#h

SORBONNE
UNIVERSITE

@ lip

Approximate computing in numerical linear algebra:
algorithms, analysis, and applications

Théo Mary
Chargé de recherche, CNRS

Mémoire d’habilitation a diriger des recherches

présenté et soutenu publiquement le 7 Octobre 2025
devant un jury composé de :

Rapporteurs:
Hartwig Anzt Professeur Technical University of Munich (Allemagne)
Julien Langou Professeur University of Colorado, Denver (Etats-Unis)
Jean-Michel Muller Directeur de recherche CNRS, LIP (France)

Examinateurs:
Paolo Bientinesi Professeur Umed University (Suéde)
Stef Graillat Professeur Sorbonne Université, LIP6 (France)
Xiaoye Sherry Li Senior scientist Lawrence Berkeley National Lab (Etats-Unis)

Valeria Simoncini Professeur Universita di Bologna (Italie)

To the memory of Nick Higham

Remerciements (Acknowledgments)

Lorsqu’on a eu la chance de travailler avec un ensemble de personnes aussi vaste et varié que
j’ai pu 'avoir au cours de ces dix derniéres années, écrire le chapitre de remerciements devient
un défi de grande taille!

Ce manuscrit d’habilitation porte sur mes travaux postérieurs & ma thése de doctorat. C’est
pourtant par remercier mes directeurs de thése—Patrick Amestoy, Alfredo Buttari, et Jean-Yves
L’Excellent—que je me dois de commencer. Vous m’avez accompagné dans mes premiers pas
en recherche, formé le chercheur que je suis devenu, et avez été et resterez pour toujours des
modéles de role pour moi.

Si mes débuts dans la recherche ont eu lieu a 'IRIT, c’est au LIP6 que je me suis épanoui.
Je n’utilise pas le verbe épanouir au hasard: le LIP6, et en particulier mon équipe PEQUAN,
présente un environnement de travail que je trouve sain, humain, joyeux et stimulant, et qui a
été un facteur clé dans cet épanouissement. Je remercie en particulier Fabienne Jézéquel et Stef
Graillat: vous étes les piliers de cette équipe et vous avez su y créer cet environnement. Merci de
m’avoir ouvert toutes les portes & mon arrivée. Merci & Pierre Jolivet qui a réjoint 1’équipe plus
récemment: nous partageons déja une multitude de projets enthousiasmants. Merci a Mehdi
El Arar, avec qui j’ai le plaisir de travailler depuis quelques années: je suis ravi de ton arrivée
dans I’équipe. Merci & Dominique Béréziat: nous ne travaillons pas ensemble, mais j’apprécie les
pauses déjeuner en ta compagnie! En dehors de PEQUAN, merci & nos chers voisins de couloir
de POLSYS et en particulier a Jérémy Berthomieu, avec qui j’ai le plaisir de découvrir le monde
du calcul formel. Merci tout autant & toutes les personnes des services administratifs, financiers
et informatiques du LIP6 pour leur impressionante efficacité. Un grand merci en particulier a
Noura El Habchi, pour ta grande patience malgré mes aller /retour incessants entre Lyon et Paris!
Merci & Héléne Petridis et Konstantin Kabassanov pour votre aide et réactivité dans les derniers
préparatifs pour le workshop suivant 'HDR.

Avec I'IRIT et le LIP6, mon troisiéme laboratoire de cceur est le LIP, ou j’ai la chance d’étre
accueilli lors de mes “séjours” & Lyon. Merci en particulier a 1’équipe ROMA qui m’accueille
dans ses locaux, mais aussi aux équipes PASCALINE, OCKHAM et AVALON. Cette pluralité
thématique autour du calcul donne au LIP un positionnement unique et pour moi ’occasion de
travailler avec de formidables collégues: merci a Grégoire Pichon, a Nicolas Brisebarre et Claude-
Pierre Jeannerod, & Rémi Gribonval et Elisa Riccietti, & Thierry Gautier et Pierre-Etienne Polet.
J’espére que cette liste s’allongera.

Je souhaite également remercier ’équipe MUMPS et dire toute 'admiration que j’ai pour
ce projet et ma fierté de pouvoir y contribuer. Plus qu'un projet, MUMPS est une famille qui
m’accompagne depuis le début. Merci de nouveau a Patrick et Jean-Yves, et merci & Chiara
Puglisi, dont le role dans cette famille est bien plus important qu’elle ne se ’accorde!

Au travers de divers projets nationaux et des opportunités de recherche qui se sont présentées

4 moi, j’ai eu la chance de pouvoir collaborer avec de nombreux autres chercheurs en France,
qui ont énormément enrichi mon expérience. J’ai beaucoup appris et je continue tous les jours
de découvrir de nouvelles choses grace a eux. Merci donc & Emmanuel Agullo et Luc Giraud, a
Frédéric Nataf et Pierre-Henri Tournier, & Marc Baboulin, & Oguz Kaya, a Silviu Filip, & Clément
Pernet et & Florent Lopez. La recherche n’est pas ’apanage du monde académique, loin de 1a,
et je souhaite remercier tous mes collégues du secteur industriel et/ou applicatif. Travailler avec
eux est un plaisir, 'opportunité d’en apprendre davantage sur les problémes que nos algorithmes
résolvent, et de ce fait une source incessante de motivation. Merci en tout premier lieu a Olivier
Boiteau d’EDF, pour son soutien de longue date & MUMPS; j’espére que nous avons encore
de belles saisons devant nous. Merci a Stéphane Operto, Laure Combe, Alain Miniussi et le
reste de 1’équipe Géoazur. Merci a Florian Faucher et Héléne Barucq d’Inria Makutu, a Ani
Anciaux-Sédrakian et Thomas Guignon de 'IFPEN, et & Cédric Content et Emeric Martin de
’ONERA.

Derriére la plupart de ces belles collaborations, se cache le travail acharné d’un doctorant ou
postdoctorant. Dans ’ordre chronologique, je remercie Bastien Vieublé, Matthieu Gerest, Roméo
Molina, Théo Beuzeville, Matthieu Robeyns, Sébastien Dubois, Dimitri Lesnoff, Hugo Dorfsman,
Antoine Jego, Yongseok Jang, Tom Caruso, Karmijn Hoogveld, Giuseppe Carrino, Ouassel El
Habti, Alexandre Tabouret, Erik Fabrizzi, et Liam Burke. Les succés présentés dans ce manuscrit
sont d’abord et surtout les votres. Merci pour votre énergie et pour votre motivation—c’est grace
a elles que je garde les miennes.

Enfin, je remercie ma famille et mes amis. Grazie ad Elisa, per il tuo costante sostegno, senza
il quale niente di tutto questo sarebbe stato possibile. Grazie per tutte le cose belle che abbiamo
fatto insieme, scientifiche e non, di cui la piu bella é certamente la nostra piccola Vittoria.

Let me switch to English to thank my non-Francophone colleagues!

I thank my habilitation committee—Hartwig Anzt, Paolo Bientinesi, Stef Graillat, Julien
Langou, Sherry Li, Jean-Michel Muller, and Valeria Simoncini—for having agreed to serve and
for their many questions and comments during the defense. I especially thank the reviewers—
Hartwig, Julien, and Jean-Michel—for their detailed reports and comments that helped me
to improve this manuscript. Finally, special thanks to Jean-Michel for his encouragement in
expanding this manuscript into a book: somehow, he managed to convince me to undertake
this—surely unreasonable—project!

Thank you to all my colleagues and co-authors, with whom I have had the pleasure of working
in the past—recently or less so—and to whom I owe many of the accomplishments presented in
this manuscript. Special thanks to Massimiliano Fasi and Mantas Mikaitis, with whom we share
ongoing exciting projects.

Thank you also to all the researchers with whom I have crossed paths, at conferences or
elsewhere, and who have enriched my knowledge and ideas with their own. At the risk of
forgetting someone, and with the bias of recency, let me thank in particular Hussam Al Daas,
Hartwig Anzt, Grey Ballard, Erin Carson, Desmond Higham, Julien Langou, Sherry Li, Andrew
Lister, Hatem Ltaief, Gunnar Martinsson, Jean-Michel Muller, Takeshi Ogita, Philipp Petersen,
Jennifer Scott, Francoise Tisseur, George Turkiyyah, and Rio Yokota.

Thank you to the many people who participated in the workshop on approximate computing
that followed the defense, and especially to the speakers who gave excellent talks. Thank you
also to all those who would have liked to participate but were unable to. Together, we form a

vi

wonderful nascent community at the intersection of several synergistic fields—numerical linear
algebra, high performance computing, computer arithmetic, etc. I look forward to seeing what
this community will become and the interesting and impactful science it is certain to produce.

I conclude these words by dedicating this manuscript to Nick Higham, the person who had
the most impact not only on my career, but also the very way that I approach our profession.
My relationship with Nick started when I was his postdoc for two years, and we remained close
colleagues until his untimely passing. It is hard to put into words just how big a void Nick has
left in my life and, I believe, in our community. There rarely goes a day where I do not think
of him: sometimes it’s an idea I think he would have appreciated, more often it’s a difficult
problem I wish I could ask him about. However, Nick has also left us with an incredible legacy:
his many books and papers of course, but perhaps more importantly, all the people whom he
mentored or inspired. I therefore strongly believe that it is our duty, as a community, to carry on
Nick’s legacy, by striving for that same level of rigor, clarity, and creativity that Nick somehow
managed to combine in everything he undertook.

vii

Contents

Contents

1

Introduction

1.1 Approximate computing: context and challenges
1.2 Summary of my contributions
1.3 Chapter organization L L
1.4 Terminology and notations e

Basics on rounding error analysis

2.1 Floating-point arithmetic o oo
2.2 Some common floating-point arithmetics00
2.3 Backward error analysis L
2.4 Standard backward error boundso

Probabilistic analysis and algorithms

3.1 Probabilistic backward error analysis 0oL,
3.2 Stochastic rounding L e
3.3 Probabilistic bounds for random data 0oL
3.4 Stochastic validation for inner productso

Summation and matrix multiplication

4.1 Mixed precision matrix multiply-accumulate
4.2 Blocked summation e
4.3 Distillation of ill-conditioned sums

Multiword arithmetic

5.1 Basics e e
5.2 Multiword matrix multiplication with mixed precision hardware
5.3 Multiword matrix multiplication over prime finite fields

Low-rank approximations

6.1 QR with column pivoting (QRCP)
6.2 Randomized range finder. oL oL
6.3 Adaptive precision LRA
6.4 Multiword arithmetic for LRA
6.5 TIterative refinement for LRA L
6.6 Gram LRA e
6.7 Optimal quantization of low-rank matrices

ix

ix

I N

S © 0o NN

13
15
16
17

21
22
24
25

29
29
30
32

7 Direct linear solvers
7.1 Dense systems

7.2 Sparse systems: the multifrontal method

7.3 Stability and pivoting

8 Iterative linear solvers
81 GMRES
8.2 Stability of GMRES
8.2.1 Unpreconditioned GMRES
8.2.2 Preconditioned GMRES . .
8.2.3 Flexible GMRES

8.2.4 Modular framework for the error analysis of GMRES

8.3 Mixed precision GMRES

8.3.1 Mixed precision preconditioned GMRES
8.3.2 Mixed precision restarted GMRES
8.3.3 Mixed precision relaxed GMRES

84 BiCGStab

9 Block low-rank matrices
91 Basics
9.2 Stability

9.3 Communication-avoiding BLR factorization and solve

9.4 Adaptive precision BLR
9.5 Further reducing the complexity .

9.5.1 Hierarchical formats: taxonomy and discussion

9.5.2 The BLR? format
9.5.3 The MBLR format
9.5.4 Fast matrix multiplication .

9.5.5 Triangular solves with sparse right-hand side or sparse solution
9.6 An illustrative application: full waveform inversion

10 Iterative refinement

10.1 LU factorization—based iterative refinement (LU-IR)

10.1.1 Historical developments . .

10.1.2 LU-IR with GPU tensor cores
10.1.3 LU-IR with sparse direct solvers
10.2 GMRES-based iterative refinement (GMRES-IR)
10.2.1 GMRES-IR with BLR factorization
10.2.2 GMRES-IR with cheaper (or no) preconditioner
10.2.3 GMRES-IR with mixed precision preconditioned GMRES
10.3 BiCGStab-based iterative refinement

10.4 CG-based iterative refinement . . .

11 Adaptive precision algorithms

11.1 Adaptive precision sparse matrix—vector product
11.2 Adaptive precision low-rank approximation
11.3 Adaptive precision block Jacobi preconditioner

11.4 Adaptive precision relaxed GMRES

12 Memory accessors

51
o1
53
56

59
59
61
62
62
63
64
67
67
69
69
70

73
73
75
76
7
79
79
81
81
83
84
85

89
89
90
91
93
93
95
96
97
97
99

101
102
104
104
105

107

12.1 Efficient conversion from custom to standard floating-point formats
12.2 Memory accessor for sparse matrix—vector product
12.3 BLAS-based block memory accessor for dense triangular solve
12.4 Memory accessor for block low-rank triangular solve

13 Butterfly factorizations
13.1 Butterfly factorizations via rank-one approximations
13.2 Applications of butterfly factorizations L.
13.3 Quantization of butterfly factorizations oo

14 Tensor approximations
14.1 Stability of TTN operations
14.2 Approximate tensor computations

15 Neural networks

15.1 Backward error analysis

15.2 Forward error analysis and a mixed precision accumulation algorithm

16 Conclusion

16.1 Future challenges and research directions

16.2 Some research problems

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6
16.2.7
16.2.8

References

Probabilistic error analysis oL oL 0oL
Multiword arithmetic Lo oL
Low-rank approximations,

Krylov solvers . .
BLR solvers . . .

Adaptive precision algorithms

Tensors

Neural networks

X1

115
115
116
117

121
122
124

127
128
129

133
133
135
135
136
137
137
138
140
141
142

143

Chapter 1

Introduction

1.1 Approximate computing: context and challenges

At the dawn of the exascale computing era, high performance computing (HPC) faces chal-
lenges of unprecedented scale and complexity. Computational science applications now require
the solution of problems of very large dimensions (millions or even billions of unknowns), and with
increasingly complex requirements (storage, speed, energy, and accuracy constraints). Modern
supercomputer architectures have also become increasingly complex to use efficiently, because of
their large size, the increasing cost of communications relative to that of computations, and the
heterogeneity of their computing units (CPUs, accelerators such as GPUs, specialized hardware
such as tensor cores or TPUs). Moreover, because of the increasing power consumption of these
computers, energy efficiency has also become a primary concern.

My research aims at confronting these challenges by developing approximate computing meth-
ods. Introducing numerical approximations offers significant benefits indeed: they can make the
computations less expensive, more efficient, and/or easier to perform. First, compressing the
size of the data naturally reduces the storage requirements, the data movement, and the volume
of communications. Such compression can be achieved by using more compact arithmetic repre-
sentations (such as lower precision floating-point numbers) or algebraic ones (such as low-rank
matrices). Second, approximate computations are faster too, thanks to a reduced number of
floating-point operations (flops) and/or a higher speed on modern hardware; in particular, lower
precision arithmetics can be orders of magnitude faster on specialized GPU accelerators.

Despite their promising potential, there remains a wide gap that separates approximate com-
puting from standard high performance computing, which must be bridged in order for the use
of approximations to reach widespread acceptance. Indeed, one could imagine the use of ap-
proximations to become standard, rather than optional, in numerical libraries such as BLAS
or LAPACK. Before that becomes possible, three hurdles must be overcome. Indeed, an ap-
proximate algorithm can only be considered successful if the following three conditions are all
met:

1. Its accuracy can be provably and practically controlled.

2. Its performance on parallel computers is usually higher, and always at least equivalent,
than that of its exact (non approximate) counterpart.

3. The first two conditions hold for any input data, or at least for a very wide range of data
corresponding to real-life applications.

Objective 1: provable and practical control of the accuracy

The first and most immediate challenge of approximate computing is naturally to control the
accuracy of the computation, since approximations inevitably introduce errors. For example,
half precision arithmetic only provides between three and four accurate digits instead of sixteen
with double precision arithmetic. The experimental side of approximate computing has been
developed at a faster rate than its theoretical side, leading to many proposed approaches that
lack an error analysis to support them. As a result, many of today’s approximate algorithms are
not able to guarantee stability, and many of them actually do encounter non-obvious numerical
issues that can have potentially disastrous consequences. Numerical approximations therefore
cannot be used blindly for general purpose scientific computing; the first objective of my research
is to develop control and correction mechanisms that ensure that the size of the errors introduced
remains bounded and that make sure that the result still achieves sufficient accuracy.

Objective 2: high performance on parallel computers

While approximate methods are less expensive than their exact counterparts, they are also
often much less efficient at taking advantage of modern parallel computers. There are several
reasons for this counterintuitive fact. First, while approximations can reduce both the operation
and communication costs, they typically reduce the former by a much larger factor than the
latter; hence approximate computations are even more communication-bound than the usual.
Second, approximations are often unpredictable, and therefore lead to unbalanced workloads
that are much harder to schedule in parallel environments. As a result, most of today’s ap-
proximate algorithms only achieve a small fraction of their true performance potential. The
second objective of my research is to close the gap between the theoretical potential and actual
performance of approximate algorithms, by developing implementations that maintain a high
arithmetic intensity and parallel efficiency.

Objective 3: robustly handling a wide range of data from real-life applications

The final challenge lies in the fact that the success of approximations, both in terms of accu-
racy and of performance, strongly depends on the data on which they are used, and hence on the
application at hand. Indeed, approximate algorithms are usually more specialized and therefore
less robust than their exact counterparts: they may achieve higher performance but only for a
specific, narrower range of input data, and will fail if used on data outside this range. An obvious
example is that low-rank approximations are only meaningful if the data is actually low-rank; a
less obvious one is that mixed precision iterative methods will only converge for matrices that
are sufficiently well conditioned. Moreover, due to the lack of error analysis, the robustness of
many algorithms has not been quantified precisely: that is, we often do not know whether a given
algorithm will work on a given problem in advance. This a major shortcoming because when a
failure occurs, at best, it is detected and the algorithm must be run again more precisely—leading
to a major overhead cost—and, at worst, it goes undetected and may have insidious effects later
in the computation. The final objective of my research is therefore to quantify and maximize the
robustness of approximate algorithms, so as to expand the range of problems that can be handled.

Unfortunately, performance, accuracy, and robustness are conflicting objectives: it is easy
to improve one by worsening the others. In fact, it is worth pointing out that achieving two
out of the three objectives is straightforward: with an unlimited performance budget, any level
of accuracy can eventually be obtained for any input data; conversely we may always be able
to find some synthetic input data for which high accuracy and high performance can both be
achieved; and naturally, high performance can be achieved regardless of the input if the result
does not need to be accurate. The challenge, therefore, is to develop algorithms that meet all
three objectives simultaneously.

1.2 Summary of my contributions

To develop algorithms that simultaneously achieve performance, accuracy, and robustness,
approximate computing requires a deep understanding of the complete solution process, from
the mathematical foundations behind the design of the algorithms, to their practical high per-
formance implementation on parallel computers and their evaluation on real-life applications.
A numerical analyst cannot design a new approximate method without appreciating the HPC
implications, at the risk of the method being impractical; an HPC programmer cannot develop
a new approximate method without grasping the subtleties of error analysis, at the risk of the
method being mathematically unsound and unsafe; and neither of them can evaluate the true po-
tential of their method without a realistic application where the tradeoff between approximations
and performance can be meaningfully assessed.

Approximate computing therefore requires a multidisciplinary effort across several fields from
mathematics and computer science, spanning numerical analysis, linear algebra, high perfor-
mance computing, computer arithmetic, and all application fields of computational science. My
research aims at bringing together these fields by designing, developing, and analyzing approxi-
mate algorithms that are, at the same time, able to achieve high performance on parallel super-
computers, mathematically sound with provable accuracy guarantees, and sufficiently robust to
handle a wide range of realistic applications.

Thus, an important strand of my research has dealt with developing error analyses to achieve
a better understanding of the practical behavior of numerical algorithms. This includes the
development of probabilistic analyses to obtain more realistic bounds than the traditional worst-
case ones [1, 2, 3, 4, 38]; analyses specific to mixed precision specialized hardware such as
GPU tensor cores [5, 6, 7]; and the analysis of some widespread approximate algorithms such
as low-rank [8, 9, 39] or mixed precision methods [10, 11, 12, 40], to determine under which
conditions they behave stably.

Another equally important strand of my research has dealt with the design of new algorithms
to accelerate a wide range of linear algebra computations, and their efficient software implemen-
tation on parallel computers. In particular, I am actively involved in the development of the
open-source sparse direct solver MUMPS [13], and especially in its use of approximations such
as block low-rank [13, 14] and mixed precision methods [15, 16, 41] to reduce its memory and
time costs. Besides sparse direct solvers, I have also worked on mixed precision sparse iterative
solvers [17, 18, 47], summation methods [19, 20], randomized and/or mixed precision low-rank
approximations [16, 21, 22, 33|, low complexity rank-structured matrix factorizations [23, 24,
25, 26, 42], and dense linear algebra kernels on GPU accelerators, particularly using mixed
precision tensor core units [5, 7, 27, 33].

