Swa: @  ip

Green computing
via mixed precision

Theo Mary
Sorbonne Université, CNRS, LIP6

Energy Efficient Computing Workshop
Rutherford Appleton Laboratory
15-16 September 2025

1/26



Floating-point landscape

Signif. Exp. Range (fimax/fmin)  Unit roundoff u
bits bits

fp128 113 15 232766 1% 271 ~ 1 x 1073
fp64 52 11 22046 10010 273 ~1x107%
fp32 23 8 2®4x~ 10 27 ~6x107°
tfloat32 10 8 2% ~10™ 271 ~5x107*
fpl6 10 5 22°x10° 27l x5 x107*
bfloat16 7 8 2% x~10™ 28%~4x10"3
fp8 (E4M3) 3 4  2¥~3x10* 27"~ 6 x 1072
fp8 (E5M2) 2 5 2%¥~10° 23~1x107!
fp6 (E2M3) 3 2 2°x~38 27~ 6 x 1072
fp6 (E3M2) 2 3 27~128 273 0.125
fp4 (E2M1) 1 2 2)~38 272 0.25

Lower precisions:

Faster, consume less memory and energy

Standard model of FPA:

For any x such that |x| € [fuin, fmax],

® Lower accuracy and narrower range fi(x) = x(1+6), |6 <u

= Mixed precision algorithms
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https://bit.ly/mixed-survey

Mixed precision strategies

o

Iterative refinement
Run baseline algorithm in low precision, refine result to high accuracy

Memory accessors
Decouple the storage (low) precision and the compute (high) precision

Multiword arithmetic
Emulate high precision with low precision

Adaptive precision
Adapt the precision of each instruction to the problem/input at hand

Conclusion
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0 Iterative refinement
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Iterative refinement

Convergence of IR

Iterative refinement

@ Attainable accuracy u + u,k(A)

1: Compute an initial approximation x (independent of 1)

. repeat @ Convergence rate o k(A)e

2
3
4:  r = b— Ax in precision u,
5
6
7

o Can use direct, iterative, or any kind

Solve Ac = r in “precision” ¢ :
of approximate solvers

X = X 4 ¢ in precision u
. until convergence
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LU-based iterative refinement

Convergence of LU-IR

LU-IR [Langou et al., 2006]

@ Attainable accuracy u + u,k(A)

1. Compute A = LU in precision ur (independent of uy!)

: Solve LUx = b in precision uf
: repeat

2

3 e Convergence rate x x(A)uf
4:  r=b— Ax in precision u,

5

6

7

o Can use direct, iterative, or any kind

Solve LUc = r in precision ur )
of approximate solvers

X = X 4 ¢ in precision u
. until convergence @ LU-IR: use low precision LU
factorization and solve LUc =~ r
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GMRES-based iterative refinement

GMRES-IR [Carson and Higham, 2017] GMRES
1: Compute A = LU in precision ur 1. = b—lAXo
2: Solve LUx = b in precision u 2 so=M""ro
N . P f 3: 8= soll, vi = /8, k=1
. repea . . 4: repeat
4: r = b — Ax in precision u, 5.z =Av
5. Solve Ac = r via LU-preconditioned GMRES 6:  we=M"lz
6: X =X+ c in precision u g forh' = 1";'7'M’,k do
. . ik = V; k
7: until convergence 9: Wi = wi — hj kv
10: end for
110 higa e = Iwill, vierr = wie/ brsa k
Convergence of GMRES-IR 120 Vi=[v,..., v
: 130 Hy = {h 1ciciinic;
@ Attainable accuracy u + u,k(A k MITSISILLSICk
y u+ urs(A) 14:  yx = argmin, [|Ber — Hyy/|
@ Convergence rate of GMRES-IR 150 k=k+1

0 16: til — H, < in
o attainable accuracy of GMRES 17: ;::':ﬂff: ka:yk” =

@ What precisions for GMRES?

e What preconditioning style (left, right, flexible)?
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Attainable accuracy of GMRES

Algorithm Backward Forward Reference

MGS-GMRES Ug k(A)ug Paige et al. (2006)
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Attainable accuracy of GMRES

