact arithmetic due to the loss of orthogonality of
Vm+1. If r0 = Vm+1c0 for some coefficient vector c0, then∥∥(In − Vm+1V

H
m+1)r0

∥∥ = ∥Vm+1Fm+1c0∥ ≲ ∥Fm+1∥ ∥r0∥ ,

neglecting second-order terms. We thus have

∥δr∥ ≲ p3(n,m)
(
κ(A)uo ∥r0∥+max(uo, ua) ∥A∥ ∥ym∥

)
.

This shows that the approximation rm ≈ Vm+1ρ operated by GMRES-DR only holds
up to an error term δr proportional to max(uo, ua). Since this term is not taken into
account by GMRES-DR, it will cause stagnation once the residual becomes smaller
than δr.

Indeed, let r̃m = Vm+1ρ and let

r̃newm = r̃m −AV new
m+1ym

be the residual obtained by a new cycle of GMRES-DR. The true residual is

rnewm = rm −AV new
m+1ym = r̃newm − δr

Thus, even if ∥r̃newm ∥ becomes small, ∥rnewm ∥ may stagnate at the level of ∥δr∥.
A lower precision ue will also lead to the stagnation of GMRES-DR due to its in-

fluence in the computation of Gk. Specifically, inaccuracies in eigenvectors imply that
the subspace spanned by {p1, . . . ,pk, r0} no longer exactly aligns with the original
Krylov subspace spanned by Vk+1, that is,

range([Pk, r0]) ̸= range(Vk+1).

In the next section, we show that this stagnation issue can be overcome by going
back to the general case of augmented GMRES.

5. Numerical experiments with AugGMRES. In this section, we go back
to the general case of Algorithm 3.1. We illustrate experimentally that mixed precision
can successfully be employed if we do not operate the GMRES-DR simplifications. We
select the same augmented vectors as in GMRES-DR: the eigenvectors corresponding
to the k largest eigenvalues λ in (2.2), that is, the smallest approximate eigenvalues
of A. Hence, we use the same harmonic Ritz formulation for augmentation. We then
compare the convergence rates of our AugGMRES in mixed precision with GMRES
and GMRES-DR in uniform fp64.

Experimental setting. We consider various sparse matrices: random synthetic
ones, matrices taken from the SuiteSparse collection [20], and a matrix arising in a
computational fluid dynamics (CFD) simulation from ONERA (see subsection 5.3 for
details).

We explore various precision combinations. As a natural choice for the working
precision, we set u to fp64. Moreover, we take ur = u and uf ≤ up. We will investigate
various combinations for up, uo, ua, ue chosen among fp64, fp32, and fp16. In our
experiments, using fp16 for uo lead to stagnation for both standard and augmented
GMRES, even for well-conditioned matrices, so we will only use fp32 or higher for
uo. This may be due to the use of right-preconditioning, which the recent analysis
of Buttari et al. [13] shows to be more sensitive to the orthonormalization precision
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Table 5.1
Configuration of linear solvers for each matrix with condition number

Matrix Origin κ(A) n m k Preconditioner
Random1 Synthetic 103 1000 20 4 Jacobi
Random2 Synthetic 105 1000 20 4 Jacobi
fv3 SuiteSparse O(103) 9801 10 2 ILU(0)
SiO2 SuiteSparse O(104) 155 331 40 8 ILU(0)
LS89 CFD (ONERA) O(1014) 115 368 60 5 Block diagonal LU

Table 5.2
Configuration of mixed precision levels

Matrix uf up ue ua uo

Random1 fp16,32 uf fp16,32 fp16,32 fp32
Random2 fp16,32 uf fp16,32 fp32 fp32
fv3 fp16 uf fp16,32 fp16,32 fp32
SiO2 fp32 uf fp16,32 fp16,32 fp32
LS89 fp32 fp16,32 fp16,32 fp32 fp32

than left-preconditioning. The use and study of left-preconditioning is outside of the
scope of this paper.

Depending on A, we employ different types of preconditioning and set appropriate
values for m and k, but we maintain a fixed tolerance of ε = 10−10 for all experi-
ments. The solver and precision configurations are indicated in Tables 5.1 and 5.2,
respectively.