Finally, I strive to evaluate the impact of my research on realistic applications as much
as possible. As mentioned, in the context of approximate computing this has become truly
indispensable in order to be able to meaningfully assess the actual potential of the methods. For
these reasons, I also dedicate a significant amount of effort to work hand-in-hand with application
scientists, from the academy or the industry. This has allowed my work to have a strong impact on
several computational science applications such as seismic imaging or structural mechanics [28,
34, 35, 29, 47]. Most recently, I have taken an interest in expanding this range of applications
outside the realm of linear algebra, in particular to neural network—based machine learning [43,
44, 42], tensor computing [22, 39], and computer algebra [45].

These contributions are the result of close collaborations with many researchers. In particular,
a significant part of them were achieved in the context of several PhD theses:

e Bastien Vieublé (University of Toulouse, IRIT, 2019-2022),

e Matthieu Gerest (Sorbonne University, LIP6-EDF, 2020-2023),

e Théo Beuzeville (University of Toulouse, IRIT-Atos, 2021-2024),

e Roméo Molina (Sorbonne University, LIP6, 2021-2024),

e Matthieu Robeyns (University Paris-Saclay, LISN, 2021-2024),

e Dimitri Lesnoff (Sorbonne University, LIP6, 2022-ongoing),

e Hugo Dorfsman (Sorbonne University, LIP6-IFPEN, 2023-ongoing),
e Tom Caruso (Sorbonne University, LIP6-LJLL, 2024-ongoing),

e Karmijn Hoogveld (University of Toulouse, IRIT, 2024-ongoing).

1.3 Chapter organization

The rest of this manuscript presents my most significant research contributions. These cover
a variety of topics in high performance computing, numerical linear algebra, and rounding error
analysis, and are divided in chapters roughly on an algorithm-by-algorithm basis. Therefore, they
are not necessarily meant to be read sequentially; each chapter attempts to be self-contained,
and as a result there may be some amount of overlap between some closely related topics.

Chapters 2 to 6 deal with rounding error analysis and with fundamental kernels like matrix
multiplication and low-rank approximations. Chapter 2 covers basics on rounding error anal-
ysis: floating-point arithmetic, backward error analysis, and some standard error bounds used
in the rest of this manuscript. Chapter 3 presents probabilistic analyses and algorithms to bet-
ter understand, control, and measure the effect of rounding errors. Chapter 4 presents various
summation methods and their error analysis, and their use for matrix multiplication. Chapter 5
presents multiword arithmetic, and its application for matrix multiplication in mixed precision
and/or over prime finite fields. Finally, Chapter 6 discusses how to compute low-rank approxima-
tions with various methods including randomized ones, and making use of other approximation
techniques such as low or mixed precision arithmetic.

Chapters 7 to 12 deal with the solution of linear systems, with an emphasis on sparse ma-
trices. Chapter 7 covers the basics on direct methods. Chapter 8 does the same for iterative
methods, and discusses their stability and the mixed precision opportunities that they offer.
Chapter 9 deals with block low-rank matrices, and how they can be used to reduce the cost of
solving linear systems. Chapter 10 presents iterative refinement, with an emphasis on its mixed
precision variants. Chapter 11 discusses adaptive precision methods, which dynamically adapt
the precisions to the data at hand. Finally, Chapter 12 presents memory accessor approaches
that decouple the storage and compute precisions.

Chapter 13 describes butterfly factorizations, and in particular how to quantize them in low
precision. Chapters 14 and 15 move beyond the realm of linear algebra. Chapter 14 deals with
tensor approximations and their stability. Chapter 15 discusses neural networks, with a focus on
the feed forward pass, its error analysis and mixed precision opportunities.

Chapter 16 concludes the manuscript with a discussion of future challenges and opportunities
in the field of approximate computing. I also list some concrete research problems that I believe
should be investigated in the near future.

1.4 Terminology and notations

Terminology Many different terms have been used in the literature to refer to algorithms
that can use several precisions. In this manuscript, we will use “uniform precision” to refer to

4

algorithms that use the same precision for all their operations, and we will use “mixed precision”
to refer to algorithms that can use different precisions for different operations.

Multiword arithmetic (see Chapter 5) is also sometimes called “multiprecision” arithmetic.
We will avoid this term due to its frequent confusion with mixed precision algorithms (and for the
converse reason, we will also avoid using “multiprecision” to refer to mixed precision algorithms).

Some less frequently used terms include “variable precision”, “dynamic precision”, “transpre-
cision”, etc. We will avoid using these terms as they do not convey any significantly different
meaning than mixed precision algorithms. One exception is the “adaptive precision” term, that
we will use to refer to a subclass of mixed precision algorithms that dynamically choose their
precisions at runtime based on the data appearing in the computation. Adaptive precision algo-
rithms are discussed in Chapter 11.

We will often use the metonymy “precision «” to refer to the “precision with unit roundoff u’.
Note that in the sentence “we perform this step in a lower precision ujo, than the rest of the
steps, which are performed in a higher precision unigh”, Unign is in fact smaller than ugy!

Notations As is standard in rounding error analysis, we denote computed quantities with a
hat ~. We use the ubiquitous constant v, = nu/(1 — nu) (defined in (2.8)) in the error bounds.
Whenever we write +,, there is an implicit assumption that nu < 1. When analyzing mixed

precision algorithms with several precision parameters, we use a superscript on v to denote
(f)

that u carries that superscript as a subscript; thus for example v’ = nuy/(1 — nuy) and
YE" = ntnign/(1 = NUnign)-
Throughout the manuscript, we use the unsubscripted norm || - || to denote any norm that is

consistent (that is, |AB|| < ||A||||B]|). In some analyses where the precise constants in the error
bounds are not important, we leave the choice of norm unspecified, with the understanding that
all norms are equivalent up to constants. In the analyses where the constants are important, we
specify the norm of interest with a subscript: || - ||2, || - |7, and || - ||oc for the spectral norm, the
Frobenius norm, and the infinity norm, respectively.

We use without comment matrix inequalities of the form |A| < |B|, where A and B are
matrices, to denote the componentwise inequalities |a;;| < |b;;|.

Citations Throughout the manuscript, we use bold citations to distinguish personal publica-
tions (for example, [10]) from other references (for example, [162]).

Chapter 2

Basics on rounding error analysis

This chapter covers the necessary prerequisites on finite precision computations and their
rounding error analysis. Section 2.1 describes floating-point arithmetic and its properties. Sec-
tion 2.2 discusses some commonly available examples of floating-point arithmetics. Section 2.3
defines backward error analysis and why it is important. Finally, Section 2.4 lists the classical
error bounds of fundamental linear algebra kernels.

For a more in-depth discussion, we refer to [162], also informally (but rightfully) known as
“the bible of rounding error analysis”.

2.1 Floating-point arithmetic
A floating-point number system F C R is characterized by the following integer parameters:

e the base 3, usually equal to 2,
e the precision ¢, and

e the exponent range [emin, €max)-
Floating-point numbers y € F are then represented under the form
y=+mpBe . (2.1)

This representation can be encoded on a finite number of digits (called bits when 5 = 2) as
follows.

e The sign + is encoded on 1 bit.

e The significand m is an integer satisfying 0 < m < 8 — 1. Moreover the system is usually
assumed to be normalized, meaning that m > B8?~!. This amounts to assuming the leading
bit of m to be always 1; this implicit bit is not stored and m can thus be encoded on ¢ — 1
bits.

e The exponent e € [emin, €max) is a biased integer encoded on a number of bits that depends
on the range; usually epax = 2°!' — 1, emin = 1 — €max, and e = €’ + eniy; the unbiased
exponent ¢ € [0,2emax — 1] = [0,2° — 3] can thus be encoded on s bits. The exponent
range [emin, €max] determines the range of representable floating-point numbers

‘yl c [/Bernin’/gemax“rl(l _ B_t)]- (2.2)

7

Table 2.1: Some common floating-point arithmetics.

Number of bits Approx. range Unit roundoff

Sign Exp. (s) Signif. (¢) (2.2) u=2""¢
Quadruple fp128 1 15 112 (+1) [1074932/1074932] 27113 1 x 10734
Double fp64 1 11 52 (+1) [107308/101308] 2753 ~ 1 x 10716
Single fp32 1 8 23 (+1) [10738 10+38] 272 ~6x 1078
Half fp16 1 5 10 (+1) [6x 1075,65504] 27 ~5x 1074
Half bfloat16 1 8 7(+1) [107%8 10+38] 278 ~4x1073
Quarter fp8 (e4dm3) 1 4 3(+1) [2x1072,448] 274 ~6x1072
Quarter fp8 (esm2) 1 5 2 (+1) [6x1075,57344] 273 =~1x 1071
fp6 (e2m3) 1 2 3(+1) [1,7.5] 274 ~6x 1072
fp6 (e3m2) 1 3 2 (+1) [l x1072,28] 273 ~1x107!

fp4 (e2ml) 1 2 1(+1) [1,6] 272 =0.25

Real numbers € R that are not floating-point numbers must be rounded, that is, mapped
to some value fl(z) € F. Usually we use round-to-nearest, which means fl(x) is a floating-point
number nearest to . When z is not in the representable range, we say that fl(2) underflows or
overflows. For the numbers in the representable range, we have the following result.

Theorem 2.1 (Theorem 2.2 of [162]). If z € R lies in the range (2.2), then

A(w) = 2(140), |6] <u:= %51%. (2.3)

Theorem 2.1 shows that the relative distance from any real number x € R in the representable
range to fl(x) is bounded by the quantity u called the unit roundoff; note that v = 27* in base
two. The unit roundoff (and thus the precision ¢) determines the relative accuracy with which
any = € R in the representable range can be represented.

In general, the result of operations on floating-point numbers (called floating-point opera-
tions or “flops”) is no longer a floating-point number. Flops therefore introduce rounding errors;
throughout this manuscript we will use the following model.

Model 2.1 (Standard model of floating-point arithmetic).
fi(zopy) = (wopy)(1 +9), [6] <wu, ope{+ = x +}. (2.4)

Model 2.1 assumes that the result of the elementary operations (addition, subtraction, mul-
tiplication, and division) is essentially as accurate as the rounded exact result. This model is
almost always valid on modern computers, and in particular for IEEE standard arithmetic.

2.2 Some common floating-point arithmetics

Table 2.1 lists some of the most common floating-point arithmetics and their associated
representable range and unit roundoff.

We use the abbreviations fp128, fp64, fp32, and fpl6 to denote the IEEE quadruple, double,
single, and half precision arithmetics, respectively. Double and single precision arithmetics have
been supported in hardware for many decades and are the two most widely used arithmetics.
Quadruple precision arithmetic is usually not supported in hardware but can be implemented
in software; it is quite costly but can be of interest for computations requiring a very high

8

level of accuracy. Finally, half precision arithmetic was initially introduced as a storage format
but hardware support started appearing in the last decade and has been rapidly growing. In
addition to these IEEE arithmetics, other non-standard formats have been proposed: bfloat16
is an alternative half precision format that preserves the same range as fp32 at the price of
decreased precision compared with fp16.

With the emergence of accelerators specialized for artificial intelligence applications, even
lower precision formats are appearing. The Open Compute Project (OCP) [198] specifies two
quarter precision (8-bit) formats using a different balance between range and precision, which
are notably available on the NVIDIA Hopper architecture. A subsequent OCP standard [226]
also introduces two 6-bit formats and one 4-bit formats. These are likely to be available on the
forthcoming NVIDIA Blackwell [208] architecture.

This manuscript (and approximate computing in general) is especially interested in using low
precision arithmetics (fp32 and lower), due to their significant performance benefits. Representing
data in lower precision readily reduces its storage cost and the cost of communicating it across
different processors or different levels of the memory hierarchy. Hence memory-bound operations
can be accelerated by using low precision data. Moreover, on hardware supporting lower precision
operations, compute-bound operations can also be accelerated. For example, fp32 is usually twice
faster than fp64. Moreover, some accelerators provide specialized low precision instructions that
are much faster than their standard high precision counterpart. In particular, NVIDIA GPUs
provide fpl6 matrix multiplication units called tensor cores that can be orders of magnitude
faster than fp32 arithmetic. Actually, tensor cores are mixed precision fpl16/fp32 units and can
actually be more accurate than standard fpl6 arithmetic; see Section 4.1 for details.

2.3 Backward error analysis

As mentioned above, Model 2.1 assumes that the four elementary operations {+,—, x, =}
have a relative accuracy bounded by the unit roundoff u. However, this does not hold for more
complex computations involving a sequence of such elementary operations, because rounding
errors accumulate and propagate throughout the computation. The main goal of rounding error
analysis is to bound the error incurred by such computations.

Consider an abstract computation y = f(z) where z € R™ is the input, y € R™ is the
output, and the function f implements the computation of interest. In floating-point arithmetic,
f will produce a computed 7 affected by rounding errors. The forward error is defined as the
distance from ¥ to the exact result y, for a suitable choice of distance: it can be normwise or
componentwise, absolute or relative:

17—yl normwise absolute),

max; @— y‘z

(
(
=] (
(

componentwise absolute), (2.5)
Tl normwise relative), '

componentwise relative).

Forward error analysis (the process of measuring and/or bounding forward errors) is however
made complicated by the fact that the exact y is in general unknown (making it impossible to
measure forward errors) and by the fact that forward errors strongly depend on the input data:
for the same computation f, two input x; and x5 can lead to vastly different forward errors when
f is ill-conditioned.

This motivates the interest in defining a different error metric that is more practical to measure
and easier to interpret. This is achieved by backward error analysis, which seeks to express the

computed ¥ as the result of an exact computation on a perturbed input: §¥ = f(x + Az). The
backward error is then defined as the size of Ax, again with different possible definitions of size:

[|Az| (normwise absolute),
max; |Az|; (componentwise absolute),
Az : : (2.6)
T (normwise relative),
max; 22l (componentwise relative)
i Tzl p .

Backward error analysis was popularized in the 1960s by James Wilkinson [251] and can be
used to evaluate the stability of a given algorithm. An algorithm is said to be backward stable
if for any input data, it achieves a small backward error, where “small” usually means of order
the unit roundoff u. Indeed, x is often only known with an accuracy of order u (because it is
the result of a previous computation, or simply because it is stored in floating-point arithmetic),
so that ¥ = f(z + Az) with Az of size u is essentially an ideal result: for all we know, z + Az
might be the exact input !

2.4 Standard backward error bounds

In linear algebra, most of the reference standard algorithms are proven to be backward stable.
This essentially boils down to the fact that matrix-based computations take the form of sequence
of elementary operations such as

Z2=T1 XY +Toa XY+ ...
By repeated application of (2.4) the computed Z satisfies
=f(zy xy1+aT2xy2+...)
= (x1 X y1) + f(za ¥ y2))(1 +d3) +

= (21y1(1 + 61) + 2y2(1 + 82)) (1 + 05) +
= z1y1 (1 + 61)(1 + 03) + 22y2(1 + 62)(1 + 03) +

which illustrates that the perturbations on the input take the form of products of (14 ;) terms.
Such perturbations can be bounded by the following fundamental result.

Theorem 2.2 (Lemma 3.1 of [162]). If |6;| < u and p; = £1 fori=1:n, and nu < 1, then

n

[+6)" =146, [6n] <7, (2.7)
i=1
where i
L — (2.8)

From this result follows the backward stability of inner products and, therefore, that of many
inner products—based computations. The next three theorems establish error bounds for inner
products, matrix—vector products, and matrix—matrix products, and will be extensively used
throughout the manuscript.

Theorem 2.3 (Equation (3.4) of [162]). Let x,y € R™ and s = xTy. For any order of evaluation,
the computed 5 satisfies
5= (x+Ax) Ty, |Az| <Al (2.9)

10

Theorem 2.4 (Equation (3.11) of [162]). Let A € R™*", 2 € R", and y = Ax. For any order
of evaluation, the computed i satisfies

G=(A+AA)z, |AA] <Al (2.10)

Theorem 2.5 (Equation (3.13) of [162]). Let A € R™*", B € R"*P, and C = AB. For any
order of evaluation, the computed C' satisfies the columnwise backward error bounds

¢ =(A+AA)b;, |AA;| <ylA], (2.11)
which implies the forward error bound
C=C+AC, |AC|<yn]AlBI (2.12)

It is worth noting that the constant -, in the above bounds can be replaced by simply nu
with a more refined analysis of inner products [172]. This also removes the restriction nu < 1,
although when nu exceeds 1 the bound does not guarantee any correct digit.

11

Chapter 3

Probabilistic analysis and algorithms

As illustrated in the Section 2.4 of the previous chapter, rounding error bounds of linear
algebra computations involving matrices or vectors of size n tend to grow at least linearly with n.

Historically, the role of n in the error bounds has been neglected by numerical analysts.
In traditional error analysis, terms only depending on the dimensions of the data are called
“constants” [162, sec. 3.2], which reflects the fact that historically n was in practice not large
enough for its role in the growth of the error to be deemed significant.

However, this view is no longer valid with the extreme size of matrices (large n) that are
nowadays involved with exascale computing, and with the emergence of low precision arithmetics
(large unit roundoff u). For example, in half precision arithmetic, error bounds of order nu
cannot guarantee even a single correct digit for matrices of order a few thousands, and are
anyway inapplicable when nu > 1. Worst-case bounds therefore become quite unsatisfactory at
large scale and low precisions.

Fortunately, these are worst-case bounds and, in practice, the error often exhibits a much
weaker dependence on n. A famous conjecture by Wilkinson [250, p. 318] states that n can be
replaced by 1/n due to statistical effects in the rounding errors: assuming they behave somewhat
randomly, positive and negative rounding errors should cancel each other to some extent. This
rule of thumb remained formally unproven for 60 years.

In this chapter, we discuss probabilistic error analysis and how it can help us better under-
stand and better control the accumulation of rounding errors. In Section 3.1, we present a new
approach to probabilistic backward error analysis that formally proves Wilkinson’s conjecture
under a well defined model of rounding errors. In Section 3.2, we prove that the use of stochas-
tic rounding enforces rounding errors to follow this model, and can hence significantly improve
the accuracy of computations for which the worst-case bound would be attained with standard
rounding modes. In Section 3.3, we combine the probabilistic model of rounding errors with a
probabilistic model on the data, and prove that the error bounds can be even further reduced
when the data has zero mean. Finally, in Section 3.4, we discuss the use of stochastic arithmetic
as a tool for numerical validation.

The contributions described in this chapter are based on the following papers: [1] for Sec-
tion 3.1; [3] for Section 3.2 (see also our survey [4]); [2] for Section 3.3; [38] for Section 3.4.

3.1 Probabilistic backward error analysis

The key for developing a probabilistic error analysis that is both rigorous and informative
is the model that one uses for rounding errors. It must be sufficiently constrained to lead to
reduced error bounds, and at the same time sufficiently general to apply to a wide range of

13

representative computations. Here, we will use the following model which is the result of a series
of papers starting with [1] and including [2, 3].

Model 3.1. Let the computation of interest generate rounding errors d1,...,6, in that order.
The 6 are random variables such that E(dx | 61,...,0k—1) = E(d) = 0.

Model 3.1 assumes the rounding errors to be zero-mean, mean independent variables. Mean
independence is the property that the conditional expectation of §; given all previous rounding
errors, E(dx | 01,...,0k-1), is equal to its unconditional expectation E(dy) (which is zero). It is
a weaker assumption than independence. Our initial model in [1] assumed independence, but
was later refined to Model 3.1 in [2].

Under this model, we can prove a probabilistic analogue of Theorem 2.2, a fundamental tool
of backward error analysis.

Theorem 3.1 (Theorem 4.6 in [3]). Let 61, ...,0, be rounding errors satisfying Model 3.1 and

define

Av/nu + nu?
1—u

Yn(A) = exp () — 1= \nu+O(u?).

Then for p; = £1, i = 1: n and any constant A > 0,

n

H(1+5’L>pl == 1+07L7 |0n| S;%l()\)7

i=1
holds with probability at least P(\) = 1 — 2exp(—\?/2).

Theorem 3.1 proves that the ubiquitous constant -y, of backward error analysis can be replaced
by a relaxed constant ¥,, which only grows as Ay/nu. This error bound holds with a certain
probability P(A) which grows exponentially close to 1 when increasing A; hence small values of
A (less than 10) suffice.

As a result, we obtain probabilistic analogues to many of the standard backward error bounds
of linear algebra algorithms. In particular, we obtain backward error bounds for inner products,
matrix multiplication, LU factorization, triangular solves, and the solution of linear systems all
proportional to \/nu rather than nu (see Theorems 3.1-3.8 of [1]). Probabilistic backward error
bounds for QR factorization can also be obtained with some more effort [99].

This new probabilistic analysis provides crucial stability guarantees for large scale and/or low
precision computations. It also offers key new insights into the practical behavior of floating-
point computations: indeed, by identifying in Model 3.1 conditions for the probabilistic bounds to
hold, we also identify situations where these conditions are violated and therefore the worst-case
bound is attained. These dangerous situations include what we have called in [1] “stagnation”, a
phenomenon where many small floating-point numbers that should be added to a larger one are
absorbed and thus lost. This causes rounding errors to all be in the same direction and hence
to lose their zero mean. Figure 3.1 illustrates that stagnation happens when summing a large
number of nonnegative quantities: the partial sum eventually becomes so large that subsequent
summands are absorbed. Stagnation starts happening for a number of summands of order 1/u,
which means that it happens sooner in lower precision.

