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Energy Efficient Computing Workshop
Rutherford Appleton Laboratory

15-16 September 2025

1 / 26



Floating-point landscape

Signif. Exp. Range (fmax/fmin) Unit roundoff u
bits bits

fp128 113 15 232766 ≈ 109863 2−114 ≈ 1× 10−34

fp64 52 11 22046 ≈ 10616 2−53 ≈ 1× 10−16

fp32 23 8 2254 ≈ 1076 2−24 ≈ 6× 10−8

tfloat32 10 8 2254 ≈ 1076 2−11 ≈ 5× 10−4

fp16 10 5 230 ≈ 109 2−11 ≈ 5× 10−4

bfloat16 7 8 2254 ≈ 1076 2−8 ≈ 4× 10−3

fp8 (E4M3) 3 4 215 ≈ 3× 104 2−4 ≈ 6× 10−2

fp8 (E5M2) 2 5 230 ≈ 109 2−3 ≈ 1× 10−1

fp6 (E2M3) 3 2 23 ≈ 8 2−4 ≈ 6× 10−2

fp6 (E3M2) 2 3 27 ≈ 128 2−3 ≈ 0.125
fp4 (E2M1) 1 2 23 ≈ 8 2−2 ≈ 0.25

Lower precisions:
, Faster, consume less memory and energy
/ Lower accuracy and narrower range
⇒ Mixed precision algorithms

Standard model of FPA:

For any x such that |x | ∈ [fmin, fmax],
fl(x) = x(1 + δ), |δ| ≤ u
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Survey

https://bit.ly/mixed-survey
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Mixed precision strategies

1 Iterative refinement
Run baseline algorithm in low precision, refine result to high accuracy

2 Memory accessors
Decouple the storage (low) precision and the compute (high) precision

3 Multiword arithmetic
Emulate high precision with low precision

4 Adaptive precision
Adapt the precision of each instruction to the problem/input at hand

5 Conclusion
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Iterative refinement

Iterative refinement

1: Compute an initial approximation x
2:

Solve LUx = b in precision uf

3: repeat
4: r = b − Ax in precision ur
5: Solve Ac = r in “precision” ε
6: x = x + c in precision u
7: until convergence

Convergence of IR

Attainable accuracy u + urκ(A)
(independent of ε!)

Convergence rate ∝ κ(A)ε

Can use direct, iterative, or any kind
of approximate solvers

LU-IR: use low precision LU
factorization and solve LUc ≈ r
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LU-based iterative refinement

LU-IR [Langou et al., 2006]

1: Compute A = LU in precision uf
2: Solve LUx = b in precision uf
3: repeat
4: r = b − Ax in precision ur
5: Solve LUc = r in precision uf
6: x = x + c in precision u
7: until convergence

Convergence of LU-IR

Attainable accuracy u + urκ(A)
(independent of uf !)

Convergence rate ∝ κ(A)uf

Can use direct, iterative, or any kind
of approximate solvers

LU-IR: use low precision LU
factorization and solve LUc ≈ r
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GMRES-based iterative refinement

GMRES-IR [Carson and Higham, 2017]

1: Compute A = LU in precision uf
2: Solve LUx = b in precision uf
3: repeat
4: r = b − Ax in precision ur
5: Solve Ac = r via LU-preconditioned GMRES
6: x = x + c in precision u
7: until convergence

Convergence of GMRES-IR

Attainable accuracy u + urκ(A)

Convergence rate of GMRES-IR
∝ attainable accuracy of GMRES

What precisions for GMRES?

What preconditioning style (left, right, flexible)?

GMRES

1: r0 = b − Ax0
2: s0 = M−1r0
3: β = ∥s0∥, v1 = s0/β, k = 1
4: repeat
5: zk = Avk
6: wk = M−1zk
7: for i = 1, . . . , k do
8: hi,k = vT

i wk

9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k

12: Vk = [v1, . . . , vk ]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k

14: yk = argminy ∥βe1 − Hky∥
15: k = k + 1
16: until ∥βe1 − Hkyk∥ ≤ εin
17: xk = x0 + Vkyk
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Attainable accuracy of GMRES

Algorithm Backward Forward Reference

MGS-GMRES ug κ(A)ug Paige et al. (2006)

Left-precond. MGS-GMRES
ug + κ(A)up κ(M−1A)(ug + κ(A)up)

Amestoy, Buttari, Higham

products with M−1A in prec. up L’Excellent, M., Vieublé (2024)