5.1. Random synthetic matrices. We begin by testing our algorithm on ran-
dom synthetic sparse matrices generated using the MATLAB command sprand. To
ensure A is invertible, we impose diagonal dominance and adjust the singular value
distribution. This allows us to generate random sparse matrices with specific condi-
tion numbers. As indicated in Tables 5.1 and 5.2, we solve two linear systems with
Jacobi preconditioning in mixed precision.

In Figure 5.1, we plot the convergence history of GMRES, GMRES-DR, and Aug-
GMRES in uniform fp64 precision, as well as various mixed precision configurations
of AugGMRES. Comparing the uniform fp64 variants first confirms that AugGMRES
significantly enhances the convergence of GMRES and matches that of GMRES-DR
(the curves for uniform fp64 AugGMRES and GMRES-DR are not visible because
they perfectly overlap with the other curves in the fastest convergence group). More-
over, AugGMRES remains successful even when lower precision arithmetic is em-
ployed. In particular, using fp32 arithmetic for all precisions except u and ur (purple
upward triangles) preserves the same convergence as the uniform fp64 variant. Fur-
thermore, even fp16 arithmetic can be used for selected operations; for this example,
fp16 preconditioning (uf = up = fp16, red circles) and fp16 matrix–vector products
(ua = fp16, cyan leftward triangles) both perform comparably to uniform fp64. Using
fp16 for computing the harmonic Ritz vectors (ue = fp16, green downward triangles)
causes a minor degradation in convergence. Using fp16 for all precisions except uo

(blue diamonds) leads to a more noticeable, but still small degradation, which suggests
that the errors have a cumulative effect on the convergence.

Figure 5.2 shows a similar experiment but with a more ill conditioned matrix.
For this matrix, uniform precision fp64 GMRES stagnates at about 10−6 relative
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Fig. 5.1. Random1 matrix: relative residual norm for the case of κ(A) = 103 depending on
precision configurations (up, ue, ua, uo) combinations.

residual norm, whereas AugGMRES successfully converges to the target accuracy.
The figure further illustrates that there is still potential for mixed precision despite
the ill conditioning of the problem: using fp32 for all operations except u and ur still
leads to successful convergence thanks to augmentation, although slightly later than
in the uniform fp64 case (15 restarts instead of 12). Here, however, the use of fp16
is not recommendable: using fp16 for ue or ua loses the advantage of augmentation
and leads to the same stagnation as standard GMRES. Using fp16 for preconditioning
(uf and up), the algorithm fails to converge due to the numerical singularity in the
Jacobi preconditioner. These results highlight the robustness of our proposed mixed
precision approach on ill-conditioned problems, provided that appropriate precision
levels are selected for critical steps.

5.2. SuiteSparse Matrix Collection. We complement the previous experi-
ments on synthetic matrices with some additional experiments on two matrices from
the SuiteSparse Matrix Collection: fv3 and SiO2. For each matrix, the solver param-
eter settings are indicated in Tables 5.1 and 5.2.

As previously observed in subsections 4.1 and 4.2, employing lower precision com-
putations does not degrade the convergence of GMRES when solving the fv3 system.
Figure 5.3 shows that this observation extends to AugGMRES, which exhibits signifi-
cantly improved convergence compared with standard GMRES, even with an intensive
usage of lower precision. Specifically, fp16 can be used for uf , up, ue, and ua; only
uo requires fp32. Thus, unlike (F)GMRES-DR, AugGMRES can use lower precision
up without requiring the flexible variant and, more importantly, can also use lower
precision ue, ua, and uo while avoiding stagnation and successfully improving the
convergence of standard GMRES.

Figure 5.4 illustrates similar numerical behaviors for mixed precision AugGMRES
with matrix SiO2, which is slightly more ill-conditioned and much larger than fv3. A
notable difference here is that employing lower precision computations degrades the
convergence, but this is the case for both GMRES and AugGMRES, so the issue is
independent of augmentation. In fact, the use of augmentation always improves the
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Fig. 5.2. Random2 matrix: relative residual norm for the case of κ(A) = 105 depending on
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Fig. 5.3. fv3 matrix: relative residual norm depending on precision configurations
(up, ue, ua, uo) combinations.

convergence rate, regardless of the mixed precision configuration. Moreover, mixed
precision augmented GMRES converges faster than uniform fp64 GMRES, which
shows that the loss of convergence induced by the use of mixed precision can be more
than compensated by augmentation.