In the recent years, the interest in probabilistic error analysis has reignited and has led to
many other results bringing various extensions and refinements to the above results [169, 155,
156, 99, 67, 126, 264]. This is indeed a very active field and many open questions remain: see
for example Research Problems 16.1 and 16.2.

14

Backward error

10 : :)
10! 102 10° 10* 10°

n

Figure 3.1: Backward error for computing the summation s = Z;L:1 z; in fpl6 arithmetic, where the x; are
random independent variables sampled from the [0, 1] uniform distribution, using two rounding modes: round-to-
nearest (RTN) or stochastic rounding (SR).

Ed [z]
Figure 3.2: Stochastic rounding rounds z to one of the adjacent floating-point numbers |z| and [z] immediately

below and above it, respectively. In this example, round-to-nearest would always round to [z], whereas SR can
round to either |z] or [z], but is more like to round to [z].

@O<—R

3.2 Stochastic rounding

One important outcome of the above developments in probabilistic error analysis is that they
provide a theoretical explanation for the success of stochastic rounding (SR). SR is a special
rounding mode which rounds up or down not deterministically like other rounding modes, but
rather with a certain well-chosen probability that decreases with the distance to each direction.
Given z € R, the stochastically rounded number SR(z) is defined as

fe]=l=] (3.1)

SR(2) [z] with probability p = e_lz)
xT) =
|x] with probability 1 —p

where |x] and [z] are the adjacent floating-point numbers immediately below and above z,
respectively. This is illustrated in Figure 3.2.

There has been a strong renewed interest in SR after it has been shown to increase the
accuracy of some computations, including neural network training [147] (see Chapter 15). In our
paper [3], we build upon our probabilistic analysis described in the previous section to prove
that SR actually enforces the rounding errors to satisfy Model 3.1: rounding errors produced by
SR are mean independent, zero-mean random variables.

15

Theorem 3.2 (Lemma 5.2 in [3]). The rounding errors generated by stochastic rounding satisfy
Model 3.1. As a corollary, with stochastic rounding, Theorem 3.1 holds unconditionally.

Theorem 3.2 shows that the probabilistic y/nu bound is guaranteed to hold unconditionally
with SR, and this can therefore lead to an improvement of the accuracy by a factor y/n in the
cases where the worst-case nu bound would be attained with deterministic rounding modes.
Figure 3.1 illustrates this in the case of stagnation: unlike round-to-nearest, SR prevents small
summands to be systematically absorbed by rounding up from time to time—with the exact
probability required for the computed sum to be equal to the exact sum in expectation ([3],
Theorem 6.2)!

This probabilistic error analysis therefore constitutes the first theoretical explanation of the
success encountered by SR in low precision computations. For an in-depth review of the main
properties of SR and its benefits in various applications, please also refer to our survey [4].

3.3 Probabilistic bounds for random data

The probabilistic bounds obtained in the previous sections only exploit a probabilistic model
of the rounding errors: they do not make any assumption on the data. Further insights and
reductions of the error bounds can be obtained by considering computations on random data.
While real-life applications rarely involve random data, it is still important to understand the
behavior of the error in this case, for several reasons.

e It is common practice to test, benchmark, and validate codes on randomly generated data.
This is notably the case of the LINPACK benchmark used to make the TOP500 ranking.

e Some applications do involve random matrices; this is notably the case of randomized
algorithms (see Section 6.2).

e Some applications involve nonrandom matrices that however resemble random ones; for
example, the elements of the weight matrices in neural networks often follow a nearly
Gaussian distribution (see Section 15.1).

In [2], we specialize Model 3.1 on rounding errors to the computation of a sum s = Y " | z;
with random independent summands x;.

Model 3.2 (Models 2 and 3 in [2]). Let z;, j = 1: n be random independent variables drawn
from a distribution with mean i, satisfying |x;| < Cy for a given constant Cy, and let p,| be the
mean of the distribution of the |x;|. Let s = 2?21 x; be computed by recursive summation, and
assume that the rounding errors 61,...,0n_1 generated in that order satisfy, for k = 1:n —1,
E((S]C ‘ 51, . ,(5}67171'1, N 7(En) = E(§k) =0.

Theorem 3.3 (Corollary 2.10 in [2]). Let x € R™ let s = E?Zl x; be computed under Model 3.2.
For any constant A\ > 0 and for any n sufficiently large such that iz \/n > 2A\Cy, the computed

S satisfies the backward error bound

5 s| 2
< -

n = ()\Mx\/ﬁ+)\20wu+0u2
ST Tyl S gy e Jut OG)

with probability at least P(A) = 1 — 2(n + 1) exp(—\?%/2).

16

10° : :
—6—[0,1] distribution /
—¥— [-1,1] distribution

nuw

,_.
=)
L

Backward error
—
o
&

H
2

1074 \ \ =)
10 10? 10° 10* 10°

n
Figure 3.3: Backward error for computing the summation s = Z?Zl z; in fpl6 arithmetic, where the x; are
random independent variables sampled from the [0, 1] or [—1, 1] uniform distributions.

Theorem 3.3 shows that if the z; are sampled for a centered (zero-mean) distribution, such
as the commonly used standard normal and [—1,1] uniform distributions, then u, = 0 and
the y/n term in the bound vanishes. For such distributions, Mzl 18 a strictly positive constant
and so the error bound is of order a constant independent of n times the unit roundoff w. This
behavior of the backward error is illustrated in Figure 3.3. By taking into account the distribution
and specifically the mean of the data, we can thus obtain sharper probabilistic bounds on the
backward error.

These sharper bounds do not only apply to summation: in [2], we derive similar bounds inde-
pendent of n for inner products, matrix—vector products, and matrix—matrix products, whenever
at least one of the involved vectors and/or matrices has its coefficients sampled from a zero-mean
distribution (see Theorems 3.2, 3.3, and 3.4 of [2]). Unfortunately, the analysis does not readily
extend to LU factorization and triangular solves, because of the divisions that they involve. Yet,
in practice, the backward error for these computations is also observed to be independent of n,
which suggests a similar mechanism is at play (see Research Problem 16.1).

3.4 Stochastic validation for inner products

Let z,y € R™ and let s = 27y be their inner product. The computed 3 satisfies the forward
error bound
S=a"y+As, |As| < yn,

where .
_ J="lyl
7]

is the condition number of the inner product.

In the previous sections, we have seen that the ~, part of the bound is usually pessimistic
but can be more sharply estimated via probabilistic analyses. The k part of the bound is much
harder to estimate reliably, because it requires the knowledge of the true inner product z”y
itself. Yet, in some contexts it is important to be able to reliably estimate the accuracy of the

17

computed inner product—for example, in order to certify the correctness of a computation. This
requires numerical validation tools; one way to develop such tools is to use stochastic arithmetic.

In stochastic arithmetic, all floating-point objects are represented by d distinct values (called
representatives) and computations are performed on each of these d representatives with stochas-
tic rounding. All intermediate quantities of the computation also have d representatives, and at
the end of the computation, the accuracy of the final result can be estimated by comparing its d
representatives: roughly, one can estimate that the digits that are identical for all representatives
are correct, while the rest have been lost to numerical noise produced by rounding errors. This
approach is for example implemented in the CADNA library [173].

Stochastic arithmetic is however expensive, not so much because each operation is repeated d
times, but more importantly because each elementary operation must be performed separately,
in order to apply stochastic rounding. Thus, in the computation of an inner product, stochastic
rounding must be applied after each addition and multiplication. This is a major performance
hurdle because it prevents the use of optimized libraries, such as the BLAS, which do not support
stochastic rounding modes.

In [38], we propose a new method to overcome this hurdle. The main idea is to avoid
introducing randomness in the intermediate steps of the computation: the method only adds
random perturbations to the input x (and/or y). It therefore presents the significant advantage
of not requiring intrusive modifications of the intermediate computations of the inner product,
and can thus rely on optimized implementations, such as the BLAS. Specifically, we introduce
randomness in the input by randomly perturbing each representative of x as follows:

W =g o (14 6W), (3.2)
2@ = g0 (14669, (3.3)
where o denotes the Hadamard (componentwise) product, § > 0, and €W gD e R are

standard normal random vectors, that is, their elements £ ,(CZ) are drawn from the standard normal
distribution A/(0,1). Then, we compute the d inner products s®) = (2())Ty with classical
deterministic arithmetic and we define their average representative

d
1)
35— = (@)
5= d;:lsz. (3.4)

The following result proves that the accuracy of s can be reliably estimated by (3.5) below.

Theorem 3.4 (Theorem 4.3 in [38]). Let 5 in (3.4) be computed in deterministic floating-point
arithmetic with unit roundoff u. Let

d (5 ()2

Then for any probability B > 0 the computed 5 satisfies

nu

P(|s — 3] < 275¢) > 5(1 - c(é)(dw) (3.6)

where T3 is the value of Student’s distribution with d — 1 degrees of freedom and probability level
B, and c is a modest constant.

18

15 N x x :
Mz) ——CADNA (estimate)

0 \\‘ ",‘0‘ CADNA (true)
:Eio \\ Our method (estimate)
3 \ Our method (true)
- 10+ \ 4
S S
3 G,
> T\,
g 57 M, .
% \;‘
Z \;Q\

0 I .

[

L L L L L L L L N 2% . L L
109 10° 1010 101 1020
Condition number

Figure 3.4: Estimated and true accuracy of inner products computed by CADNA and by our method with
§ = y/nu = 10u, depending on the condition number.

The bound (3.6) shows that ¢ is a reliable estimate as long as the size of the random pertur-
bations § is sufficiently larger than nu. Moreover, taking into account the statiscal arguments
developed in the previous sections, taking § = y/nu is often sufficient. Figure 3.4 illustrates the
reliability of our method for vectors of length n = 100 and varying condition number. We com-
pare the standard CADNA method, which implements stochastic arithmetic, and our method
with deterministic arithmetic and a random perturbation of size 6 = 10u. The figure confirms
that our method provides a conservative estimate; moreover, the introduced perturbation is small
enough that its accuracy remains comparable to that of CADNA.

19

Chapter 4

Summation and matrix multiplication

Computing sums of floating-point numbers is one of the fundamental underlying kernels of
matrix-based computations. Consider for example the inner product of two vectors x,y € R™

s=aly= inyi (4.1)
i=1

(throughout this chapter we consider inner products, but the results apply trivially to plain
summation by setting y to the vector of all ones). Recursive summation evaluates the sum in
(4.1) in the natural order, and yields a computed 5 that satisfies the backward error bound [162]

s=(x+Ax) Ty, |Az| <,z (4.2)
This implies the absolute forward error bound

S=s+ s, |As| < lal"ly] (4.3)

and the relative forward error bound

s—s
where .
|lz|" |yl
~ 2Ty (45)

is the condition number of the inner product.

As (4.4) shows, there are two main challenges in accurately computing inner products: dealing
with a large number of summands n (the challenge of rounding error accumulation), and dealing
with a large condition number « (the challenge of cancellation: summands of opposite sign cancel
each other, making |x|”|y| much larger than |z7y|).

This chapter describes summation algorithms that tackle either one of these challenges. In
Section 4.1, we analyze the numerical properties of specialized mixed precision hardware such as
GPU tensor cores that can accumulate 16-bit numbers in 32-bit arithmetic, and show how this
improves the error bounds. In Section 4.2, we describe various tree-based summation algorithms
that achieve reduced error bounds, including a mixed precision blocked summation algorithm
called FABsum [19]. Finally, in Section 4.3 we discuss distillation algorithms for evaluating
highly ill-conditioned sums.

21

As discussed in the previous chapter, the worst-case error bounds can be pessimistic and on
average we may replace them by their square root. However, bounds proportional to y/n can
still be unsatisfactory for extreme scale sums and/or low precision arithmetic, so that we cannot
only rely on probabilistic effects to guarantee the accuracy of the result. Fortunately, the general
probabilistic backward error analysis developed in Chapter 3 applies to all algorithms described
in the present chapter, so that we can combine the probabilistic effect with the reduction of the
worst-case bound.

The contributions described in this chapter are based on the following papers: [5], [6] for
Section 4.1; [19] for Section 4.2; and [20] for Section 4.3.

4.1 Mixed precision matrix multiply—accumulate

A wide range of modern hardware provides specialized mixed precision matrix multiplication
units that take as input low precision matrices and accumulate the result using higher precision
arithmetic. This is in particular the case of NVIDIA GPUs, which are equipped with so-called
tensor cores that can compute the product C' = AB where A and B are stored in half precision
(fp16 or bfloat16) and the intermediate computations are accumulated in C' using single precision
(fp32) arithmetic. There is a growing range of hardware with similar mixed precision features,
such as Google’s TPUs, AMD’s MatrixCores, and ARM’s v8-A CPUs. Due to its specialized
and intrinsically mixed precision nature, the numerical behavior of such hardware is not covered
by standard rounding error analysis, and can indeed depart significantly from the usual behavior
of standard floating-point units following IEEE arithmetic. To analyze their common properties
and better understand their numerical behavior, we define a general model that encompasses all
these different units.

Model 4.1. Given matrices A € R"*? gnd B € RY*P2 stored in precision uiow, we compute
C = AB in precision Unigh -

Model 4.1 was coined a “block fused multiply—add” (block FMA) in [5] because, even though
it does not actually implement an FMA, its numerical behavior can resemble one when upigh <
Ulow: in this case, intermediate rounding errors of size upigh are negligible in front of the conver-
sion errors of size uy incurred when casting A and B to low precision.

It is important to note that, while Model 4.1 captures the essential properties of the previously
mentioned hardware examples, some hardware might not exactly follow this model, or might
have other specific features (such as a particular rounding mode or order of operations) that are
not included in the model. In fact, in many cases, the behavior of such hardware has not been
precisely documented or specified by the vendors, and it is often necessary to turn to experiments
to better understand their properties [128].

Note that Model 4.1 assumes fixed matrix sizes b; X b and b X by, in conformity with the
examples mentioned above (for example, by = b = by = 4 for NVIDIA tensor cores). However,
such a kernel can readily be used to compute matrix products C = AB of arbitrary dimensions
by partitioning A and B in blocks of size b; x b and b X bs, respectively, and computing a blocked
matrix product; see Algorithm 3.1 of [5] for a detailed description.

Theorem 4.1 (Theorem. 3.2 of [5]). Let the product C = AB of A € R™*" and B € R™*" be
evaluated using a mized precision matriz multiplication unit satisfying Model 4.1. The computed
C' satisfies

C = C1 < (20 + Uy + V(1 + wi0w)?) |4] B, (4.6)
where yhigh = NUnigh/ (1 — NUnign)-

22

Theorem 4.1 shows that the mixed precision nature of Model 4.1 can be harnessed to signifi-
cantly improve the error bound of matrix multiplication: the dependence on n due to rounding
error accumulation only affects the O(upign) part of the bound, the O(uiow) part being indepen-
dent of n. This is a valuable property that can significantly improve the accuracy of the result;
we will discuss its impact on LU factorization in Section 10.1.2.

Theorem 4.1, like most traditional error analyses, assumes the absence of overflow and un-
derflow. However, some of the low precision input formats required by such hardware offer a
much narrower range of representable values. This issue becomes more pressing on recent GPU
models like NVIDIA Hopper, which support quarter precision (8-bit) arithmetic; 6-bit and 4-bit
formats have even been announced on the forthcoming NVIDIA Blackwell. Therefore, it is clear
that range issues can no longer be ignored on this type of hardware.

This motivates two new developments:

e the incorporation of scaling techniques within standard linear algebra computations in
order to prevent overflow and minimize underflow;

e and new error analyses taking into account the effect of underflow, because even with
scaling the range of these new formats is so narrow that some amount of underflow is
inevitable.

To account for the range limitations, let us extend Model 4.1 as follows.

Model 4.2. Let A € R"*b and B € R**%2 be stored in a low precision input format with unit
roundoff wiow and range [fir, f2X]. We compute C = AB in a high precision accumulation

} . . min max
format with unit roundoff unign and range [Fyih, Fiidh].

Since the coefficients of A and B may not belong to the range of the low precision input
format, we must scale them. We compute

C=A1 (ﬂlOW(AA) ﬂlOW(BM))M‘l (4.7)

where A and M are diagonal matrices and where flioy (-) denotes the rounding operator to the
low precision format. Let 6 be the maximum value that we wish to allow in AA and BM. There
exists an optimal value for #: as it increases, underflow is minimized, so we must take its largest
possible value which prevents overflow from occurring both in the input and in the intermediate
computations. Preventing overflow in the input requires § < f{®2* whereas preventing it in the

low »

accumulation requires 6 < | /Fil5x /n. We therefore should set

6 = min(fne%, [Fms /). (48)

The following result provides an analogue to Theorem 4.1 which takes into account the range
limitations.

Theorem 4.2 (Theorem 3.1 of [6]). Let A € R™*™ and B € R™"*? and let A and M be diagonal
scaling matrices such that the elements of AA and BM are all bounded by 0 in (4.8). Let C = AB
be evaluated as in (4.7) using a mized precision unit satisfying Model 4.2. Then the computed C

satisfies

IC — ABlloo S (2ut0n + ntnign + 202071 f8 4 420 2R3) [Al | Blloo: (4.9)

23

In presence of underflow, we can only obtain a normwise bound. This bound (4.9) should be
compared to the normwise bound

IC = ABlloe < (2utow + ntunign) | Alloo| Bll (4.10)

that follows from (4.6) in Theorem 4.1. Bound (4.9) thus recovers the term 2ujoy +nunigh coming
from the rounding errors. In addition, it also accounts for the errors caused by underflows with
the terms 2n20~1 fin (input underflows) and 4n20~ 2Fﬁ?g“ﬁ (accumulation underflows).

Can these underﬂows become a cause of concern? There cannot be a definitive answer in
general, because it depends on the properties of the input and accumulation formats, as well as

the inner dimension n of the matrices. However, note that if r?é‘ﬁ‘ is sufficiently large so that

max max —_ max p— — min — min maX
low </ Fiign/n, then 0 = fiie and thus the term w = 67 fill? = finin /gmax corresponds

to the inverse width of the range of the input format. For all practical formats of interest, w is
smaller than the corresponding unit roundoff u., and hence we can expect the rounding errors
to remain the dominant source of errors. Moreover, Theorem 4.2 does not assume any support
for denormalized numbers. If this assumption is added, gradual underflow significantly improves
the bound (4.9), in which the terms f3in and Ffl?giﬂ are replaced by 2ujoy f2% and 2uhighFﬁ§‘éﬁ,
respectively.

Overall, in practice, for most cases of interest the underflows should thus remain dominated
by the rounding errors, and therefore the range limitations should not significantly affect the
accuracy of the computation—provided a suitable scaling is used, naturally.

4.2 Blocked summation

The constant n in the bound (4.2) comes from the fact that the summands x; and y; are
involved in at most n operations: 1 multiplication and at most n — 1 additions. This means that

the computed s satisfies
n k;
=3 e [0+
i=1 k=1

with k; <n and |d; x| < u, and thus (4.2) follows from Theorem 2.2.

Therefore, a popular technique for reducing the constants in the error bounds for sum-
mation is to reduce the maximum number of operations that any summand is involved with.
For example, blocked summation consists in computing partial sums of blocks of b summands
55 = Zjb (—1)bt1 Tili before summing together the n/b partial sums s = Z n/b 1 58j- In this case,
any summand x;y; is involved in at most b+mn/b— 1 operations: 1 multlphcatlon b— 1 additions
in the computation of the partial sum, and n/b — 1 additions in the computation of the final
sum. We thus obtain a reduced backward error bound

S=(@+A2)"y, Az < Yprnpoilz] (4.11)

where the constant attains it minimal value v, 5 _; for the optimal block size b = V.

While potentially useful, one level of blocking is therefore not sufficient to handle very large
sums: we would like to further reduce the dependence of the error on n. This is possible by
using more general summation trees. A summation tree is a binary tree that defines the order
in which the summands are added together: the summands correspond to the leaf nodes, and all
the other nodes are defined as the sum of their two children. The root node therefore corresponds
to the final sum. With this formalism, recursive summation corresponds to a comb tree of height
n — 1, whereas blocked summation corresponds to a block comb tree of height n/b — 1 where

24

each block node is a comb tree of height b — 1. A generalization with ¢ > 1 levels of blocking
is described by Castaldo et al. [93]. The smallest possible bound is obtained by minimizing the
height of the summation tree, that is, by using a balanced tree of height of [log, n]; this is called
pairwise summation [162, Chap. 4]. Unfortunately, pairwise summation is inefficient on modern
hardware as it prevents the use of vectorization and other blocking techniques. For these reasons,
in practice, linear algebra algorithms use blocked summation with usually one or two levels of
blocking.

Algorithm 4.1 Fast and accurate blocked summation (FABsum).

Input: z,y € R”, a block size b, and two summation algorithms FastSum and AccurateSum.
Output: s =z7y.

1: for j=1:n/bdo

2: Compute s; = Zgi(j—l)b-i-l x;y; with FastSum.

3. end for

4: Compute s = Zyiﬁ s; with AccurateSum.