Algorithm Backward Forward Reference
MGS-GMRES Ug k(A)ug Paige et al. (2006)

Left-precond. MGS-GMRES
products with M~1A in prec. Up

Amestoy, Buttari, Higham

. —1
g + w(A)up KM AN g +K(A)) e et M, Vieubls (2024)

ur Ug up,  max k(A)
fpl6 LU-IR 2 x 103
@ Preconditioned GMRES is not stable fplo  fpl6 fp32 4 X 101
. . . fple fple fp64d 9 x 10
= M.otlvates mixed precision GMRES fIFD)16 fz32 fg64 8 i 106
with up < ug fp32 LU-IR 2 x 107
@ Attainable accuracy depends on uf fple fp64 fp64 3 x 107
only through k(M~1A) fp32 fple fp64 7 x 10°

fp32 fp32 fp64 1 x 10
fpl6 fp64 fpl2g 2 x 10
fp32 fp64 fpl2g 2 x 10%5
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LU-IR vs GMRES-IR with fp32 MUMPS solver

fp32 LU factorization + refinement to fp64 accuracy
(ur = p32, u = uy = ug = up = fp64)

Matrix k(A) time gain memory gain
LU-IR GMRES-IR LU-IR GMRES-IR
ElectroPhys10M  10° 1.7x 1.6x 2.0x 1.6x
Bump_2911 10° 1.6x 1.4x 2.0x 1.7x
DrivAer6M 10° 1.4x 1.2x 2.0x 1.5%
Queen_4147 10° 1.7x 1.5x 2.0x 1.6x
tminlet3M 107 2.2x 1.9x 2.0x 1.4x
perf009ar 108 0.8x 0.9x 1.9x 1.5x
elasticity-3d 10° = 1.3x = 1.5x
Ifm_augbM 102 | 2.1x 2.0 2.0x 1.7x
Long_Coup_dt0 10%? 1.4x 1.4x 2.0x 1.6%
CarBody25M 10" — 0.6 — 1.4x
thmgaz 10" | 1.5x 1.2x 2.0x 1.4x

@ Up to 2x time and memory reduction, even for ill-conditioned problems
@ GMRES-IR usually more expensive than LU-IR, but more robust

[Amestoy, Buttari, Higham, L'Excellent, M., Vieublé, TOMS 2022] 0/26



Energy consumption of IR

Figure from [Haidar et al., 2020]

(a) power usage CPU + GPU GV100
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@ Lowering precision decreases the time spent in the LU factorization, which is very
energy-consuming, and increases the time spent in the refinement, which is much

less energy-consuming = 4x speedup but 5x energy reduction 1026



© Memory accessors
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Memory accessors

@ For memory-bound computations, performance and energy consumption are
driven by volume of data transfers/communications

@ Lowering storage precision reduces memory consumption and volume of data
transfers = faster, more energy-efficient computation!

@ Decouple storage and compute precisions: data is stored (compressed) in low
precision and accessed (decompressed) back to high precision for computations
[Anzt et al., 2019]

@ Higher precision computations improves accuracy by reducing rounding error
accumulation and may provide application-specific benefits (e.g., preconditioning)

@ Some architectures (e.g., GPU tensor cores) provide this feature in hardware
[Blanchard, Higham, Lopez, M., and Pranesh, SISC 2020] , [Lopez and M., [JHPCA 2023.]
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BLAS-based block memory accessors

At what data granularity should we use memory accessors?
e Too small (e.g., variable-wise) = need to rewrite all the code ®
@ Too large (e.g., matrix-wise) = accessed data does not fit into fast memory,

inefficient ®
@ Just right (e.g., block-wise) = blocks fit into fast memory and computations can
use BLAS | [Amestoy, Jego, L'Excellent, M., and Pichon, preprint 2025]

9 140 storage precision
[TH + P
O 120 compute precision

@ 100 p32+fp64
50 — D64

Q

5

£

= fp32
S 60 f P
o)

o

0 100 200 300 400 500
Block size b
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BLAS-based block memory accessors