Preconditioned GMRES is not stable

⇒ Motivates mixed precision GMRES
with up ≪ ug

Attainable accuracy depends on uf
only through κ(M−1A)

uf ug up max κ(A)

fp16 LU-IR 2× 103

fp16 fp16 fp32 4× 104

fp16 fp16 fp64 9× 104

fp16 fp32 fp64 8× 106

fp32 LU-IR 2× 107

fp16 fp64 fp64 3× 107

fp32 fp16 fp64 7× 108

fp32 fp32 fp64 1× 1010

fp16 fp64 fp128 2× 1011

fp32 fp64 fp128 2× 1015
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LU-IR vs GMRES-IR with fp32 MUMPS solver

fp32 LU factorization + refinement to fp64 accuracy
(uf ≡ fp32, u = ur = ug = up ≡ fp64)

Matrix κ(A) time gain memory gain
LU-IR GMRES-IR LU-IR GMRES-IR

ElectroPhys10M 101 1.7× 1.6× 2.0× 1.6×
Bump 2911 106 1.6× 1.4× 2.0× 1.7×
DrivAer6M 106 1.4× 1.2× 2.0× 1.5×
Queen 4147 106 1.7× 1.5× 2.0× 1.6×
tminlet3M 107 2.2× 1.9× 2.0× 1.4×
perf009ar 108 0.8× 0.9× 1.9× 1.5×
elasticity-3d 109 — 1.3× — 1.5×
lfm aug5M 1012 2.1× 2.0× 2.0× 1.7×
Long Coup dt0 1012 1.4× 1.4× 2.0× 1.6×
CarBody25M 1013 — 0.6× — 1.4×
thmgaz 1014 1.5× 1.2× 2.0× 1.4×

Up to 2× time and memory reduction, even for ill-conditioned problems
GMRES-IR usually more expensive than LU-IR, but more robust
[Amestoy, Buttari, Higham, L’Excellent, M., Vieublé, TOMS 2022]
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Energy consumption of IR

Figure from [Haidar et al., 2020]

Lowering precision decreases the time spent in the LU factorization, which is very
energy-consuming, and increases the time spent in the refinement, which is much
less energy-consuming ⇒ 4× speedup but 5× energy reduction
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Memory accessors

For memory-bound computations, performance and energy consumption are
driven by volume of data transfers/communications

Lowering storage precision reduces memory consumption and volume of data
transfers ⇒ faster, more energy-efficient computation!

Decouple storage and compute precisions: data is stored (compressed) in low
precision and accessed (decompressed) back to high precision for computations
[Anzt et al., 2019]

Higher precision computations improves accuracy by reducing rounding error
accumulation and may provide application-specific benefits (e.g., preconditioning)

Some architectures (e.g., GPU tensor cores) provide this feature in hardware
[Blanchard, Higham, Lopez, M., and Pranesh, SISC 2020] , [Lopez and M., IJHPCA 2023.]
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BLAS-based block memory accessors

At what data granularity should we use memory accessors?

Too small (e.g., variable-wise) ⇒ need to rewrite all the code /
Too large (e.g., matrix-wise) ⇒ accessed data does not fit into fast memory,
inefficient /
Just right (e.g., block-wise) ⇒ blocks fit into fast memory and computations can
use BLAS ! , [Amestoy, Jego, L’Excellent, M., and Pichon, preprint 2025]
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Very low precisions on GPUs

Peak performance (TFLOPS)

TFLOPS TFLOPS/Watt
H200 B200 H200 B200

fp64 67 40 0.1 0.04
fp32 67 80 0.1 0.08
tfloat32 495 1,100 0.7 1.1
fp16/bfloat16 990 2,250 1.4 2.25
fp8/int8 2,000 4,500 2.9 4.5
fp4 – 9,000 – 9

fp64/fp8 FLOPS ratio:

H200 (2022): 30×
B200 (2025): 112×

Power consumption:

H200: 700 W

B200: 1000 W

Very low precisions are very fast and energy-efficient, but hardly usable “as is”

⇒ use them to emulate higher precisions
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Multiword arithmetic on mixed precision MMA units

Step 1: compute the multiword
decompositions

A ≈
s−1∑
i=0

uilowAi and B ≈
s−1∑
j=0

ujlowBj

with Ai and Bj stored in precision ulow

Step 2: compute the s(s + 1)/2
leading products

C =
∑
i+j<s

ui+j
lowAiBj

with a mixed precision MMA with
accumulation precision uhigh

Example: fp32 emulation with bfloat16
tensor cores (50× speed ratio on Blackwell)
ulow ≡ fp16, uhigh ≡ fp32, s = 3

A2

A1

A0

B0 B1 B2

Multiword MMA error bound (Fasi, Higham, Lopez, M., Mikaitis, SISC 2023)

The computed Ĉ satisfies |Ĉ − AB| ≤
(
(p + 1)uslow + c(n, s)uhigh

)
|A||B|.
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Multiword arithmetic for large integer matrix products

Goal: compute C = AB, A ∈ Zm×n, B ∈ Zn×q, coefficients bounded by p
modular matrix product C = AB mod p in computer algebra
approximating floating-point product as scaled integer product [Ozaki et al.]