To overcome the dependence on n of the error while preserving efficiency, we propose in [19]
the FABsum (Fast and Accurate Blocked summation) algorithm, outlined in Algorithm 4.1.
While FABsum uses only one level of blocking, it uses two different summation algorithms: a
fast algorithm FastSum to compute the partial sums of size b, and an accurate one AccurateSum
to sum the n/b partial sums. Computationally speaking, this is efficient because the accurate
algorithm performs only n/b flops out of n (for example, for b = 100, only 1% of the flops).
Moreover, we can bound the backward error for FABsum as a function of the backward errors of
FastSum and AccurateSum. Indeed, assume that we have the backward error bound

|Az| <e¢(n)|z| with FastSum

. 4.12
|Az| < eq(n)|z] with AccurateSum (4.12)

§=(z+Ax)"y, {

Then we have the following result for FABsum.

Theorem 4.3 (Theorem. 3.1 of [19]). Let s = a7y be computed by Algorithm 4.1. Assuming
(4.12), the computed S satisfies

S5=(z+Ax)Ty, |Az|< <5f(b) +g4(n/b) + ef(b)ea(n/b))|z|. (4.13)

Crucially, in (4.13) the FastSum part of the bound e;(b) does not depend on n, only on b.
Thus, we may absorb the dependence on n by using an accurate algorithm for AccurateSum such
as using extra precision or compensated summation. In particular, if we use recursive summation
for both algorithms, in precision u for FastSum and in precision u? for AccurateSum, we obtain a
mixed precision version of FABsum that achieves a backward error bound bu+O(u?) independent
of n to first order.

We refer to [19] for numerical examples illustrating how FABsum can improve the accuracy
of matrix-based computations; see also Section 5.2 for a situation where the use of FABsum is
important.

4.3 Distillation of ill-conditioned sums

While the previous sections have dealt with the problem of reducing rounding error accu-
mulation, we now turn to the problem of handling ill-conditioned sums. Several methods have

25

been proposed to tackle this problem, the most popular of which we can categorize in two broad
classes.

e The first class relies on the finite number of exponents in typical (IEEE) floating-point
arithmetic and on the fact that numbers with exponents not too far apart can be added
exactly using extended precision accumulators. This is for example the case of Kulisch’s
accumulator [178], which sums all numbers in a very long accumulator, or of the Demmel—-
Hida algorithm [108], which sums together numbers of comparable exponent using higher
precision arithmetic, such as quadruple precision. This strategy is also used in Hybrid-
Sum [262] and OnlineExactSum [261].

e The second class exploits the fact that the error incurred by floating-point addition is itself a
floating-point number. This error can be computed exactly via error-free transformations
such as Fast2Sum. This class includes in particular the AccSum method [228], which
computes a faithful rounding of the sum irrespective of its conditioning, and the PrecSum
method [229], which computes the sum as if using K-fold precision (for a given K). Those
algorithms have been improved respectively as FastAccSum and FastPrecSum in [227].

The methods from the first class have a double weakness: they require access to the exponent
of the floating-point numbers, which can be expensive, and they require the use of extended
precision accumulators. In contrast, the methods from the second class only require standard
arithmetic operations on the summands. However, they also require a much larger number of
floating-point operations, and their cost strongly depends on the conditioning. Moreover, they
are much less parallel than the methods from the first class. In any case, both classes of methods
can be quite expensive.

Many of the summation methods able to handle ill-conditioned sums rely on the process of
distillation. Distillation consists in iteratively transforming the original, ill-conditioned sum into
an equivalent but well-conditioned sum that can then be evaluated accurately. This is especially
the case of the second class of methods mentioned above, although the first class can also be
used to design distillation methods, see for example [108, sect. 5] for the Demmel-Hida method.

In [20], we propose a method to transform the original sum into another, equivalent sum,
which is not necessarily better conditioned, but which is far smaller. The smaller sum can then
be distilled inexpensively by any of the distillation methods mentioned above. We call the first
transformation of the sum into a smaller equivalent one the process of condensation.

The condensation step is based on the following key observation.

Theorem 4.4 (Corollary 2.3 of [20]). If z,y are base-two floating-point numbers with the same
sign, exponent, and least significant bit, then barring overflow their addition is exact.

Theorem 4.4 gives a sufficient condition for the addition of two floating-point numbers to be
exact, even in the working precision. We harness this observation to develop a fast distillation
algorithm, called Condense & Distill, which consists of two steps. The first step is to efficiently
condense the sum by summing pairs of summands with the same sign, exponent, and least
significant bit, until no such pairs remain. The number of remaining summands is necessarily
bounded, and the second step is to distill them with classical distillation algorithms.

Compared with the Demmel-Hida method, Condense & Distill is also based on adding num-
bers with the same exponent, but its key advantage is that it does not require any extra precision.
The whole condensation process can indeed be performed entirely in the working precision. This
is achieved at the cost of accessing the least significant bit of the summands, which is a negligible
overhead compared with the cost of accessing their exponent. Compared with the second class
of summation methods (AccSum, etc.), Condense & Distill shares the main strengths of the first

26

—6— AccSum
1t —&— Demmel-Hida J
Condense & Distill

1 1 1 1 1

IO N TS T S WP NN R
SN R R SR R SRR RN

K

Figure 4.1: Comparison between the Demmel-Hida, AccSum, and Condense & Distill algorithms to distill a sum
with n = 10% summands, as a function of its condition number k. All algorithms are run sequentially (1 thread).

class: its performance is completely independent of the conditioning of the sum, and it exhibits
nearly perfect parallel scaling.

We illustrate the attractive properties of Condense & Distill in Figure 4.1, which shows that
this new method is about 35% faster than the Demmel-Hida method, and that it outperforms
the AccSum method when the sum is sufficiently ill-conditioned. See [20] for more performance
results, including parallel scaling experiments.

27

Chapter 5

Multiword arithmetic

This chapter deals with the fundamental concept of multiword arithmetic, which allows for
emulating high precision arithmetic while relying on low precision computations.

After reviewing the basic principles of multiword arithmetic in Section 5.1, we discuss two
situations in which it presents a high potential for improving matrix multiplication.

Section 5.2 describes the first situation, which is related to the use of specialized mixed
precision hardware such as GPU tensor core units (see Section 4.1). With such hardware, the
unusually large speedups between low and high precision computations, combined with the ability
to accumulate low precision numbers in high precision arithmetic, makes multiword arithmetic
based on low precision words as accurate but much faster than standard high precision arithmetic.

Section 5.3 describes the second situation, which is related to computing matrix multiplication
over prime finite fields. In this case, all the matrix coefficients are integers, which means the
problematic becomes not one of precision (computations with integers being exact), but one of
range (ensuring that all integers arising from the computation do not overflow, that is, remain
smaller than the largest representable integer in the working arithmetic). We show how to
leverage multiword arithmetic in this context to handle large integers efficiently.

The contributions described in this chapter are based on the following papers: [7], [6] for
Section 5.2 and [45] for Section 5.3.

5.1 Basics

Given a working precision arithmetic with ¢ bits of significand, multiword arithmetic rep-
resents a real number z € R as the unevaluated sum of non-overlapping ¢-bit numbers (called
“words”). For example, two-word arithmetic represents

TR T+ T2, (5.1)

where x1 and x each have t bits of significand. If x; is obtained by rounding x to the nearest
floating-point number with ¢ bits of significand, then barring overflow (5.1) approximates x as a
number with at least 2¢ 4+ 1 bits of significand.

When ¢t = 53 (double precision as the working precision arithmetic), (5.1) corresponds to
double-double arithmetic. Double-double arithmetic is historically the most common and widely
used form of multiword arithmetic. It delivers an accuracy corresponding to 107 bits of sig-
nificand, that is, 271°7 &~ 6 x 10733, and is thus slightly less accurate than quadruple precision
arithmetic (fp128, which uses 113 bits of significand, delivering an accuracy of 27113 ~ 1 x 10734).
However, quadruple precision is not supported natively by most processors, and so double-double

29

arithmetic is potentially faster because the underlying operations all use the natively supported
double precision arithmetic.

That being said, double-double arithmetic is significantly more expensive than double pre-
cision arithmetic. This is not only because the number of flops increases with the number of
words, but more importantly because preserving the accuracy of the computation requires spe-
cial handling to avoid rounding errors of size the working precision. This is achieved via various
techniques based on error-free transformations, of which we omit a detailed description; please
refer instead to [205, Chap. 14]. The important point is that these techniques further increase the
number of flops, making double-double arithmetic at least an order of magnitude more expensive
than double precision arithmetic on most computer architectures.

For this reason, traditional multiword arithmetic has mainly been used to enhance the accu-
racy when the highest available precision was not sufficient. The next two sections describe two
situations in which intermediate computations do not lead to rounding errors of size the work-
ing precision. In these situations, multiword arithmetic can then be implemented with standard
floating-point operations and is thus particularly beneficial, even with lower precision arithmetics
as the working precision.

5.2 Multiword matrix multiplication with mixed precision hardware

Multiword arithmetic allows for achieving both high accuracy and high performance when
combined with specialized mixed precision hardware available on modern accelerators, such as
GPU tensor cores.

Indeed, as discussed and analyzed in Section 4.1, such units can multiply low precision (16-
bit) matrices while accumulating all intermediate rounding errors in higher precision (32-bit)
arithmetic. Multiword arithmetic can be used to remove the low precision conversion error term
by representing the matrices on several words. In particular, consider the two-word decomposi-
tions A ~ Ay + Ay and B =~ By + By, where Ay, A1, By, and B are all stored in fpl6. Then
C = AB can be approximated as four products AgBy + Ay By + AgBy + A1 B, each of which
can be efficiently computed using the mixed precision hardware with fp32 accumulation. This
idea has first been proposed by Markidis et al. [194] to exploit the speed of the NVIDIA GPU
tensor cores while enhancing their accuracy. Henry et al. [158] investigate a similar approach but
using bfloat16 instead of fp16. Since bfloat16 only uses 8 bits for the significant, three words are
necessary to emulate full fp32 accuracy. Mukunoki et al. [204] propose an approach to emulate
fp64 accuracy using NVIDIA tensor cores. Their approach is based on the Ozaki scheme [217]:
the matrices are decomposed in sufficiently many words so that multiplying any two words can
be done exactly. This approach is closer in spirit to the traditional use of multiword arithmetic
since it requires a large number of words. Ootomo et al. [210] show how to extend this approach
to use low precision integer arithmetic, and Uchino et al. [242] propose some improvements to
their approach. Most recently, Ozaki et al. [218] have proposed a second scheme to emulate high
precision floating-point arithmetic with low precision integer arithmetic based on a very different
approach. This “Ozaki scheme II” computes the product modulo several coprime numbers that
fit in the low precision, and recovers the high precision product using the Chinese remainder
theorem; this second scheme is shown to require fewer matrix products than the first Ozaki
scheme.

Multiword arithmetic can also be used in more complex computations than just matrix mul-
tiplication: for example, Sorna et al. [237] use it in the fast Fourier transform, and Ootomo and
Yokota [212] use it in the randomized SVD (see Section 6.4 for more details).

These approaches can be made general by considering an arbitrary number of words w and

30

an abstract mixed precision hardware satisfying Model 4.1. For i,j = 0: w — 1, we define

i—1 Jj—1
Ai = ﬁlow ((A —];ufowAk)/ulow), Bj = ﬂlow <(B — kz_:ou{COWBk>/U10W), (52)

where fliow () is the operator that rounds to precision wujy. This yields the decompositions

w—1

A+AA= Z UlowAis |AA] < ujgy |A,
=0
w—1

B+ AB = Z ulowBJ’ |AB| < ulow|B|
7=0

with an error of order wj? . Since all the A; and B; are stored in precision 4w, the product
C = AB can be computed with a mixed precision hardware satisfying Model 4.1 as

w—1w—1

=S5 wian,

i=0 j=0
with all intermediate computations performed in precision unjgn. Importantly, the term UI:]
shows that not all w? products A;B; need be computed: we can ignore any product A;B; with
i+ j > w while introducing an error of order at most O(uj?). This reduces the number of

products from w? to w(w + 1)/2.

Algorithm 5.1 Multiword matrix multiplication with mixed precision hardware.

Input: Two matrices A € R™*™ and B € R™*? and a number of words w.
Output: C' = AB computed with w-word arithmetic.

1: fori=0tow—1do

2 A - ﬂlOW((A Z}c 0 ulowAk)/uIOW)

3 - ﬂlOW((B Zk =0 uloka)/UIOW)

4: end for

5 C=0

6: fori=0tow—1do

7. for j=0tow—1do

8 if i 4+ j <w then

9: C=C+ ulﬂ A;Bj with a mixed precision hardware satisfying Model 4.1.
10: end if

11: end for

12: end for

Algorithm 5.1 summarizes how to compute C' = AB in w-word arithmetic using mixed
precision hardware. The following result shows that the accuracy of the computed C' is of order

Uy, + Unigh-

Theorem 5.1 (Theorem 2.1 of [7]). Let A € R™*" and B € R"*9 and let C = AB be computed
by Algorithm 5.1. The computed C satisfies

1C =€ < ((w+ Vutty, + 10,)AIIBI + Olunigntion + uith).

31

In particular, on NVIDIA GPU tensor cores where ujow and upigh correspond to fpl6 and
fp32 arithmetics, Theorem 5.1 shows that w = 2 words suffice to recover an accuracy of order
ul . A Unigh ~ 1077 similar to standard fp32 arithmetic. This “double-fp16” approach requires
three products, and hence three times as many flops, but thanks to the much higher speed
of the tensor cores units, it can significantly outperform standard fp32 arithmetic. We report
performance results on A100 GPUs in [7] where double-fp16 arithmetic is up to 7x faster than
fp32 arithmetic, while achieving a comparable accuracy.

However, we also identify in [7] a situation in which double-fp16 arithmetic can fail to de-
liver the expected accuracy due to a numerical issue specific to NVIDIA GPU tensor cores. This
hardware uses the round-to-zero mode [128], which tends to produce rounding errors whose mean
strongly deviates from zero. This exacerbates the effect of rounding error accumulation, whereas
standard fp32 arithmetic uses the round-to-nearest mode that benefits from an attenuated ac-
cumulation due to the probabilistic effects discussed in Chapter 3. Thus, while the double-fp16
and fp32 approaches share the same worst-case error bound, they do not achieve the same error.

There is a clear remedy to this issue: reduce the worst-case bound, so that the fact that it
is attained with round-to-zero is no longer an issue. To do so, we can replace the underlying
summation algorithm used by the matrix products by the more accurate tree-based summation
algorithms discussed in Chapter 4. In particular, we show in [7] that the use of FABsum (Algo-
rithm 4.1) allows the double-fp16 approach to recover a 32-bit accuracy while still outperforming
standard fp32 arithmetic. A similar idea is also proposed by Ootomo and Yokota [211].

This result connects together three pieces of work from seemingly unrelated topics: proba-
bilistic error analysis (Chapter 3), summation algorithms (Chapter 4), and multiword arithmetic
(this chapter). This illustrates how the emergence of high performance low precision arithmetics
can bring about the convergence of various fields such as high performance computing, computer
arithmetic, and rounding error analysis.

5.3 Multiword matrix multiplication over prime finite fields

Many computer algebra applications require linear algebra computations over prime finite
fields, that is, over the modular integers Z/pZ, where p is a prime number. Thus the computation
of the modular matrix product

C = AB mod p, (5.3)

where the coefficients of the matrices are all integers, is a fundamental basic block of computer
algebra. In many cases, it is desirable to accommodate for the largest possible prime p.

In floating-point arithmetic, additions and multiplications with integers do not incur rounding
errors, and hence matrix products are exact provided that all intermediate quantities remain
representable as floating-point numbers, that is, provided they do not exceed 2!, the maximum
value for which all integers are exactly representable as floating-point numbers with ¢ bits of
significand. The problematic thus becomes not one of precision, but one of range.

In order to ensure that the integers arising in the computation of the product remain rep-
resentable, we use modular arithmetic: we apply modular reductions with respect to p to keep
the integers bounded throughout the computation. A naive implementation would be to sim-
ply perform a reduction after each floating-point operation: given A € Z™*™ and B € Z"*1,
C = AB mod p can be computed as

C + C+ (apbl mod p) mod p, k=1:n, (5.4)

where a; € Z™ is the kth column of A and bl € Z9 is the kth row of B. This approach is
however extremely inefficient since it requires as many reductions as floating-point operations.

32

The number of reductions can be reduced by computing instead
C+ C+ (AxkBg mod p)modp, K =(k—1)A+1: min(kA\,n), k=1: [n/A], (5.5)

where Ax € Z™** and Bg € Z**? are block-columns of A and block-rows of B, respectively,
and where A is a block size that controls how often the reductions are performed. To maximize
the efficiency, we want to take A as large as possible while ensuring that the intermediate compu-
tations do not overflow. Assuming that the coefficients of A and B are already reduced modulo p,
then the coefficients of Ax By are bounded by A(p — 1) and so this leads to A = | 2/(p — 1)? |.
This approach is for example implemented in the FFLAS-FFPACK library [121].

While this approach is efficient for moderate values of p, it is unfortunately unable to handle
larger values: it is limited to p < 22 and becomes quite inefficient when p approaches this limit
since it must use a small block size A.

In [45], we propose a method to overcome this limitation by using multiword arithmetic. We
define

, 1=0:wys — 1,

A; = \‘(A—iz_fak/lk)/a
i
B; = {(B—]zzﬁkBk)/ﬁJ, j=0:wp -1,

k=0

where the floor operator | - | is applied elementwise. This yields the decompositions

wa—1

A= Z ' A;
;;?1

B= Y §'B;.
=0

Note that, unlike in the previous section, the decompositions of A and B can use different
numbers of words w4 and wp, for reasons that will be clear shortly.

How should we choose the parameters o and 37 The goal is to minimize the size of the largest
coefficient in any A; or B;. Therefore, a suitable choice is o = (pl/w/‘] and = (pl/wB], which
balances the size of the coefficients of each A; and each B;, ensuring that they are bounded by
« and (3, respectively.

We can then compute the modular product as

wa—1lwp—1
C=ABmodp= Z Z a'B7(A; B; mod p) mod p, (5.6)
i=0 j=0
where the partial products T;; = A;B; mod p can be efficiently computed block by block as in
(5.5), and the scaled updates C' +— C + o'3’T;; mod p only require O(wwp) reductions per
coefficient of C.

This multiword approach is summarized in Algorithm 5.2. The following result shows that it
allows for handling much larger primes p.

Theorem 5.2 (Proposition 3.2 of [45]). Let C = AB mod p be evaluated with Algorithm 5.2 in
floating-point arithmetic with t bits of significand. Under the condition

2t

pl/wA+1/’wB S X,

(5.7)

33

Algorithm 5.2 Multiword matrix multiplication over prime finite fields.

Input: Two matrices A € Z™*" and B € Z"*? reduced modulo p, the numbers of words w4
and wp, a prime p, the block size A.
Output: C = AB mod p computed with (w4, wp)-word arithmetic.
10 o= I'pl/w;“|7 6 — I'pl/wB"
for i=0towy —1do

A= | (A= ek Ag)/a |

N

3
4: end for

5. for j =0 to wp —1 do

6 By=|(B-Ti56B/8 |
7: end for

8: C=0

9: for i =0tow—1do

10: for j=0tow—1do

11: Compute T' = A;B; mod p by blocks of size A.
12: C=C+a'BT modp

13: end for

14: end for

no overflow occurs and thus C' is computed exactly.

Theorem 5.2 can be used to determine the necessary numbers of words (wa,wp) to handle
a given prime size. Table 5.1 compares different choices for (wa,wp), with wqg < wp (the
symmetric case being analogous). We report the maximum prime size that can be handled based
on (5.7). We also report the limit on log, p, that is, the maximum bitsize of p, when using double
precision arithmetic (¢ = 53).

Table 5.1: Comparison between different (w4, wp) choices.

(wA,U)B) (131) (172) (173) (174) (272) (273)
Number of products (= wawg) 1 2 3 4 4 6
Limit on P 2t/2 22t/3 23t/4 24t/5 ot ot
Limit on log, p with ¢ = 53 26 35 39 42 53 53
Maximum block size A 2t/p? 2t p3/2 2t pt/E 2ot pd/t 2t)p 2t pd/6

Since the cost of each variant is proportional to the number of products wawpg, we can use
this analysis to determine which variant to use depending on the prime size. The (1, 1) standard
variant without multiword arithmetic requires a single product and so is the least expensive. It
is thus expected to be the best choice as long as it can use a sufficiently large block size, that
is, when p < 2t/2. As p approaches this limit, the (1,1) variant will become increasingly less
efficient until it no longer is correct. Around this limit it will therefore become beneficial to
switch to a multiword approach with the smallest possible cost, that is, w4 = 1 and wg = 2; this
(1, 2) variant should be the best until p approaches its new limit p < 22t/3 At this point, further
increasing w4 and/or wp will allow for handling larger p at the cost of additional products. The
(2,2) variant can handle any prime that can be stored in t bits of significand. Nevertheless,
the (2,3) variant is of interest when p approaches 2¢, because it can use a larger block size A
than the (2,2) variant. This leads to more efficient products since it reduces the relative cost of

34

—— (1, 1)
v 12,51 —— (1, 3)
2.) —— (1, 4)
E 10.0 1 —— (2,2)
—— (2, 3)
2 751
g \
£ 501 *= —hay
L R [S S \v
0.0

15 20 25 30 35 40 45 50
Bitsize(p)

Figure 5.1: Performance of the matrix product C = AB mod p where A, B,C € Z™*™ with n = 10016, depending
on the bitsize ¢ of p and on the (w4, wp) variant of Algorithm 5.2 used. The performance is measured in effective
TFLOPS, that is, the inverse of time scaled by 2n3 x 10712, The benchmark is run on a A100 NVIDA GPU.

the reductions and also increases the arithmetic intensity of the matrix products. We validate
this theoretical comparison experimentally in Figure 5.1, which reports the performance of each
(wa,wp) variant depending on the bitsize ¢ of p. This benchmark uses square matrices and is
run on a A100 NVIDIA GPU; see [45] for additional performance benchmarks on various matrix
shapes and on both CPU and GPU architectures. In particular, for unbalanced matrix shapes, we
propose (see Algorithm 3.3 in [45]) to concatenate the words (for example, Beone = [B1 - Buy))
and to compute A; Beone to increase the arithmetic intensity of the products.