At what data granularity should we use memory accessors?
e Too small (e.g., variable-wise) = need to rewrite all the code ®
@ Too large (e.g., matrix-wise) = accessed data does not fit into fast memory,

inefficient ®
@ Just right (e.g., block-wise) = blocks fit into fast memory and computations can
use BLAS | [Amestoy, Jego, L'Excellent, M., and Pichon, preprint 2025]
200
storage precision
180 + compute precision
&) 160 m— p56+fp64
g 140 m— 1p48+fp64
O 120 m— [pA0+p64
8 100 fp32+ip64
§ 80 Q rp24+fp6a
% 60 ” t——-—\ m— 1p16+p64
[ R — 164

N
S}

fp32

o

0 100 200 300 400 500
Block size b

@ Storage precision needs not be hardware supported, can use custom formats 1326



© Multiword arithmetic
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Very low precisions on GPUs

Peak performance (TFLOPS)

TFLOPS TFLOPS/Watt
H200 B200 H200 B200

fpb64 67 40 0.1 0.04

fp32 67 80 0.1 0.08

tfloat32 495 1,100 0.7 1.1

fpl6/bfloatl6 990 2,250 1.4 2.25

fp8/int8 2000 4500 29 45

fo4 ~ 0000 - 9

fp64 /fp8 FLOPS ratio: Power consumption:
e H200 (2022): 30x e H200: 700 W
e B200 (2025): 112x e B200: 1000 W

@ Very low precisions are very fast and energy-efficient, but hardly usable “as is”

= use them to emulate higher precisions
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Multiword arithmetic on mixed precision MMA units

o Step 1: compute the multiword Example: fp32 emulation with bfloat16
decompositions tensor cores (50x speed ratio on Blackwell)

s—1 s=1 Ulow = fpl6, upien = fp32, s =3
Ax> u, A and Bx> u B
i=0 j=0

By B B>

with A; and B; stored in precision gy

@ Step 2: compute the s(s+1)/2 Ao
leading products
C= > UoAB; Ay
i+j<s
with a mixed precision MMA with As
accumulation precision upjgh

Multiword MMA error bound (Fasi, Higham, Lopez, M., Mikaitis, SISC 2023)

The computed C satisfies |C — AB| < ((p+ L)uf, + c(n, s)unign)|A||B.
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Multiword arithmetic for large integer matrix products

Goal: compute C = AB, A€ Z™*", B € Z"*9, coefficients bounded by p
e modular matrix product C = AB mod p in computer algebra
e approximating floating-point product as scaled integer product [Ozaki et al ]

@ Step 1: compute the decompositions
sp—1 sg—1

A= > oA and Bx > B =
i=0 j=0

with coefficients A; and B; bounded by
o = (pl/s/q and 5 = [pl/sB] /1 | —

@ Step 2: compute the spsg products
C = Z OziﬁjA,'Bj
iJ
by blocks of size b = 2¢

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)

The product is computed exactly in t-bit arithmetic if p/sat1/ss < 2t—¢,
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@ Adaptive precision
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Adaptive precision: main principle

e Not all variables/operations need the same precision!
Example:

Target precision
I
+ . T
Unimportant bits

= Here, b can be stored and computed in low precision

o Adaptive precision algorithms exploit this observation by dynamically selecting the
minimal precision for each variable/operation, depending on the data and on the
prescribed accuracy €
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Adaptive precision SpMV: theory and algorithm

@ Goal: compute y = Ax, where A is a sparse matrix, with a target accuracy ¢

@ Given p available precisions u; < e < up < ... < up, define partition

AoSoa®, 0= [Mlon) Flayl € (1A e Al ]
J 0 otherwise

= the precision of each element is chosen inversely proportional to its magnitude

9 6HAH €||A||/U3 6HAH/Uz +00
H/—/ R/—/ N R/—/
drop precision u3  precision up  precision up

Error bound for adaptive precision SpMV (Graillat, Jézéquel, M., Molina, SISC 2022)

The computed y satisfies y = (A + AA)x, ||AA| < ce||A|l.
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Adaptive precision SpMV: implementation and results

@ The more precisions we have, the more we can reduce storage = exploit custom
precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]
@ Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and

potentially much more for larger €.