5.3. CFD simulation. As our final numerical experiment, we consider the LS89
test case [8], a well-known benchmark in computational fluid dynamics (CFD) for
analyzing transonic flow in high-pressure turbine blades. The LS89 turbine cascade,
originally studied in experimental settings, serves as a standard test case for evaluating
numerical solvers applied to compressible Navier–Stokes equations. This test case
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presents a challenging scenario due to strong pressure gradients, shock waves, and
boundary layer effects, making it a suitable candidate for assessing the performance
of mixed precision iterative solvers.

The linear system arising from the LS89 problem is characterized by a large sparse
nonsymmetric matrix with n = 115 368 and κ(A) = O(1014), which is thus extremely
ill conditioned. We employ a block diagonal LU preconditioner with a six blocks
of equal size n/6, computed in uf = fp32. However, we experiment with various
precision levels up for applying this preconditioner.
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Fig. 5.5. LS89 matrix: relative residual norm depending on precision configurations
(up, ue, ua, uo) combinations.
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Even for this ill-conditioned problem, Figure 5.5 demonstrates that lower precision
arithmetic can be used. Here, the use of fp16 is again not recommendable, since it
prevents convergence when used for preconditioning (up) or matrix–vector products
(ua); if fp16 is used for solving the eigenvalue problem (ue), AugGMRES converges
but the benefit of augmentation is almost entirely lost. However, while fp16 should
not be used, fp32 can be used for all these operations and does not degrade the
convergence of AugGMRES. Interestingly, for this problem, AugGMRES (in uniform
or mixed precision) exhibits better convergence than GMRES-DR in uniform fp64,
which eventually stagnates at around 10−9. This stagnation is likely caused by the
same loss of collinearity discussed in subsection 4.3, which illustrates that this issue is
related to the use of finite (not just mixed) precision and can occur even in a uniform
fp64 setting. In any case, this experiment shows that, despite the extremely ill-
conditioned nature of the system, appropriately chosen mixed precision configurations
can be combined with augmentation.

6. Conclusion. We have proposed a mixed precision augmented GMRES algo-
rithm that successfully combines the benefits of augmentation and mixed precision.

We have presented a general framework that uses independent precision param-
eters for each of the main kernels, and that considers a generic augmented subspace.
For the latter, in practice, we have focused on using approximate eigenvectors esti-
mated via the harmonic Ritz formulation. One important point is that the simplifica-
tions operated to derive the popular GMRES-DR method should be avoided in mixed
precision, because they rely on a collinearity property that does not hold in finite pre-
cision. While this specific GMRES-DR variant thus presents limited mixed precision
opportunities, we have shown that the more general augmented GMRES method can
make use of lower precisions, such as fp32 or even fp16, for computationally inten-
sive kernels like preconditioning, matrix–vector product, eigenvalue decomposition,
and orthonormalization, and still successfully converge, often at the same speed as
uniform precision fp64 augmented GMRES (or GMRES-DR). We have experimen-
tally illustrated the benefits of our mixed precision augmented GMRES approach for
various sparse matrices, including ill-conditioned real-life ones.

Given the promising numerical results obtained by this study, developing a high-
performance parallel implementation of this mixed precision augmented GMRES ap-
proach seems an interesting perspective for future work.
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[25] S. Graillat, F. Jézéquel, T. Mary, and R. Molina, Adaptive precision sparse matrix-vector
product and its application to Krylov solvers, SIAM J. Sci. Comput., 46 (2024), pp. C30–
C56, https://doi.org/10.1137/22M1522619.

[26] S. Gratton, E. Simon, D. Titley-Peloquin, and P. L. Toint, A note on inexact inner
products in GMRES, SIAM J. Matrix Anal. Appl., 43 (2022), pp. 1406–1422, https://doi.
org/10.1137/20M1320018.
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