It is worth noting that there exists other approaches to handle primes p > 2¢/2. For example,
arbitrary precision arithmetic can, by design, handle any prime size. However, it is very costly,
and cannot exploit the standard BLAS routines that make our approach highly efficient; it is thus
not very suited for intermediate prime sizes such as 2¢/2 < p < 2t. A more serious competitor
is multimodular arithmetic, which is based on the Chinese remainder theorem. We have already
mentioned the Ozaki scheme II [218] for emulating high precision floating-point arithmetic. A
similar approach can be used for computing AB mod p with p > 2¢/2, and is for example described
by Doliskani et al. [114]. However, this approach requires

Af +2d
=

products, where f = log,p, d = logy k, and £ = log, A. In comparison, by Theorem 5.2, our
multiword approach only requires p'/watl/ws < ot /A, which leads to a number of products

(wa +wp)f w .

wAwB[t— 0

Since we can expect to have wa + wp < 4 for almost all primes fitting on ¢ bits, our multiword
approach will almost always require fewer products than a multimodular approach. It is worth
noting that this conclusion might change when considering mixed precision matrix multiply—
accumulate hardware (see Research Problem 16.5).

35

Chapter 6

Low-rank approximations

Low-rank approximations (LRA) are a powerful tool to reduce the dimensionality of large
scale data. Given a dense matrix A € R™*" with m > n, we seek to approximate it by a rank-k
product A =~ XY7T, where X € R™** and Y € R"**. Naturally, the low-rank case (k < n) is
of interest since, in this case, storing the low-rank factors X and Y requires fewer entries than
storing the full matrix A, and computations involving A will usually also require fewer flops.

For any unitarily invariant norm, the optimal LRA is the truncated singular value decompo-
sition (SVD), a result known as the Eckart—Young theorem [124]. Specifically, given the SVD
A =UXVT, the optimal rank-k approximation of A is

arg min ||A— M| = US, VT,
Me]Ran
rank(M)=k

where Uy X, V,I is the truncated SVD of A, formed by the first k singular vectors and values only.
However, computing the truncated SVD requires computing first the full SVD, which requires
O(mn?) operations, and so in practice this optimal method is too expensive and commonly
replaced with suboptimally accurate, but much cheaper methods.

In this chapter, we review some of these methods, as well as techniques to accelerate them
via mixed precision and/or randomization.

The contributions described in this chapter are based on the following papers: [16], [21] for
Section 6.3; [22], [33] for Section 6.5; [9] for Section 6.6; and [42] for Section 6.7.

6.1 QR with column pivoting (QRCP)

A QR factorization capable of revealing the rank of a matrix can be obtained using column
pivoting as in the method proposed by Businger and Golub [82]. Essentially, at each step k of
the QR factorization, this method permutes the columns of the trailing submatrix such that the
pivotal column £ is the one that has maximum 2-norm. This implies that the diagonal coefficients
of the R factor are of decreasing absolute value and that the following property holds:

AP = QR where |[Rg k| > ||Rimjll2 J=Fk,....,n. (6.1)

Note that explicitly recomputing the norm of all the columns in the trailing submatrix not
only is expensive but completely prevents the use of blocking (and, thus, of BLAS-3 operations)
because this requires to entirely update all the remaining columns after every elimination step.
This problem can be partially overcome by taking advantage of the fact that, once all the column
norms of the original A matrix have been computed, these do not have to be recomputed at every

37

step but can be cheaply updated. Essentially, at step k of the factorization, the norm of column
j in the trailing submatrix is updated by subtracting the freshly computed Ry, ; coefficient. This
approach is shown in Algorithm 6.1, which we refer to as QRCP; here we have assumed that
V is a matrix containing all the computed v¥ vectors in its columns, that householder(z, k)
is a function which computes and applies a Householder reflection that annihilates the bottom
m — k + 1 coefficients of a vector x of size m and that W is a workspace. Although, in this
algorithm, a large portion of computations is still done using BLAS-2 operations, some BLAS-3
can be used (in line 17).

Algorithm 6.1 Blocked QR factorization with column pivoting (QRCP).
Input: A € R™*" ¢ > 0.
Output: a matrix with orthonormal columns @ € R™**, an upper triangular matrix R € RF*",
and a permutation matrix P € R™*" such that ||[AP — QR|| < ¢||A]|.
1. P=1
2:m; = ||A2jH2’] = 1, o, Nn
3: forj=1:b:ndo
4: fork=j:5+b—1do

5 if ||Mk:n|l2 < e then

6 b=k—jik=k—-1

7: goto 17 and break j loop

8: end if

9: Find ¢ € k, ..., n such that 7; is minimal

10: Swap columns k and ¢ in A and P

11: Ak:m,k = Ak::m,k - Vk:m,j:kfle:kfl,k

12: v*, 7% = householder (4. x, k)

13: Wk+1,k:n = Tk(vk)TA:,k+1:n + Tk(Uk)T‘/:,j:k:—IWj:k:—l,k:-l-lzn
14: A kt1in = Ak kt1:n — Vijik—1 Witk—1,k+1:n

15: ni:,/nf—Ai’i, i=k+1,...n
16: end for
170 Ajipmjrbn = Ajrbim,jtbin — Vitbim,jij+b—1 Wjij+b—1:j+bmn
18: end for
_ ko, k() k\T _
19: Q =[lpy,, (I = 70" (W")7), Q= Q. 1k
20: R =triu(4), R = Ry.;,,

In practice, Algorithm 6.1 achieves poor performance and parallel scalability because a large
portion of computations in Algorithm 6.1 are of BLAS-2 type and because of the numerous
communications that the Businger-Golub pivoting requires. For this reason alternative pivoting
techniques have been proposed in the literature that aim at overcoming these drawbacks. Multiple
methods proposed in the literature, such as those by [117, 195, 110, 111], rely on an approach
where, at every step of the factorization, not one but b (the panel size) selected columns of the
trailing submatrix are moved upfront, eliminated and the corresponding transformations applied
at once using BLAS-3 operations. These methods essentially differ in the way these b columns
are selected. In the approach proposed by Duersch and Gu [117] and by Martinsson et al. [195],
outlined in Algorithm 6.2, this selection is done using randomized sampling, that is, the trailing
submatrix is left-multiplied by a Gaussian matrix Q € N(0,1)®*tP)*™ which produces a sample
matrix S; here p is a small oversampling parameter. Because of the properties that connect S
to the trailing submatrix, the “important” b columns can be selected by applying QRCP to the
sample matrix S. This drastically improves the amount of BLAS-3 operations because S has a

38

much smaller row-dimension than the trailing submatrix. As a matter of fact, the sample matrix
S does not have to be recomputed at every factorization step but it can be computed only once
and cheaply updated [117, 195].

Algorithm 6.2 Blocked QR factorization with randomized pivoting (QRRP).

Input: A € R™*™ ¢ > 0.
Output: a matrix with orthonormal columns @ € R™**_ an upper triangular matrix R € RF*",
and a permutation matrix P € R"*™ such that |AP — QR|| < ¢||A]|.

1. P=1
2: Draw a random Gaussian matrix Q € N/(0,1)(+p)xm
3: S=0A

4 for j=1:b:ndo

5 Q R P= QRCP(L €)
6: A.,].n - A.,j.n P,].n - -P:,j:n]5
Q) R = QR(A.j:m,j:jerfl)

8 Aj:m,jer:n = (Q]>TAj:m7j+b:n

9 Update S

10: end for

11: Q = Hj ij Q = Q:,l:k

12: R= triu(A), R =Ry,

Xiao et al. [253] demonstrate that the property of equation (6.1) does not apply formally to
the result of QRRP but holds in a probabilistic sense. Given ¢, A € (0,1) and an oversampling
parameter p > [log(znkﬂ the following property

| R ie| = ||ka]||2, i+1<j<n (6.2)

holds with probability at least 1 —

6.2 Randomized range finder

Another popular class of randomized approaches to compute LRA are based on range finder
methods; see the survey of Halko et al. [154]. They consist in constructing a (usually orthonormal)
matrix Q € R™*¢ that is an approximate basis of the range of A € R™*"_ that is, a matrix @ such
that A ~ QQT A. This basis Q can be efficiently computed via random projections AQ where
is a Gaussian matrix. The simplest scenario is when the target rank k is fixed. In this case, it
suffices to set £ = k+ p, where p is a small oversampling parameter, and compute Q) = orth(AQ)
with Q € R™*¢. This yields an approximate basis Q satisfying [154, Theorem 10.5]

1/2 1/2
(A - Q@7 alr) < (14 2) (Za?) . (63)

i>k

The term (3, 0)1/ 2 shows that the average error corresponds to a rank-k approximation, up to
the constant (14-k/(p—1))'/? that can be made close to 1 by increasing the oversampling p. Thus,
the relation A ~ QQT A yields a rank-¢ approximation of rank-k quality; a rank-k approximation
XYT can then be obtained by forming B = QT A, computing a rank-k approximation B ~ XY 7T
(via any deterministic LRA method), and finally setting X = QX. This fixed-rank range finder

39

method is summarized in Algorithm 6.3. The cost of the deterministic LRA method is much
lower than if applied to the original matrix A, since B € R®*" is of smaller dimensions. In
fact, the asymptotic complexity of the algorithm is dominated by the matrix—matrix products
S = AQ and B = QT A, which are very efficient. It is worth noting that, if £ is not much larger
than k, and if it is not critical to obtain the lowest possible rank, the cost of the algorithm may
be reduced by skipping the last steps and simply using the rank-¢ approximation A ~ QB.

A more complex but often realistic scenario is to fix the target accuracy € and adaptively
compute the required size of @ such that ||A — QQTA|| < ¢||A||. The key idea is to build
incrementally and stop whenever the target accuracy is satisfied. Several such fixed-accuracy
range finder methods have been proposed, mainly depending on how the stopping criterion is
implemented. For example, Halko et al. [154, sect. 4.4] propose a clever method that estimates
the norm of A—Q; QT A at step i using the norm of (A—Q; QT A)Q; 1, which is exactly what needs
to be computed at step i+1 if the method is not stopped at step i. Martinsson and Voronin [196]
proposed a more direct method, outlined in Algorithm 6.4, that explicitly computes the error by
building the matrix A — Q;QTA = A — Q;B;. This method requires one extra matrix—matrix
product but provides a more reliable stopping criterion (see Research Problem 16.6).

Algorithm 6.3 Fixed-rank randomized range finder.

Input: A € R™*" the target rank k.
Output: X € R™*F Y € R"** such that A~ XYT

1: Draw a random Gaussian matrix Q € R?X*+p,
2: S = AQ

3:) = orth(S)

4: B = QTA

5 XYT = LRA(B, k)

6: X = QX

Algorithm 6.4 Fixed-accuracy randomized range finder (Martinsson and Voronin [196] variant).

Input: A € R™*" the target accuracy e.
Output: X € R™** Y € R"** such that |4 — XY7T|| < ¢||A].

1: Initialize @Q and B to empty matrices.

2: na = [|A]
3: repeat
4: Draw a random Gaussian matrix Q € R"*?,
5: S = AQ
6: Qp=orth(S—Q(QTS))
7 By = QgA
8 Q< [Q Q)
B
9: B + B,

10: A+ A- QbBb
11: until ||A]| < ena
12: XYT = LRA(B,¢)
13: X =QX

40

6.3 Adaptive precision LRA

A first opportunity to exploit mixed precision arithmetic for computing low-rank matrices
arises when the matrix exhibits rapidly decaying singular values. Consider the SVD A = UXV T

and the LRA ULV obtained by truncating the smallest singular values such that || A—UXVT|| <
g||A]l. In what precision should the LRA UXVT be stored in? Clearly, if we wish to maintain
an accuracy of order e, the answer can only be a precision with a unit roundoff safely smaller
than e.

In [16], we make the key observation that singular vectors associated with the smaller singular
values (among those that have been kept) do not need to be stored with as much accuracy as
those associated with the larger singular values. Assume p precision formats are available with
unit roundoffs v < e < ug < ... < u, (we only need the first precision to provide an accuracy
of at least €, and the remaining p — 1 precisions are the “low” precisions). We define a blockwise

partitioning

v]
UsvT = [U;...U,)] Vi... V)" (6.4)
L EP J
and let R
=]
~oaT ~ ~ ~ ~1T
oSV = [Ul...Up} [Vl...vp} (6.5)
I p

where fj\}-, f)i, and ‘//\; are stored in the ith precision.
The following result determines a rigorous criterion to build this partitioning while preserving
an accuracy of order €.

Theorem 6.1 (Theorem 2.1 of [16]). If the partitioning (6.4) satisfies |3;|| < || A|l/u;, then

o~

~T
[A-UZV || < (2p—1e|A].

The criterion ||X;|| < €||Al|/u; shows that the singular values and their associated singular
vectors can be stored in a precision that is inversely proportional to their magnitude. Hence, if
the singular values of A decay rapidly, the representation (6.5) allows for a significant use of low
precisions.

It is important to note that this approach is not only applicable to the SVD, but also to other
LRA representations provided that they can also be split into rank-one components that gradually
decrease in norm (Lemma 2.2 of [16]): this is notably the case of the QRCP decomposition.

The adaptive precision representation (6.5) can be used to reduce the storage cost of the
LRA, and the cost of any subsequent operation using that LRA; we will notably see this in
the case of the BLR LU factorization in Section 9.4. There remains the question of whether
we can also reduce the cost of computing the LRA itself: that is, rather than computing the
LRA in high precision and then switching it to adaptive precision, can we directly compute
its adaptive precision representation? While the answer naturally depends on the specific LRA
method that is considered, it is positive for at least three methods: QRCP (Algorithm 6.1),
its variant with randomized pivoting (Algorithm 6.2), and the fixed-accuracy randomized range
finder (Algorithm 6.4). The key idea in all three cases is to start the algorithm in the highest
precision u1, and to switch to a lower precision u; whenever the norm of the approximation
error falls below || A||/uy. In the case of Algorithm 6.4, this is straightforward since the error is

41

explicitly computed by deflating A. This observation is leveraged by Connolly et al. [100], who
propose a mixed precision version of Algorithm 6.4; see [100, Algorithm 3.2].

In the case of a QR factorization, the situation is quite similar. In [21], we prove the following
result.

Theorem 6.2 (Theorem 3.3 of [21]). Assume that a truncated QR factorization is computed
such that k < n Householder transformations are computed and applied to a matrix A € R™*"
using p different precisions with increasing unit roundoffs u; < ... < up. Let k; be the number
of transformations that are computed in precision u; and let A; be the trailing submatriz after
Z;;ll k; transformations are applied. The computed R; and Q; satisfy

p P
1A= 3" QiRillr < | Apsallr + D VeAsk, Al s (6.:6)
i=1 i=1
where ﬁffl)kl = emk;u; /(1 — emk;u;) and ¢ is a small absolute constant.

Theorem 6.2 shows that the precision switch should be guided by the norm of the trailing
submatrix: indeed, by (6.6) an error of order ¢ can be achieved by truncating so that ||Ap1|| < ¢
and by switching precisions so that u;||A;]| < € for all i = 1: p. Note that Theorem 6.2 holds
regardless of how pivoting is performed; in fact, it works even without pivoting. Obviously, the
use of pivoting leads to a faster decay of the trailing submatrix norm and, consequently, to an
earlier truncation and change of precisions.

The pivoting method does affect, however, the way the norm of the trailing submatrix ||A;||
is estimated. In the case of a standard QRCP factorization (Algorithm 6.1), this norm can be
efficiently computed from column norms 7 that are kept updated as the factorization progresses.
In the case of randomized pivoting (Algorithm 6.2), the norm of the trailing submatrix cannot be
easily computed. Nevertheless, it is possible to check for precision switch and truncation within
the QRCP factorization of the sample matrix based on the norm of the trailing submatrix of the
sample. Indeed, according to [117, Theorem 3.1], after ¢ transformations, the square norm of
the columns in the trailing submatrix of the sample can be written as a factor z; of the square
norm of the actual trailing columns, where z; follows the truncated x? distribution with b+p—1
degrees of freedom. A conservative bound for all i < b is therefore x; < p: in our experiments of
[21], we have confirmed that replacing € by ,/pe works indeed well on a wide range of problems.

We illustrate the potential of this adaptive precision QR factorization in Figure 6.1 with
an application to image compression. The figure compares the original image (top left) with
images that are compressed using a truncated QR factorization in uniform fp32 (top right) or
bfloat16 (bottom right) precision, or in adaptive fp32/bloat16 precision (bottom-left). Here, the
truncation threshold € was set to 0.04 and the truncation happened on column 191 in all three
cases. Clearly, using only bfloat16 does not lead to satisfactory compression. Both the other two
approaches, instead, achieve a satisfactory result although, in the adaptive precision case, only
12 out of 190 columns are computed and stored in fp32 and the rest in bfloat16.

6.4 Multiword arithmetic for LRA

Another natural idea to exploit mixed precision in LRA is to rely on multiword arithmetic
(Chapter 5). Indeed, multiword matrix multiplication is very efficient on mixed precision GPUs,
and many LRA methods heavily rely on matrix multiplication. Taking the fixed-rank randomized
range finder as an example, Algorithm 6.3 requires three steps, the two most expensive of which
are matrix products: they require O(mnk) flops, whereas the truncated QRCP step only requires

42

Figure 6.1: Image compression. Original image (top left); reconstructed image after compression in full fp32
(top right), in fp32/bfloat16 (bottom left) and full bfloat16 (bottom right). € was set to 0.04 and the truncation
happened at column 191 but in the mixed-precision case only 12 transformations were computed in fp32 and the
rest in bfloat16. Image size is 1057 x 1600.

O(mk?) flops. Therefore for large matrices we may expect LRA to be accelerated by multiword
arithmetic by the same speedup than matrix multiplication.

In fact, Ootomo and Yokota [212] show that in the specific case of randomized methods we can
do even better by reducing the cost of the AQ matrix product. Considering for example double-
fp16 arithmetic, the standard approach described in Section 5.2 would decompose A =~ Ay + A,
and Q =~ Qg + 1, where each word is stored in fp16, and would then compute AQ =~ AyQy +
A1Qp + Ap€); via three matrix products. However, in this case, €2 is a random Gaussian matrix,
so it is natural to ask how accurately we really need to represent it. Ootomo and Yokota [212]
provide an answer by showing that storing a random Gaussian matrix in fpl6 arithmetic only
slightly increases its variance, and that this increase preserves the range finding properties of
the algorithm. Therefore, we can compute AS) via only two matrix products Ay + A;€) where
Q is stored in fpl6. This observation yields Algorithm 6.5, which can achieve fp32 accuracy
while only requiring five matrix products with fp16/fp32 tensor cores. We note that the method
proposed in [212] only uses multiword arithmetic for the product AQ, but not for A7 X.

6.5 Iterative refinement for LRA

In [22], we propose yet another approach to compute LRA in mixed precision which draws
inspiration from iterative refinement (Chapter 10). Given a linear system Ax = b and a low
precision solution zg, iterative refinement consists in computing the residual » = b — Axg in
high precision, solving the linear system Ad = r in low precision, and updating the solution as

43

Algorithm 6.5 Fixed-rank randomized range finder with double-fp16 arithmetic.

Input: A € R™*", the target rank k.

Output: X € R™*F Y € R"** such that A~ XYT

Draw a random Gaussian matrix € R™**+7 in fp16.
Ay = fpl6(A) and A; = fpl6(A — Ap)

B = ApQ + A1Q with fp16/fp32 tensor cores

X = TQRCP(B) in p32

Xo = 1pl6(X) and X; = fpl6(X — Xo)

Y = AT Xo + AT X, + AT X, with fp16/fp32 tensor cores

1 = xg + d. Transposing this approach to the LRA problem, we obtain the method outlined in
Algorithm 6.6.