5

£

100 100 : : : ‘ ‘
[ drop
[ rp16
80 [rp24 80 - 1
I fp32 —
P 40 S
2 60 [rp48 <= 60+ 1
g [ P56 S A
= I fp64 SN
T 40 g 07 ]
. Q
= O
20 + 4
20 —%— Uniform storage
—6— Adaptive storage
8753 27‘45 27‘37 27‘29 27‘24 2—16 2—)8
953 945 9-37 920 9-21 916 o-8 fp64 pH6 rp48 rp40 fp32 rp24 rpl6
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Adaptive precision SpMV: implementation and results

@ The more precisions we have, the more we can reduce storage = exploit custom
precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]

@ Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and
potentially much more for larger €. Time cost matches storage!

100 1004 : : T T T
I drop T~
16 T~
80+ [rp24 | 80+ RNy
32 _ .
P I 40 S 8
£ 60f s E 0] X T
= [ P56 S
= I fp64 X .
B 40} ] E or -
SN &) —s#— Uniform storage
20 | |—e— Adaptive storage
20 - B Uniform time
- © - Adaptive time
8753 27‘45 27‘37 27‘29 27‘24 2—16 2—8
953 945 9-37 920 9-21 916 o-8 fp64 pH6 rp48 rp40 fp32 rp24 rpl6

€
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Block low-rank (BLR) matrices

complete domain

P
. -
Y,
,———-'{Fﬁ'
Ajj

1A = XYy || < e[| A
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Block low-rank (BLR) matrices

complete domain

Block low-rank matrix
[Amestoy et al., 2015]
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Adaptive precision BLR

Uil Us Ayl X

V]; precision u;
v, precision u;
e/ uz 28 precision u3

e/us

Error bound (Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M., IMAJNA 2022)

Given p precisions u; < e < up < ... < up, partition each block A;; = Z’;Il UrX g VkT
such that HZkH < <€HAH/Uk and let U, = f|k(Uk) and Vj = ﬂk(Vk). Then

p
1A= Ui V)T || < (2p — 1) All.
k=1

23/26



Performance impact illustration

@ Adastra MUMPSA4FWI project led by WIND team [Operto

et al., The Leading Edge 2023]

@ Application: Gorgon Model, reservoir 23km x 11km x 6.5km,

grid size 15m, Helmholtz equation, 25-Hz

@ Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

@ FR cost: flops for one LU factorization= 2.6 x 10'¢;
Estimated storage for LU factors= 73 TBytes

FR (Full-Rank); BLR with ¢ = 107%;

(25-Hz Gorgon FWI velocity model)

48 000 cores (500 MPI x 96 threads/MPI)

FR: fp32; Adaptive precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage
LU size (TBytes) Flops Time BLR + Mixed (sec) | Scaled Resid.
FR BLR +adapt. FR BLR+adapt. | Analysis Facto  Solve BLR-+adapt.
73 34 26 | 2.6 x 10™ 0.5 x 10" 446 5500 27 7x10"

48 000 cores needed due to memory requirements = important not to waste them (and the associated
energy consumption)! Efficiency computation:

@ Theoretical peak: 3686 TFLOPS (48000 x 2.4GHz x 2 (fp32) X 16 flop/cycle)

@ Speed w.r.t. BLR flops: 364 TFLOPS (10% of the peak) (0.5 x 10 x 4 (complex)/5500,/102)
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© Conclusion
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Conclusion

o lterative refinement reduces the cost of the most compute-intensive,
energy-consuming step (LU factorization)

@ Memory accessors reduce the cost of data transfers, the most energy-consuming
operation in memory-bound computations

@ Multiword arithmetic enables the use of energy-efficient specialized GPUs with
very low precisions

@ Adaptive precision optimizes the use of precisions for the given problem

@ Mixed precision can reduce the number of ressources needed to solve a problem
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Conclusion

o lterative refinement reduces the cost of the most compute-intensive,
energy-consuming step (LU factorization)

@ Memory accessors reduce the cost of data transfers, the most energy-consuming
operation in memory-bound computations

@ Multiword arithmetic enables the use of energy-efficient specialized GPUs with
very low precisions

@ Adaptive precision optimizes the use of precisions for the given problem

@ Mixed precision can reduce the number of ressources needed to solve a problem

Thanks! Questions?
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