Step 1: compute the decompositions

A ≈
sA−1∑
i=0

αiAi and B ≈
sB−1∑
j=0

βjBj

with coefficients Ai and Bj bounded by
α = ⌈p1/sA⌉ and β = ⌈p1/sB ⌉

Step 2: compute the sAsB products

C =
∑
i,j

αiβjAiBj

by blocks of size b = 2ℓ

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)

The product is computed exactly in t-bit arithmetic if p1/sA+1/sB ≤ 2t−ℓ.
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Adaptive precision: main principle

Not all variables/operations need the same precision!
Example:

+

Target precision

Unimportant bits

⇒ Here, b can be stored and computed in low precision

Adaptive precision algorithms exploit this observation by dynamically selecting the
minimal precision for each variable/operation, depending on the data and on the
prescribed accuracy ε
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Adaptive precision SpMV: theory and algorithm

Goal: compute y = Ax , where A is a sparse matrix, with a target accuracy ε

Given p available precisions u1 < ε < u2 < . . . < up, define partition

Â =

p∑
k=1

A(k), a
(k)
ij =

{
flk(aij) if |aij | ∈ (ε∥A∥/uk , ε∥A∥/uk+1]

0 otherwise

⇒ the precision of each element is chosen inversely proportional to its magnitude

0 ϵ∥A∥ ϵ∥A∥/u3 ϵ∥A∥/u2 +∞

drop precision u3 precision u2 precision u1

Error bound for adaptive precision SpMV (Graillat, Jézéquel, M., Molina, SISC 2022)

The computed ŷ satisfies ŷ = (A+∆A)x , ∥∆A∥ ≤ cε∥A∥.
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Adaptive precision SpMV: implementation and results

The more precisions we have, the more we can reduce storage ⇒ exploit custom
precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]

Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and
potentially much more for larger ε.

Time cost matches storage!
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Block low-rank (BLR) matrices

hig
h r

an
k

low rank

complete domain

σ

ρ

Aij

Xi

Y T
i

∥Aij − XijY
T
ij ∥ ≤ ε∥A∥
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Block low-rank (BLR) matrices

hig
h r

an
k

low rank

complete domain

Block low-rank matrix
[Amestoy et al., 2015]
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Adaptive precision BLR

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥Aij∥

ε

ε/u2

ε/u3

Error bound (Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M., IMAJNA 2022)

Given p precisions u1 < ε < u2 < . . . < up, partition each block Aij =
∑p

k=1 UkΣkV
T
k

such that ∥Σk∥ ≤ ε∥A∥/uk and let Ûk = flk(Uk) and V̂k = flk(Vk). Then

∥A−
p∑

k=1

ÛkΣk V̂
T
k ∥ ≤ (2p − 1)ε∥A∥.
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Performance impact illustration

Adastra MUMPS4FWI project led by WIND team [Operto
et al., The Leading Edge 2023]

Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Adaptive precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.
FR BLR +adapt. FR BLR+adapt. Analysis Facto Solve BLR+adapt.

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

48 000 cores needed due to memory requirements ⇒ important not to waste them (and the associated
energy consumption)! Efficiency computation:

Theoretical peak: 3686 TFLOPS (48000 × 2.4GHz × 2 (fp32) × 16 flop/cycle)

Speed w.r.t. BLR flops: 364 TFLOPS (10% of the peak) (0.5 × 1018 × 4 (complex)/5500/1012)
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Conclusion

Iterative refinement reduces the cost of the most compute-intensive,
energy-consuming step (LU factorization)

Memory accessors reduce the cost of data transfers, the most energy-consuming
operation in memory-bound computations

Multiword arithmetic enables the use of energy-efficient specialized GPUs with
very low precisions

Adaptive precision optimizes the use of precisions for the given problem

Mixed precision can reduce the number of ressources needed to solve a problem

Thanks! Questions?
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