The method first computes a low precision LRA A ~ XY7. Then, it computes the error
E = A— XY7T in high precision and compresses it via another low precision LRA F ~ XpY!.
It finally updates the LRA as XY7T = XY7T + XgYL = [X Xg|[Y Yg|T. This method is
based on the key observation that if A is a numerically low-rank matrix, then the error matrix
E = A— XY7 is also numerically low rank, with a rank bounded by at most twice the rank of
A. Therefore, the refined LRA [X Xg|[Y Yz]T has a rank at most three times larger than the
rank of A at the same accuracy. To prevent the rank from growing uncontrollably, Algorithm 6.6
recompresses the LRA at each iteration via an LRA on [X Xg|[Y Yg]T. This recompression
must be performed in high precision but can exploit the low rank of its input to be much less
expensive than an LRA on a full matrix.

Algorithm 6.6 Iterative refinement for LRA.
Input: the matrix A, the number of iterations ny, a given LRA method LRA, and four precision
parameters €jow < Ulow K Ehigh < Uhigh-
Output: XY7 such that |4 — XY7T|| < epign | A4]|-
1: Compress XY 7T = LRA(X, €low) in precision ujoy-
2: for i =1 to n;; do
3 Compute E = A — XY 7 in precision Uhigh-
4: Compress XpY2 = LRA(E, €low) in precision ujoy.
5
6

Recompress XY T = LRA([X Xg][Y Y&|T,enign) in precision upigh.
: end for

Algorithm 6.6 has four parameters that control its accuracy: €iow, €high, Ulow, and Unigh.
The “&” parameters correspond to the low-rank truncation thresholds used by the LRA, whereas
the “u” parameters correspond to the unit roundoffs of the arithmetics. In order for an LRA to
reliably detect the numerical rank at a given threshold ¢, it needs to be performed in an arithmetic
with a unit roundoff u safely smaller than €. Thus, we have €iow < Ulow <K Ehigh < Unigh- The
following result characterizes the convergence behavior of Algorithm 6.6.

Theorem 6.3 (Theorem 2.1 of [22]). Let Algorithm 6.6 be applied to A with an LRA method
satisfying ||A — LRA(A,e)|| < (e + cu)||A|l for any truncation threshold € and unit roundoff w.
Then after ni, iterations, the computed factors XY 7T satisfy

14 = XYT|| < e(efon,™ + enign + Olerowenian)) [Al (6.7)

ow

where ¢ is a constant only depending on the dimensions of the matriz.

44

The bound (6.7) shows that the error is reduced at each iteration by a factor €)oy, which
thus controls the convergence speed, until the error reaches eyjgn, the attainable accuracy. This
means that we can actually estimate in advance how many iterations are needed to achieve the
desired accuracy enigh:

nit = [log(enigh)/ log(elow) | — 1, (6.8)

which explains why Algorithm 6.6 does not need a stopping criterion.

It is worth noting that, unlike iterative refinement for linear systems (Chapter 10), there is no
dependence on the condition number of A in (6.7) and thus Algorithm 6.6 is always guaranteed to
converge as long as €, < 1. This is explained by the fact that the speed of convergence depends
on the backward error ||[A — XY 7T||, rather than the forward one. Therefore, Algorithm 6.6 is
extremely general: it can be applied to any matrix of low numerical rank and it can make use of
potentially very low precisions.

From a numerical perspective, Algorithm 6.6 is therefore quite appealing. It now only re-
mains to determine under which conditions it is also attractive from a computational perspective.
Indeed, even if we neglect the recompression step whose cost should be asymptotically negligible,
the algorithm still requires ni +1 LRAs and nj; matrix multiplications. We perform a cost analy-
sis in [22] which identifies two key situations where Algorithm 6.6 can significantly outperform a
standard LRA in uniform precision. Interestingly, these two situations share strong connections
with the two previous sections, Section 6.3 and Section 6.4, respectively.

e The first situation is when the numerical rank of the matrix is small at low accuracy levels,
that is, when its singular values decay rapidly. This leads indeed to LRAs of lower rank
and thus lower cost at the early iterations of Algorithm 6.6. Here, this iterative refinement
approach can be seen as an adaptive precision one (Section 6.3): the large singular values
will be first computed in low precision in the early iterations and then refined to high
accuracy in the later ones, whereas the small singular values will only appear in the later
iterations and be computed in both low precision and low accuracy.

e The second situation is when using a specialized mixed precision hardware which provides
both a low precision arithmetic that is much faster than the high precision one, and also
the ability to accumulate matrix products in high precision. This is notably the case of
GPU tensor cores as discussed in Section 4.1. In this case, Algorithm 6.6 can perform
not only the LRAs, but also the matrix products to compute F, using GPU tensor cores.
Thus, it can achieve significant speedups even if it requires more flops than a standard
LRA. An analogy can therefore be made with multiword arithmetic (Section 6.4), which
also yields speedups despite performing more flops by exploiting fast hardware. In fact,
the connection with multiword arithmetic goes beyond this simple observation. Given a
rank-k LRA XYT, one could define its two-word decomposition as (Xo + X1)(Yo + Y1)7,
where the X; and Y; are stored in low precision. By developing the product and dropping
the second-order term X;Y;’, this expression can be rewritten as

XoYT + XY + X, VT = [Xo Xo X1][Yo V1 Yo7,

which is a rank-3k LRA. In fact, this is exactly the LRA that one step of iterative refinement
would produce.

In [33], we confirm the potential of this iterative refinement approach by implementing it
on GPU tensor cores, using fp32 as the working precision and fpl6 as the low precision. We
consider the fixed-rank randomized range finder (Algorithm 6.3) as LRA. This choice of LRA
is motivated by the fact that its bottleneck lies in matrix—matrix products, which are very effi-
cient on GPUs and with fp16 tensor cores especially. In fact, these products are accelerated by

45

150

[y
o
o

-2
100 | 5 10
wn -
A sgemm 3
8 —&— tcgemm é’
E —6—tcgemm + refinement = 10 -4
Q
50 ~
1076 —e—tcgemm
—6—tcgemm + refinement
0 1 1 1 1 L L L L
0 256 512 768 1024 0 256 512 768 1024
k k

Figure 6.2: Performance and accuracy of fixed-k randomized range finder (Algorithm 6.3), depending on the
precision of the matrix products: standard fp32 (sgemm) or with fp16 tensor cores (tcgemm). The variant with
refinement uses Algorithm 6.6.

such a large factor that the orthonormalization of the sample S, when performed via a standard
Householder QR factorization, becomes the new bottleneck, despite requiring an asymptotically
negligible number of flops. This performance limitation can be overcome by switching to a
Cholesky QR factorization, which is more suited for GPU architectures. While the loss of or-
thogonality with Cholesky QR is proportional to x(S)?, various methods have been proposed
to (partially) mitigate its instability: reorthonormalization [133], shifting [131], pivoting [132],
mixed precision [256], replacing the Cholesky factorization by an SVD [238, 257|, precondition-
ing [240], randomization [134, 197], etc. In our context, the simplest and most efficient solution is
actually to increase the precision of Cholesky QR from fp32 to fp64, which is sufficient to prevent
instabilities, and almost does not degrade performance, because the NVIDIA A100 GPUs used
for this study provide fp64 tensor cores that achieve the same speed as standard fp32 arithmetic.

In Figure 6.2, we compare the performance and accuracy of our implementation of the ran-
domized range finder using matrix products on fpl6/fp32 tensor cores (tcgemm) with the same
algorithm using standard fp32 products (sgemm). achieves an average accuracy of order 10~%.
The figure shows that using tcgemm is up to 8x faster, but with an average accuracy of order
1072 instead of 10~ with sgemm. In order to recover the accuracy, we implement iterative re-
finement (Algorithm 6.6); we show that a single step of refinement is sufficient to significantly
improve the accuracy to an average of order 10~°, while remaining up to 2.2x faster than the
standard sgemm version. This work illustrates the convergence of approximate computing tech-
niques by combining low-rank approximations, randomization, mixed precision arithmetic, and
GPU acceleration.

6.6 Gram LRA

Given A € R™*" and its SVD A = UXVT, the eigenvalue decomposition (EVD) of the Gram
matrix G = AT A is VE2VT. This basic observation provides a simple method to compute the
truncated SVD of A from the truncated EVD of G, outlined in Algorithm 6.7.

This Gram LRA approach is computationally attractive when m > n because its bottleneck
lies in the matrix-matrix product AT A, which requires O(mn?) flops, whereas the EVD of G
only requires O(n?) flops.

46

Algorithm 6.7 Gram low-rank approximation.

Input: A € R™*", the target accuracy e.
Output: X € R™** Y € R"** such that |4 — XY T|| < ¢||A].
1: Compute the Gram matrix G = AT A € R"*",
2: Compute the EVD G = WAWT.
3: Truncate W and A into W € R™** and A € R**% where k is the smallest integer such that
IA — Al < €2]|A]1%.)
4: Compute X = AW and set Y = W.

Unfortunately, in finite precision arithmetic, Gram LRA suffers from instability due to the
computation of the Gram matrix (whose condition number is #(A)?). Nevertheless, in [9] we
perform an error analysis of this approach based on eigenvector perturbation theory which yields
remarkably sharp error bounds. The following result shows that Gram LRA is actually not as
unstable as one may think.

Theorem 6.4 (Theorem 3.1 of [9]). Let A € R™*" and let A be its rank-k truncated SVD. Let
the approzimate truncated SVD AWW?T be computed with Algorithm 6.7 with precision parame-

ters e and u controlling the truncation error and the rounding errors, such that |G —WAWT|| <
Cmnul|Al? and ||A — A| < e||A]|. Then

JA — AWWT| < i (e + min (k(A)u, \/a)) 1Al (6.9)

where ¢y pn.1; 15 a constant depending_only on the dimensions m, n, and k, and H(zzl) =01 /0y, is
the generalized condition number of A.

The term min(x(A)u, /u) in (6.9) shows that not only does the error grow only linearly (and
not quadratically) with the condition number x(A), but moreover it can never exceed /u, even
for ill-conditioned matrices. Therefore, as long as we use a precision u that is double the target
accuracy ¢ (u = &2), the effect of finite precision arithmetic should go unnoticed. For example,
with double precision arithmetic (u ~ 107!), at least eight significant digits of accuracy are
guaranteed, so that Algorithm 6.7 can handle truncation thresholds as small as e = 10~8. Since
truncation thresholds in applications involving LRA are often larger, this algorithm can certainly
be successful.

In [9], we also propose two new ideas to improve Gram LRA in a finite precision setting. The
first is to use mixed precision iterative refinement to refine the small eigenvalues of the Gram
matrix, which can lead to a significant accuracy improvement in some cases. The second idea is
to accelerate the final multiplication AW by performing it in lower precision, which can be done
without affecting the accuracy because this operation is much less sensitive to rounding errors
than the operations involving the Gram matrix.

6.7 Optimal quantization of low-rank matrices

Thinking about LRA as an optimization problem provides significant insight. As mentioned
at the beginning of this chapter, the optimal LRA is given by the truncated SVD, that is, the
solution of the optimization problem

min |A— XYT| (6.10)

XE]R"”X’C,YE]R"X)C

47

is the rank-k truncated SVD.

However, this assumes exact arithmetic. In finite precision arithmetic, we wish to find an LRA
while also storing its coefficients in a given floating-point arithmetic with ¢ bits of significand.
The optimization problem thus becomes

min |A—XYT|, (6.11)
geF?Xk,?EF?Xk

where FF, is the set of floating-point numbers with ¢ bits of significand. X and Y are commonly
referred to as “quantized”, because their coeflicients can only take a finite, discrete number of
possible values.

We can decouple the truncation and quantization errors by considering the problem

~ min IXYT — XY7|, (6.12)
XeFmxFk vy epnxF

where XY 7T is an exact (unquantized) rank-k matrix (which can, but need not, be the optimal
LRA minimizing |4 — XY 7| in exact arithmetic). It would seem natural to think that the
matrices X = fi(X) and ¥ = fl(Y) obtained by rounding the matrices X and Y would be optimal,
since they certainly minimize the errors || X — X || and |Y — }Af|| Crucially, and surprisingly, they
are actually far from optimal.

In [42], we make a first step towards optimally quantizing low-rank matrices by considering
the rank-one case (k = 1). Hence, we focus on the problem

minfay” — 257 (6.13)
ZeF™,jeFn

The coefficients of the matrix 27" are quite special: they are the product of two t-bit floating-
point numbers. We therefore take an interest in the set of such numbers, denoted F;F;. We show
that this set is much denser than F;: the maximum relative distance between any real number
and a number from F; is the unit roundoff u = 2~¢, but the same distance to a number from F,F;
is approximately 271:6¢ (see Corollary 3.4 and Figure 3.2 of [42]). An analogy with multiword
arithmetic can be made: real numbers can be approximated by the sum of two ¢-bit numbers
with a relative accuracy of 2t bits; in [42] we show that the product of two ¢-bit numbers provides
instead a relative accuracy of 1.6t bits.

We can exploit this observation as follows: given a real coefficient (zyT);; = z;y; of the
matrix zy” that we seek to quantize, we can approximate it optimally by selecting the quantized
numbers Z;,y; € F; such that Z;7; is the nearest number in F,F; from z;y;. However, two
obstacles must be overcome: first, we need to account for the constrained nature of the problem.
The optimal Z; that minimizes |%;J; — x;y;| depends on which j is considered, but we can only
choose one value. Second, we need to develop an algorithm to find the optimal Z;y; with tractable
complexity.

The first step towards tackling these challenges is given by the following result, which char-
acterizes the optimal quantized = and .

Theorem 6.5 (Theorem 4.5 of [42]). Consider nonzero x € R™, y € R™, with t > 1. Prob-
lem (6.13) admits an optimum Z,y such that

Tz ="f(A\x) with X € (1,2) (6.14)
LZ ifTA0

y="M(uy), withp={ I vos . (6.15)
0, otherwise.

Theorem 6.5 shows that the optimal Z,y are given by the quantization of suitably scaled
factors Az and py, where p is determined by Z and thus by A. This characterization has therefore
reduced the optimization problem (6.13) in m+n variables to an optimization problem in a single
variable A. Moreover, the search space for A is reduced to (1,2), because the error is invariant
under sign flip and multiplication by powers of two.

It now remains to develop a method to find the optimal A € (1,2). Algorithm 6.8 achieves
this, by exploiting the key observation that there is only a finite, discrete number of values in
the interval (1,2) that need to be tested: those which correspond to different values of fl(Ax).
We provide in [42] (Lemma 5.1) an explicit formula for these “breakpoint” values, and we prove
that there are at most m2!. Therefore, Algorithm 6.8 is guaranteed to compute the optimal
quantization in O(mn2?) complexity, simply by enumerating all the possible \ values and choosing
the one that minimizes the quantization error. While this complexity is exponential in the number
of bits ¢, it is polynomial in the matrix dimensions; it is therefore tractable for low precisions
and large matrices.

Algorithm 6.8 Optimal rank-one quantization.
Input: ¢ > 1 an integer, z € R™,y € R™.
Output: z* € F}", y* € F} solutions to (6.13).
Initialize 7* < 0, * + 0
if x =0o0r y =0 then

exit
end if
B < breakpoints(z) (see Lemma 5.1 in [42])
Sort B in increasing order to obtain A\;, 1 < j < J = #B, Mg <1, Aj4q 2.
for j=1toJ+1do

A= (N1 4+ 2A5)/2

Z + round(Az)

p 23/ ||7]

y « round(uy)

if [|oy” — 37| < 2y — 7 (7%)7 || then

T T,y

end if

end for

e e e
AN Il v

This optimal quantization method for rank-one matrices could be used as a building block
for rank-k matrices, by quantizing their rank-one components one by one (see Research Prob-
lem 16.8). Moreover, it is directly useful in some applications where rank-one matrices naturally
arise: this is notably the case of butterfly factorizations, see Section 13.3.

49

Chapter 7

Direct linear solvers

Given a linear system Az = b, methods to compute the solution x have traditionally been
divided into two broad classes:

e direct methods compute a factorization of matrix A to directly obtain the solution;

e iterative methods compute an approximate solution belonging to a lower dimensional sub-
space that is iteratively increased.

Broadly speaking, direct solvers are robust and easy to use, but have a high computational
cost associated with the matrix factorization, whereas iterative solvers are more lightweight but
their convergence is dependent on the construction of a “good” subspace via preconditioning.
This chapter deals with direct solvers, and the next (Chapter 8) covers iterative ones. These two
chapters set the stage for the approximate linear solvers that will be presented in subsequent
chapters. In particular, Chapters 9 and 10 will describe approximate factorization methods (such
as using block low-rank compression or low precision arithmetic) that can be viewed as either
direct or iterative methods depending on the context. Indeed, these techniques can be used either
to accelerate direct methods with a controlled loss of accuracy, or to build robust preconditioners
that will ensure the fast convergence of iterative methods.

7.1 Dense systems

Given a square nonsingular matrix A € R™*™ and a right-hand side b € R", the standard
Gaussian elimination method to solve the linear system Ax = b consists of two phases:

1. compute the matrix factorization PA = LU, where L is a lower triangular matrix with
diagonal elements equal to 1, U is an upper triangular matrix, and P is a permutation
matrix;

2. solve the triangular systems Ly = Pb and Ux = y by substitution.

This approach directly yields the solution vector z and is thus referred to as a direct method.
The LU factorization can be replaced by an LDLT or LLT one if the matrix is symmetric
indefinite or symmetric positive definite, respectively. Throughout the rest of this manuscript we
will focus on the unsymmetric case; unless otherwise mentioned, the presented ideas also apply
to the symmetric case.
We first describe how to compute LU factorization for general dense matrices in this section.
We will then discuss the multifrontal method for sparse matrices in Section 7.2.

51

Throughout this section, for the sake of the simplicity of the presentation, we discuss how
to compute a decomposition A = LU with no permutation matrix P. We will discuss how to
integrate pivoting in the factorization, and why it is important to do so, in Section 7.3.

The n? equations a;; = Zl;nl(”) ik yield the Doolittle formula for computing the entries
of the L and U factors:
for k=1:ndo

for j =k: ndo
kg = agg = Y, ity
end for
fori=k+1:ndo
b, = (aik: - 25;11 fijujk) [k
end for
end for
In order to achieve high performance, this formula should be applied in a blockwise fashion
by partitioning the matrix A into p x p blocks A;;, as outlined in Algorithm 7.1. The algorithm
consists of two main operations that are performed at each step k = 1: p. UPDATE updates the
kth block-column and kth block-row of the matrix with respect to the already factored part.
FACTOR computes the LU factors associated with this block-row and block-column. This algo-
rithm requires 2n3/3 flops, and the O(n?) part of the flops are in the matrix-matrix products in
the UPDATE operation. Note that the LU factorization can be performed in-place by overwriting
Aij by Li; if i > j, Uy; if i < j, or L — I 4+ Uy if i = j; thus no additional storage to the n?
entries of the matrix is needed.

Algorithm 7.1 Partitioned dense LU factorization (left-looking).

Input: a p X p block matrix A.
Output: its LU factors L and U.

1: for k=1 to p do

2 UPDATE:

3 Akk <« Akk — Zj;ll ijUjk.

4 fori=k+1 topdo

5 Aik — Azk — 25;11 LijUjk and Aki — Aki — Zf;ll ijUji.
6: end for

7 FACTOR:

8 Compute the LU factorization LipiUgr = Agg.

9: fori=k+1topdo

10: Solve LUk = Aik for L, and LUy = Aki for Ug;.
11: end for

12: end for

There is much flexibility in the order in which the block operations can be applied, because
many of them are independent. Algorithm 7.1 is referred to as “left-looking” because at each
step k, the update of a given block A;;, requires accessing all the factored blocks to the left L,
j = 1: k—1. Thus, the matrix product L;;Uj; is performed at the latest possible step k; instead,
it could be performed earlier, as early as step j, just after L;; and U;j; have been obtained. This
alternative ordering of operations leads to Algorithm 7.2, which is referred to as “right-looking”,
because at each step k, we access all the blocks to the right, in the trailing submatrix. While
the distinction between left- and right-looking LU factorizations is usually not critical, there
are some contexts, especially relating to the use of approximations, in which they achieve very

52

different performance (see Section 9.3 or Section 10.1.2). Note however that they are numerically
equivalent: they produce the same LU factors, not only in exact arithmetic, but even in floating-
point arithmetic. This is because in both cases a given block A;; is updated by Z’;;ll Li;Ujy,
and the sum is evaluated in the same order. However, since each update L;;U; is independent,
many other orders are possible, which would not be equivalent due to the non-associativity of
floating-point arithmetic. This is something to consider, for example, when using a task-based
parallelization.

Algorithm 7.2 Partitioned dense LU factorization (right-looking).

Input: a p x p block matrix A.
Output: its LU factors L and U.

1: for k=1 to p do

2: FACTOR:

3: Compute the LU factorization LixUgr = Agg-
4: fori=k+1topdo

5: Solve L;pUpr = A for Ly, and LUy = Ag; for Ug;.
6: end for

7: UPDATE:

8: fori=k+1 to pdo

9: for j=k+1topdo

10: Aij — Aij — LikUkj

11: end for

12: end for

13: end for

7.2 Sparse systems: the multifrontal method

The LU factorization of a sparse matrix can be computed by applying Doolittle’s formula
while skipping any computation with a zero element. The difficulty is that the LU factors,
while sparse themselves, become denser than the original matrix: for example, the element
Ukj = Qj — Zi.:ll lr;u;5 can be nonzero even if ar; = 0. This is known as the fill-in property,
and uy; is referred to as a filled entry. Moreover, this equation shows that a given entry w; will
be filled if and only if there exists ¢ < k such that {i;u;; # 0, that is, such that ¢;; and u;; are
both nonzero entries.

As a result, the amount of fill-in strongly depends on the matrix ordering. For this reason,
in addition to the numerical factorization and substitution phases, sparse direct solvers also
require a preprocessing, commonly called the analysis phase, which aims at both reordering the
matrix to minimize fill-in and predicting the sparsity structure of its LU factors via a symbolic
factorization. The usual way to do so is to work on the graph of the adjacency matrix; indeed,
the entry (k,j) will be filled if there exists a node i@ < k connecting k and j. Note that (i, k)
and (4,7) may be filled entries themselves, so that the graph needs to be updated by adding
edges to track the fill-in; this is known as the elimination graph. We refer to [180] for a detailed
description of the analysis phase, which we omit here because it is a non-numerical phase that
is therefore not particularly amenable to approximate computing.

To describe how to exploit sparsity in LU factorization, we take an example illustrated in
Figures 7.1 to 7.3. Figure 7.1 shows a 5 x 5 two-dimensional mesh with a five-point stencil,
which corresponds to a sparse matrix of order 25. The unknowns have been numbered according

53

D;, D3

D, Dy

Figure 7.1: An example of a 2D mesh with five-point stencil. The mesh has been partitioned using nested
dissection and the nodes of the mesh are labelled by the corresponding ordering.

to a nested dissection ordering [135]. This consists in partitioning the mesh in two equal parts
using a vertex separator (Sp), and recursively partitioning the two parts in the same way. We
obtain a partitioning of the mesh into subdomains (we use the term subdomain to refer to both
separators and the final domains Dy, ..., Dy4). Then, the unknowns that belong to the same
subdomain are numbered consecutively. This leads to the sparsity structure shown by the “x”
entries in Figure 7.2.

This nested dissection ordering strongly constraints the possible fill-in, as illustrated in Fig-
ure 7.2: the filled entries (marked with “f”) are limited to within each subdomain and to the inter-
action between neighbor subdomains. Note that since the subdomain graphs are not complete,
the entries within a given subdomain are not all filled. Some unknowns can be amalgamated,
which leads to zero entries being treated as nonzero; this can increase the granularity and thus
the efficiency of computations, at the price of additional fill-in. For the simplicity of illustration,
in Figure 7.2 we have assumed that all the unknowns belonging to the same subdomain have all
been amalgamated (entries marked with “0”).

The nested dissection ordering moreover defines in a natural way the dependencies of the
factorization: unknowns in independent subdomains can be eliminated concurrently. These
dependencies can be organized under the form of a tree, as illustrated in Figure 7.3. Each node
is associated with a subdomain, and hence a dense matrix of the form

A Ane
Asy Ay |’

where Aq1 corresponds to the subdomain unknowns and Aso corresponds to the so-called con-
tribution unknowns: those that are connected to the subdomain unknowns in the elimination
graph and that will therefore receive a contribution. In this manuscript, we will focus on the
multifrontal method [120, 118], which traverses this tree in a bottom-up order and performs two
operations at each node. First, we assemble the dense matrix (called frontal matrix) by summing

54

flf XX ff[f
flf XXX f]f
0[X FIXIX[X[f
fif [XX
fif FLE X[

Figure 7.2: LU factors of the matrix associated with the mesh in Figure 7.1. White cells correspond to zero entries
which are not stored, whereas colored entries are stored: “x” denotes a nonzero entry from the original matrix,
“f” denotes a filled entry in the LU factors, and “0” denotes a zero entry which may be treated as nonzero if the
subdomains are amalgamated.

the original entries of the matrix with the contribution entries from the child nodes. Second, we
compute a partial LU factorization of the subdomain unknowns: Ay; = L11U71, Lo1 = Aoy Ufll7
Uip = LfllAlg (fully colored cells in Figure 7.3) yields the part of the LU factors associated
with this node, and the Schur complement Ay < Ay — Loy Ujo (hatch lines cells) yields the
contribution that will be stored until it is used to assemble the parent node.

The complexity of the multifrontal method can therefore be computed as

Z #nodes() x Cqense (nodesize(()),

level ¢

where Cgense(m) is the complexity of processing a dense matrix of size m x m. Consider a regular
problem discretized on a d-dimensional domain of size n = N?, where d is usually 2 or 3. In order
to simplify the complexity formula, we can merge the levels by groups of size d in order to obtain
“hypercross” separators; the root separator is of size O(N9~1) and at each level it partitions the
domain into 2% subdomains, which will be further partitioned by separators 2¢~! times smaller.
This therefore yields the formula:

logy, N

Y 2t x cdense((%)d’l). (7.1)

£=0

By setting d = 2 or d = 3, we obtain the classical complexity bounds [135] reported in the first
row of Table 9.1 (found in Chapter 9). In particular, the complexities for 3D problems, O(n*/3)
for storage and O(n?) for flops, are highly superlinear and illustrate the high computational cost
of direct methods.

95

222
ZHLY

Figure 7.3: Multifrontal tree associated with the LU factors in Figure 7.2. The LU factors are computed following
a bottom-up traversal of the tree, where at each node we compute a partial dense LU factorization (fully colored
cells), as well as its Schur complement called the contribution block (hatch lines cells), which is summed to the
parent node.

7.3 Stability and pivoting

We have the following standard result on the stability of LU factorization, which is a direct
consequence of the fact that Doolittle’s formula for computing the entries of the LU factors
essentially takes the form of an inner product.

Theorem 7.1 (Theorem 9.3 in [162]). If the LU factorization of A € R™*"™ runs to completion

~

then the computed LU factors Land U satisfy
LU = A+ AA, |AA| < ~,|L||U]. (7.2)
We also have the following result on the stability of substitution.

Theorem 7.2 (Theorem 8.5 in [162]). Let the triangular system Tax = b, where T € R"*™ is
nonsingular, be solved by substitution, with any ordering. Then the computed T satisfies

(T+AT)Z=b, |AT|<7,|T]. (7.3)

Combining Theorem 7.1 and Theorem 7.2 yields the following result for the solution of linear
systems.

Theorem 7.3 (Theorem 9.4 in [162]). Let A € R"*" and suppose that its LU factorization

produces computed LU factors L and U. Let the system LUz = b be solved by substitution. Then
the computed solution T satisfies

(A+AA)Z=b, |AA|< ys.|L||0). (7.4)

All the above results are componentwise backward error bounds, which directly imply corre-
sponding normwise bounds proportional to v, ||| L||U|||. While these bounds are thus proportional
to the unit roundoff, they are not sufficient to conclude on the stability of direct methods. This is

56

because we would like the error to be bounded in terms of || A, rather than in terms of |||L]|T]]|.
The ratio between these two quantities is traditionally expressed in terms of the growth factor py,
which is defined as the ratio between the largest element appearing during the LU factorization
of A and the largest element of A. Unfortunately, p,, can be arbitrarily large. This is because of
the division by the diagonal element wug, in Doolittle’s formula, which can be arbitrarily small.
In fact, if ugr = 0, the algorithm breaks down.

This motivates the use of pivoting strategies, which at each step k select a diagonal pivot
ugk that is sufficiently large. Several strategies can be used, with different tradeoffs between
stability and cost. The most widely used and popular strategy is partial pivoting, which at each
step k selects the largest element aji, in column % and swaps rows j and k. LU factorization with
partial pivoting therefore computes the decomposition PA = LU, where P is a row permutation
matrix. o

For partial pivoting, we have the bound |||L||U|||oc < n?p,||Al|oo, which yields the following
result.

Theorem 7.4 (Theorem 9.5 in [162]). Let A € R™ "™ and suppose that Gaussian elimination
with partial pivoting produces a computed solution T to Az = b. Then

(A+ A4z =0, [|AAlo < n*y3npnlAllo (7.5)

The stability of LU factorization with partial pivoting is therefore conditioned on a small
growth factor p,. Unfortunately, the best general bound for p, is 2"~!, which can be attained
for some very special matrices. However, in practice, this bound is very pessimistic and p,, is
almost always a small constant. Therefore, LU factorization with partial pivoting is generally
considered to be stable in a practical sense. We refer to [162, Chapter 9] for a more in-depth
discussion of the growth factor and pivoting strategies for dense systems.

We conclude by briefly discussing pivoting strategies for sparse systems. The difficulty with
pivoting for sparse matrices is that, as explained in the previous section, the amount of fill-in
depends on the matrix ordering; therefore, by pivoting, that is, changing this ordering, we create
additional fill-in, and moreover we complexify the algorithm by making the sparsity structure
of the LU factors unpredictable. Nevertheless, pivoting remains essential for the stability of
sparse direct solvers, which has motivated the development of pivoting strategies that seek to
reduce the number of permutations while maintaining some stability. This is notably the case
of threshold partial pivoting [118, Chap. 7], which avoids swapping out the diagonal element
agy if its magnitude is within a given factor 7 of the largest element in the column. Another
more aggressive strategy is static pivoting [186], which replaces diagonal elements ayr which are
smaller than 7 by 7, hence introducing a perturbation to the system. Several sparse direct solvers
incorporate static pivoting strategies as an option, such as MUMPS [60], [13], which implements
the approach proposed by Duff and Pralet [119], or as the default, such as SuperLU DIST [185]
and PARDISO [233].

o7

Chapter 8

Iterative linear solvers

Tterative methods for solving Az = b build a sequence of iterates x1, o, ..., hopefully con-
verging towards a good approximation of the solution x. Many different iterative methods can be
considered, depending on the type of matrix (general, symmetric, positive definite, etc.) and on
the desired tradeoff between robustness and cost. In this chapter, and in most of this manuscript,
we will focus on the generalized minimum residual (GMRES) [231] method. We refer to [232]
for an extensive discussion of both GMRES and other iterative methods.

The contributions described in this chapter are based on the following papers: [11], [12] for
Section 8.2; [40] for Section 8.3.1; [47] for Section 8.4.

8.1 GMRES

The basic idea at the foundation of most iterative methods is to seek an approximate solution
belonging to a subspace IC,, of lower dimension m < n. In particular, Krylov methods build the
Krylov subspace

K., = span {ro,Aro,A%O?...,Am*lro}, (8.1)

where 1o = b — Axg and xq is an initial guess.

An orthonormal basis V,,, of this subspace can be built progressively by repeated matrix—
vector multiplication with A. This is known as Arnoldi’s iteration; the variant outlined below
uses modified Gram—Schmidt (MGS) orthonormalization.

B = lIroll2
vy =10/
for j=1: mdo
w; = AUj
fori=1:j do
hij = w;‘rvi
U)j = wj — hij’l)l‘
end for
hjt1,; = llwjll2- If hja,; = 0 stop.
Vi1 = wj/hjt1
end for
Assuming this process does not stop early, it yields an n x (m + 1) matrix V,,,;1 with or-
thonormal columns and an (m + 1) x m Hessenberg matrix H,,, satisfying the relation

AV = Vi1 Hppp. (8.2)

59

Consider now an approximate solution x,, belonging to the affine subspace xg + IC,,, that is,
that can be written under the form z,, = xo + V,nym with y,, € R™. Relation (8.2) then yields

b— AJ?"L =b— A(Z‘o + mem)

=19 — AViYm
- ﬁvl - Vm+1Hmym
- m+1(ﬂel - Hm,ym)7 (83)
where e; = (1,0,...,0) € R™"1. Since the columns of V,, ;1 are orthonormal, (8.3) yields
b= Azmllz = |81 — Emtimlo- (3.4)

This shows that the approximant x,, that minimizes the norm of the residual b — Az,, is given by
Ty, = 0 + VinYm, where y,, is the solution of the (m+1) x m least-squares problem min ||Se; —

H,ym |2, which is inexpensive to solve when m is small. This key observation leads to the
GMRES method, outlined in Algorithm 8.1.

Algorithm 8.1 GMRES.

Input: A € R"*", b < R", initial guess xo, number of iterations m, right preconditioner M 1.
Output: an approximate solution z,, € R™ to Az = b.

ro = b— Axo
B = llroll2
vy =10/B
for j=1: mdo
wj; = AMill}j
fori=1:j do
hij = w]Tvi
w; = wW; — hij’l}i
end for
hiv1g = lwjll2. If hjt1 5 = 0 stop.
Vi1 = wj/hjy1,
end for
Compute ¥, the minimizer of ||Be; — H,yl|2.
Tm = To + M_lvmym

In practice, the least squares problem is solved by transforming the Hessenberg matrix to
upper triangular form with plane rotations. This can be done progressively at each iteration,
and thanks to (8.4), this provides as a byproduct a criterion to stop GMRES early if the residual
is sufficiently small. See [232, section 6.5.3] for details.

Since the Krylov subspaces K,,, at each iteration m are nested, the residual is non-increasing
in exact arithmetic. Moreover, at m = n, the subspace spans the entire R™ which contains
the solution, so GMRES eventually converges. The hope is that in practice, a small number of
iterations m < n will suffice to achieve a satisfactory approximation. Unfortunately, in general,
there is no guarantee on the convergence rate of GMRES. A result from Greenbaum et al. [145]
states that for any nonincreasing convergence curve and any eigenvalue distribution, one can
find a matrix with these eigenvalues for which GMRES follows this curve. The convergence of
GMRES does depend on the matrix, however, which motivates the idea of preconditioning.

_ Preconditioning consists in replacing the matrix A by a preconditioned matrix A, such as
A = M~'A (left preconditioning) or A = AM~! (right preconditioning, as in Algorithm 8.1).

60

The matrix M is the preconditioner: ideally, its inverse M ~' should be cheap to compute and
to apply, yet a good approximation of A~!'. The term “preconditioning” refers to the fact that,
if M—! ~ A~ the preconditioned matrix will have a much smaller condition number than A.
When A is symmetric positive definite, the condition number x(A) is indeed a key quantity that
controls the convergence rate of GMRES (and other iterative methods). However, for general

matrices, it is important to note that the convergence of GMRES is not determined by x(A).
Still, a good approximation M~' ~ A~! and thus a small ﬁ(ﬁ), will often lead to a faster
convergence.

A variant of right-preconditioned GMRES of particular interest in the context of approximate
computing is flexible GMRES (FGMRES) [230]. FGMRES makes two slight modifications to
Algorithm 8.1: when computing w; = AMflvj, we store the intermediate result z; = M~ 1vj,
and we replace z,, = o + M 'V, ym with 2, = 29 + Zmym by reusing the stored basis Z,, =
[21,- .., zm]. FGMRES thus requires storing an extra basis Z,,, but allows for the preconditioner
M~" to be variable, that is, to change from one iteration to the other. This is notably useful
when the action of M ~! is obtained by an iterative solver itself.

The construction of the basis V,,, requires O(nm) storage and O(nm?) flops, so that the cost
of GMRES can become prohibitive if a large number of iterations m is needed. To reduce this
cost, the method can be restarted after a fixed number m of iterations have been performed, as
described in Algorithm 8.2. This may slow down the convergence of the method but keeps its
cost per iteration bounded.

Algorithm 8.2 Restarted GMRES.

Input: A € R™*", b € R", initial guess xg, restart size m, right preconditioner M ~!.
Output: An approximate solution x € R™ to Ax = b.

Tr = X9
while not converged do
r=>b— Ax
B=lrl2
vy =1/8
for j =1: mdo
wy = AMﬁl’Uj
fori=1:jdo
hij = U)JTUZ‘
wj = wj — hijv;
end for
hjy1,; = |[w;ll2. If hjy1; = 0 stop.
V41 = wj/hjt1,
end for
Compute ¥, the minimizer of ||Be; — Hpy||2-
r=x+ M_Imem
end while

8.2 Stability of GMRES
As mentioned previously, in exact arithmetic, GMRES will eventually converge to the solu-

tion x. In finite precision arithmetic, this is no longer true, so the question is: what accuracy
can be attained by GMRES, and under which conditions?

61

8.2.1 Unpreconditioned GMRES

The main difficulty to study the stability of GMRES is that in finite precision arithmetic the
Krylov basis V,;, no longer has exactly orthonormal columns. GMRES was first proven backward
stable in 1995 by Drkosova et al. [116] assuming the use of Householder orthonormalization, which
produces a basis V,,, with a loss of orthonormality of order the unit roundoff, regardless of the
ill-conditioning of the matrix A. However, in practice, MGS orthonormalization is preferred and
more widely used. In this case, the basis V,,, can be affected by a significant loss of orthonormality.
Despite this, in 2006 Paige et al. [219] proved that GMRES with MGS orthonormalization is
backward stable, with the following result.

Theorem 8.1 (section 8 of [219]). Let Ax = b be solved with GMRES with MGS orthonor-
malization (Algorithm 8.1) and no preconditioner (M = I) in a precision with unit roundoff u.
Provided that A is not numerically singular, that is, k(A)u < 1, then there erists k < n such
that the iterate T) computed at iteration k satisfies the backward and forward error bounds

[[b— Az ||
———— " < ¢(n,k)u 8.5
AN+ o =) =
and N
|x”— 2| < ¢(n,k)r(A)u, (8.6)
x

where ¢(n, k) is a low degree polynomial in n and k.

The analysis of Paige et al. is based on the key observation that V,,, remains well-conditioned
until it has fully lost its orthonormality, at which point the solution z must lie in the range of
the Krylov subspace, that is, GMRES must have converged. The specific iteration k at which
this happens is unknown, and in view of the previous discussion on the convergence of GMRES
in exact arithmetic, it could be as large as £k = n. Therefore, Theorem 8.1, and other similar
stability results, cannot say anything about the convergence rate of GMRES in finite precision;
it only bounds the attainable backward and forward errors.

8.2.2 Preconditioned GMRES

Note that Theorem 8.1 only applies to unpreconditioned GMRES. Indeed, the analysis of
Paige et al. assumes matrix—vector products in standard floating-point arithmetic, but if a
preconditioner M ~! is used, then the products with the preconditioned matrix A introduce
additional rounding errors and the possibility of cancellation. Nevertheless, the analysis can be
generalized to account for these additional errors. We do so in [11] and obtain the following
result.

Theorem 8.2 (Theorem 3.1 of [11]). Let Az = b be solved with GMRES with MGS orthonor-
malization (Algorithm 8.1), carrying out its operations in a precision with unit roundoff u,,
except for the products with A, which satisfy instead

fi(Av) = Av+ £, |If]| < el Al|loll, (8.7)

Provided that H(A)(Ep + uy) < 1, then there exists k < n such that the iterate T) computed at

iteration k satisfies the backward and forward error bounds
b — Az|
I — C(n, k)(Ep + ’LLg) (88)
IAI[[|Z]l + 11|

62

and N
llz = 2]l c(n, k)i (A) (e, + uy), (8.9)

where ¢(n, k) is a low degree polynomial in n and k.

Theorem 8.2 uses a general model of error (8.7) that allows for arbitrary products with /1
whose stability is quantified by a parameter ¢,, whereas the rest of the GMRES operations are
carried out in standard floating-point arithmetic with unit roundoff u,. This model can cover
a wide range of different preconditioners, and applies to both left and right preconditioning. In
particular, if the preconditioner comes from an approximate LU factorization (M~ = U~1L™1),
and is applied by substitution in precision u,, standard error analysis shows that the model (8.7)
holds with €, ~ n?k(A)u,. Thus, (8.8) yields a backward error bound of order r(A)u, + ug,
which suggests that preconditioned GMRES is not necessarily stable due to the appearance of a
k(A) term in the bound. This motivates the idea of applying the preconditioner in a precision
higher than the rest of the operations (u, < ug4), as suggested by Carson and Higham [87] in
the context of GMRES-based iterative refinement (see section 10.2).

_ Note that, when left preconditioning is in play, we must distinguish the preconditioned system
Az = b from the original system Az = b. In particular, the backward error bound (8.8) applies
to the preconditioned system. A bound for the original system can be obtained as follows.
Let ML_1 be the left preconditioner, so that A = ML_lA and b = ML_lb7 and assume that

| A%, — b]| < (| All||Zx| + |[b]]) for some € > 0. Then the inequality
[AZ), — bl = |ML(AZ, — b)|| < [Mlle(JA|IZx] + [[6) < w(ML)e((|Alll[Zx] + [1b]])

shows that an extra x(Mp) term appears. This manipulation to transform a backward error
bound on the preconditioned system to one on the original system usually produces pessimistic
bounds. For this reason, in practice, we rather focus on the forward error bounds such as (8.9).

8.2.3 Flexible GMRES

The stability of flexible GMRES (FGMRES) has also been studied. Backward error analyses
of FGMRES with MGS orthonormalization were carried out by Arioli et al. in [69, 68]. In
particular, [68, Theorem 3.1] computes a backward error bound for general preconditioners.
We state here a slightly modified version corresponding to Theorem 5.3 of [12] (see [12] for a
discussion of the differences with [68, Theorem 3.1]).

Theorem 8.3 (Theorem 5.3 of [12]). Let Az = b be solved with FGMRES with MGS orthonor-
malization in a precision with unit roundoff u. Let k < n the iteration at which b lies numerically
in the range of AZy, in the sense that for all ¢ > 0 we have
AlllZ
ATy, 4z and owin(A20) > ull Al Zel.
|AZ||

If at this iteration k, the condition k(Zy)u < 1 holds, then the computed iterate Ty satisfies the
backward and forward error bounds

Umirl([b¢a AZk]) S C(’ﬂ, k)u

|[b — Az ||
— < c(n, k)k(Zk)u (8.10)
EE R
and .
||I|| ﬁ”’“” < c(n, k)k(Zi)k(A)u, (8.11)
X

where c¢(n, k) is a low degree polynomial in n and k.

63

Theorem 8.3 proves that as long as the basis Z, does not become numerically singular before
convergence, FGMRES will converge to a backward error of order ux(Z;). With no precondi-
tioner, Zy = Vj is a matrix with orthonormal columuns, so x(Zj) is a constant and we recover
the stability of unpreconditioned GMRES. However, the term x(Z)) shows that, just like left-
preconditioned GMRES, FGMRES may also not be backward stable for general preconditioners.
Importantly, Arioli et al. [68] show that if the preconditioner is specialized to LU factors LU
computed in a precision /u < uy < wu, if the solution is initialized to xg = ﬁ_lf_lb, and if
k(A)uy < 1, then the bound (8.10) can be sharpened to become of order .

8.2.4 Modular framework for the error analysis of GMRES

As the discussion in the previous sections illustrates, the error analysis of GMRES and its
variants is a complex question. Unfortunately, the previously mentioned analyses only cover a
tiny subset of common GMRES variants. Indeed, there is a wide range of possibilities, between
the choice of preconditioner, preconditioning style (left, right, flexible, split), orthonormalization
method (Householder, classical or modified Gram-Schmidt, etc.), restart criterion, and other
approximation techniques (mixed precision, randomization 73], basis compression [59], block
orthonormalization and communication avoiding approaches [91, 165], etc.). Moreover, because
these previous analyses are long, sophisticated, and were not made to be modular, extending
one of them to derive a new error analysis for a given variant of GMRES is generally far from
straightforward.

Motivated by this issue, in [12], we set out to develop a modular framework that simplifies
the process of deriving error bounds for as many GMRES variants as possible. This framework
also allows for unifying and comparing the existing analyses.

Model 8.1 (Modular framework for GMRES; sections 3.1 and 3.2 of [12]). We model a GMRES
method for solving Az = b as the following process:

1. Compute the preconditioned matriz product Cj, = MglAZk such that
Cv = My " AZy + ACy, | ACH]| < e ||M; AZy], (8.12)

where My, is the left preconditioner and Zj is the basis.

2. Compute the preconditioned right-hand side b= ML_lb such that

b=b+Ab, |Ab] < bl (8.13)

3. Solve the least-squares problem vy, = argmin,, ||E — Cryl|| such that

U = argrnyin ||3+ A{)S - (ak + ARyl

R (8.14)
I[AL, Aflesll < el B, Cilesll, 5=1:k+1.
4. Compute the solution x = Zyyi such that
Ty = Ziye + Dag, || Azi| < eal| Zil plYkll- (8.15)

In addition, we also make the following assumptions.

5. We assume all accuracy parameters to be sufficiently less than 1: 0 < e.,ep, €15, 6, < 1.

64

6. We assume Zj, not to be numerically singular to accuracy e,: k(Zk)er < 1.

7. We assume that there exists a “key” iteration k < n at which b lies in the range of MglAZk
and MEIAZk s mot numerically singular, that is, for all ¢ > 0,

Tmin ([bd, M7 AZL)) < (e + &3 + 1) || [bo, M7 AZ] |

(8.16)
Omin (M YAZL) > (ec + & + c15) | M P AZg|.

Items 14 of Model 8.1 are parameterized error models for the core linear algebra kernels
used by GMRES; specializing a given GMRES implementation to this model simply requires
analyzing these kernels independently (hence the modularity of the framework). Items 5-6 are
mostly innocuous assumptions. Finally, item 7 is the key assumption that is the most complex
to check: it essentially assumes that GMRES will not fail before computing a basis whose span
contains the solution. This assumption is tightly linked to the orthonormalization method that
is considered. For example, we have already explained that it is satisfied for both Householder
and MGS orthonormalization.

Under Model 8.1, we prove the following result.

Theorem 8.4 (Theorem 3.1 in [12]). If a GMRES method satisfying Model 8.1 is used to solve
Ax = b, then at the “key” iteration k < n, the computed iterate Ty satisfies the backward and
forward error bounds
M;'h— M; Az
WMy =My AR <, kye, (817)
M~ Alll[z]| + (1]l

and .
=2 < cnpetan; e, (3.18)
z
where
&= e, + Pep + Beis + ey (8.19)
with)
| My " AZy||

B ||M£1A||0min(Zk)7 ﬂ = max(17 Oé), A= H(Zk), (820)

and with ¢(n, k) a low degree polynomial in n and k.

Our framework, with Theorem 8.4, can be used to derive error bounds for many GMRES
variants. First of all, we can check that we recover the same bounds, under the same condi-
tions, than all the previously stated results. For example, with no preconditioner, Z; = Vj has
orthonormal columns and so «, 8, and A\ are all constants; moreover ¢, = 0. If all steps are
performed in the same precision with unit roundoff u, then standard error analysis readily yields
Ec = €15 = €5 = ¢(n, k)u. This, together with the proof from Paige et al. [219] of the existence of
a key iteration satisfying (8.16) for MGS orthonormalization, recovers the backward stability of
unpreconditioned GMRES proven in Theorem 8.1. Similarly, the results of Theorems 8.2 and 8.3
can also be recovered. Thus, Model 8.1 unifies existing analyses of GMRES under the same
framework.

Even more interestingly, our framework can be used to obtain new results for variants of
GMRES previously not covered by theoretical analyses. At the date of this writing, there have
been four major new results that were obtained thanks to this framework. The first, which we
provide in the same paper [12], is the proof of the backward stability of GMRES with CGS2
orthonormalization (that is, classical Gram—Schmidt performed twice [140]). GMRES with CGS2

65

orthonormalization was conjectured to be stable for decades, and in fact a proof was given in
1995 by Drkosova et al. [116] under the assumption that the loss of orthogonality incurred with
CGS2 is of order u. This assumption was later proved in 2005 by Giraud et al. [140], but under
another assumption, namely that the matrix that is orthonormalized, [b 5k], is numerically full-
rank [140, Theorem 2]. Unfortunately, this assumption cannot be satisfied for all £ < n in our
context since, if GMRES converges, b will eventually belong to the range of ék and cause the
matrix [b Ck] to become numerically singular. A formal proof of stability requires to show that
the least squares problem equivalence (8.4) remains valid even if the basis V11 in (8.3) has fully
lost orthonormality; we do so in [12] and obtain the following result.

Theorem 8.5 (Theorem 6.2 of [12]). Let Az = b be solved with GMRES with CGS2 orthonor-
malization in a precision with unit roundoff w. Provided that A is not numerically singular, that
is, k(A)u < 1, then there exists k < n such that the iterate Ty, computed at iteration k satisfies
the backward and forward error bounds

[[b — Az ||
— <c(n,k)u 8.21
TANTE - oy < ™) (8:21)
and
lxll_ Pl o Bym(A)u, (8.22)
X

where ¢(n, k) is a low degree polynomial in n and k.

The second major application of our framework is the error analysis of s-step GMRES
performed by Carson and Ma [92]. The s-step (also called communication-avoiding) GMRES
method [165] consists in adding to the basis and orthonormalizing s vectors at a time. This can
significantly reduce the communication and synchronization costs of the solver [165, sect. 3.6],
[255]. However, in finite precision arithmetic, s-step GMRES has been observed to be less stable
and this was conjectured to be due to the Krylov basis becoming more and more ill-conditioned
as s increases [165]. Carson and Ma formally prove this fact by obtaining a backward error bound
of order u times the condition number of the basis [92, Lemma 4].

The third major application of the framework is the error analysis of sketched GMRES [207]
performed by Burke et al. [81]. Sketched GMRES consists in replacing the least-squares problem
min ||ML_1b - ML_IAZkyHQ by the sketched problem min HSML_lb - SML_lAZkyHQ, where S is
a suitably chosen random matrix with a small number of rows. This can reduce the cost of
the orthonormalization because the preconditioned basis Z = My 'V, can be constructed using
a Krylov basis Vj, that is not orthonormal, or rather partially orthonormalized with truncated
Arnoldi approaches that only orthonormalize a selected subset of vectors [148]. The sketched
least-squares problem is then solved via a QR factorization of the sketch SM;IAZk, which is of
small dimension. However, if V}, is not orthonormal, then the condition number k(Zy) can grow
rapidly with the number of iterations and make the method fail. This is formally proven by the
analysis of Burke et al. [81] that relates the stability of sketched GMRES to x(Zy). Burke et al.
moreover show that the method can stabilized by restarting GMRES whenever k(Zy) becomes
too large, which is a form of iterative refinement (Chapter 10).

Finally, the fourth major application of the framework is to mixed precision preconditioned
GMRES. Indeed, the modular error models in items 1-4 of Model 8.1 allow for using different
precisions for different operations. In the following Section 8.3.1, we discuss the error bounds
resulting from Theorem 8.4 and the mixed precision strategies that they reveal.

66

8.3 Mixed precision GMRES

GMRES offers many opportunities to exploit mixed precision arithmetic. Some general tech-
niques, like multiword arithmetic (Chapter 5), memory accessors (Chapter 12), or adaptive
precision kernels (Chapter 11), all can (and often have) be applied to GMRES. In this section
we review strategies that are more specific to GMRES.

8.3.1 Mixed precision preconditioned GMRES

We first discuss unrestarted, preconditioned GMRES. As explained in the previous Sec-
tion 8.2, the use of preconditioning can affect the stability of GMRES by introducing some
dependencies on various condition numbers (of the matrix, the preconditioner, the Krylov basis,
etc.). Since these condition numbers can have widely different magnitudes, this creates an oppor-
tunity to use mixed precision. One challenge is that many different (and sometimes conflicting)
strategies have been proposed, depending on the precisions used for each operation and on the
preconditioning style (left, right, or flexible), so it can be difficult to decide which strategy to
prefer in which context. In [40], we provide a comprehensive error analysis that covers virtually
all possible variants and can be used to identify the numerically meaningful ones. We consider
three independent precisions g, um,, and ug4, corresponding respectively to the application of
the matrix—vector product with A, the application of the preconditioner M, and the rest of the
GMRES operations (which notably includes the orthonormalization of the basis). We use our
modular framework from [12] and Theorem 8.4 to derive bounds on the attainable forward error
for left, right, and flexible preconditioning in Theorems 3.2-3.4 of [40]. After operating a few
simplications discussed in section 3.5 of [40], these bounds become

(left) ugk(M ™ A) + up, max (phy, k(M1 A)) + ugk(A), (8.23
(right) ugk(AM ™M (M) + k(M) + ugk(A), (8.24
(flexible) ugk(AM 1) k(M) + uyk(A). (8.25

For the left-preconditioning bound, the quantity p%, can only be bounded by x(M~!A)xk(M
but can be much smaller in practice due to numerical cancellation in the preconditioned matrix—
vector product.

These bounds quantify the effect of the precisions ug, 4y, and u, on the attainable forward
error. Importantly, they reveal that the multiplicative terms in front of each precision are
different: for example, in bound (8.23), the term x(M ~'A) in front of u, can be much smaller
than the term x(A) in front of u,. In such a configuration, we can set u, > u, to balance the
two terms ugk(M P A) and u,k(A) without altering the attainable forward error. This creates
opportunities for mixed precision strategies.

As importantly, the bounds reveal significant differences between preconditioning styles (left,
right, and flexible). Taking for example the terms in front of precision u,, we have x(M 1 A)
for left preconditioning instead of x(AM ~1)x(M) for right and flexible preconditioning. This
therefore suggests that left-preconditioned GMRES might be more resilient to reductions of the
precision u, if £(M) is large. Conversely, the bounds suggest that right and especially flexible
preconditioning are more resilient to lowering the precision u,,, used for applying the precondi-
tioner. Indeed, it is striking to observe that the flexible bound (8.25) is actually independent of
Up,: this is because rounding errors incurred in the application of the preconditioner can be seen
as variations in the preconditioner itself, which flexible GMRES is designed to handle. However,
note that the choice of u,, will still affect the number of iterations!

Table 8.1 lists all the possible combinations of u,, ug, and u,, when considering the use
of two distinct precisions ujow and upign. As the table shows, the existing literature on mixed

67

Table 8.1: List of the mixed precision strategies presented in [40] with their associated dominant term in the
bounds (8.23), (8.24), and (8.25) for left-, right-, and flexible-preconditioned GMRES. White cells correspond to
provably meaningful strategies.

Left Right Flexible
I T N un(A)s(M) u(A)w ()
[231] [231] [230]
Ulowk(A) = =

Uhigh = Ug = Um

Fupign max(k(A), pk;) Uow (A) k(M) Wowk(A) k(M)

< =
tg = Ulow [87, 88, 90, 209, 89] [11, 15] new new
A), pk Ulow k(M ~
Unigh = Ua = Ug wowqu }?(K/Eu(/)l)pM) i 1(})1‘:;(1%):‘6)(1\4) | | el A)n()
& Uy = Ulow high & o [68, 166, 86, 85], [12]
new

Ulow maX(K’(A%pf\/[) s A

Uhigh = Uq ' Uowk(A) k(M) Uowk(A) k(M)
L Ug = Uy = Ulow +uhf:vl:(A) new new
Uow(A) Uow(A)
Uhigh = Ug Ulow maX(H(A)v pf\]) R 7y . A
< Ugq = Um = Ulow new +uhlghi£j’1>ﬁ(M) +uhlghi£“j)ﬂ(M)
W A e e
Uhigh = Um 1: _H(pL) Uowk(A) k(M) Uowk(A) k(M)
K Ug = Ug = Ulow ilegv}:f M new new
< w = Funigh iy +unign#i(A)R(M) | Funignsi(A)r(M)
@ low new new new

precision GMRES has mainly focused on two strategies, that is, on two cells of this table. The
first is left-preconditioned GMRES with higher precision for the products with the preconditioner
and the matrix, which has been especially been used in the context of GMRES-based iterative
refinement (see Section 10.2). The second is flexible GMRES with lower precision for applying
the preconditioner.

Our comprehensive analysis allows for covering many new strategies, several of which are
actually meaningful, in the sense that they can achieve new tradeoffs between attainable accuracy
and usage of low precision. Indeed, all white cells are provably meaningful: reducing any of the
three precisions would directly worsen the bound. Two new strategies that are particularly worth
highlighting are:

® Uy = Uy < Uy, With right-preconditioning: this is the same combination mentioned above
but with right instead of flexible preconditioning, which may be of interest to avoid dou-
bling the Krylov basis. Our analysis reveals that right-preconditioning can be much more
accurate than left-preconditioning when k(M) < k(A).

® u, < Ug = Uy with left-preconditioning: compared with the existing combination u, =
Um < ug mentioned above, this one only keeps the product with A in high precision, and
switches that with M to low precision. Our analysis reveals that accuracy may be preserved

when k(A) < k(A) and if pf; is small.
It is interesting to note that, because of the inequality r(A) < k(A)r(M), these two new strategies
are meaningful in different situations: the first should be used with “lightweight” preconditioners

68

(for which x(A) may be large but (M) is small); the second should be used with “heavyweight”
preconditioners (for which the converse is true).

Next, we comment on the gray cells in Table 8.1. They correspond to strategies that cannot
be proven meaningful with the theoretical error bounds alone. However, in [40], we show several
of them to be empirically meaningful, with varying degrees of success.

Finally, we note that in Table 8.1, we have simplified the discussion by focusing on variants
that only use two distinct precisions uiow and unign. In [40], we also consider three-precision
variants where uq, ug, and u,, are all different, and find even more meaningful strategies with
new levels of tradeoff.

8.3.2 Mixed precision restarted GMRES

A popular approach to use mixed precision in GMRES is to combine it with restarting.
The inner cycles of unrestarted GMRES (the for loop in Algorithm 8.2) are performed in low
precision, whereas the outer loop (the while loop in Algorithm 8.2) that updates the solution
and the residual is kept in high precision.

We will explain in Chapter 10 that this is actually a form of iterative refinement. We will
thus discuss the behavior of this class of strategies in Chapter 10; see in particular Section 10.2.2.

8.3.3 Mixed precision relaxed GMRES

The previously presented strategies use different precisions for different operations, but these
precisions are fixed throughout the iterations. Another class of approaches has focused on chang-
ing the precision across different iterations. In particular, several papers in the early 2000s showed
that the precision of the matrix—vector product can be gradually lowered as the method con-
verges. This started as a heuristic strategy based on experimental observations from Bouras and
Frayssé [79], but was soon justified theoretically with the development of inexact Krylov theory—
see, in particular, the works of Simoncini and Szyld [234], van den Eshof and Sleijpen [127], and
Giraud, Gratton, and Langou [139].

These approaches consider an inexact matrix—vector product satisfying wy = (A+ Ey)vy (we
consider the unpreconditioned case throughout the following discussion) for some error matrix
E which depends on the iteration number k. The Arnoldi relation (8.2) becomes

[(A+ Ey)v, ..., (A+ Eg)vg] = Vi1 Hy, (8.26)
which can be rewritten as
(A + GkaT)Vk = Vk+1Hk, with G, = [Elvl, RN Ekvk]. (827)

Hence, the inexact Arnoldi relation (8.26) with A implies an exact Arnoldi relation (8.27) with
a perturbed matrix A + GkaT. We define the true residual r, and its inexact counterpart 7 as

Ty = b— Al‘k, (828)
T, =0b— (A + G Vi) xg. (8.29)
Since ||7%|| converges to zero, the triangle inequality ||7x|| < [|7&|| + ||7x — & || shows that ||rg|| can
be guaranteed to converge by keeping the residual gap ||7x, — 7« || under control. The next result,

which is a rework of [139, Theorem 2|, provides a concrete criterion to control this residual gap
with respect to the matrix—vector perturbations E}.

69

Theorem 8.6. Let Ax = b be solved with GMRES (Algorithm 8.1) and assume that the matriz—
vector products with A satisfy

| Exll 1 . o] e
A+ E = < 1 - .
T B = e Tl = g M\ ez (530

with € > 0 and where r, and Ty are defined in (8.26)—(8.27). Then there exists £ < n at which
[7ell < 5Bl [I7e = rell < 511Bll, and so [[rel| < [|b]].

Proof. This is a slight rework of [139, Theorem 2], taking ¢ = § and e, = ¢, = 5, and dividing
IEk|| by ||A|| to obtain a bound on the relative error. O

Theorem 8.6 shows that || E%| should be chosen to be inversely proportional to ||7%||; since
this quantity converges to zero as the iterations progress, this indicates that the matrix—vector
product can be performed in gradually lower precision.

Note that Theorem 8.6 bounds the relative residual HII?HH' A similar result bounding the

lirell

TATT= o7 1S given in [139, Theorem 3].

Finally, while most of the works on relaxed GMRES have focused on reducing the precision
of the matrix—vector product, we note that Gratton et al. [143, 144] have also considered the
extension of this approach to reduce the precision of the inner products (that are involved in the
orthonormalization of the Krylov basis).

normwise backward error

8.4 BiCGStab

Another popular iterative method to solve general nonsymmetric linear systems is the bicon-
jugate gradient stabilized (BiCGStab) method [247], a variant of the biconjugate gradient (BiCG)
method that incorporates a stabilization step to address the erratic convergence patterns often
seen in BiCG.

BiCGStab shares similarities with GMRES, since both are Krylov subspace solvers for non-
symmetric linear systems. Due to its residual minimization property, GMRES converges faster
than BiCGStab. However, BiCGStab offers advantages in terms of memory usage and compu-
tational complexity compared with GMRES, as it avoids the need to store and orthonormalize
a growing Krylov basis.

The right-preconditioned version of BiCGStab is described in Algorithm 8.3. At each itera-
tion, the main computational bottleneck consists of two matrix—vector products, two applications
of the preconditioner, and several vector operations (dot products and axpy). We stop the solver
whenever the norm of the residual ||r;| falls below a prescribed threshold ¢, or after the maximum
number of iterations i, has been performed.

Similarly to GMRES, there are several strategies to exploit mixed precision arithmetic to
accelerate BiCGStab. A first natural strategy is to perform the preconditioning operations in
low precision. To maximize the performance, it is desirable to use low precision not only to
construct the preconditioner, but also to apply it at each iteration. This, however, requires an
iterative solver that can handle non-constant preconditioners, since the rounding errors incurred
in the application of the preconditioner introduce variations from one iteration to the other.
In the case of Krylov subspace solvers, this means that we must use a flexible formulation of
the solver, as we already discussed in the case of FGMRES [230] in Section 8.3.1. In [47], we
make the important observation that the standard formulation of right-preconditioned BiCGStab
(as outlined in Algorithm 8.3) is already flexible. This formulation was proposed by Vogel in
2007 [246]; the motivation there was to use another iterative solver as preconditioner, but it can

70

Algorithm 8.3 Right-preconditioned BiCGStab.

Input: A € R"*™ b € R™, initial guess g, tolerance £, maximum iteration number i,,y, right
preconditioner M 1.

Output: approximate solution x; € R™ to Ax = b.

To = b— Al‘o
Initialize 77 arbitrarily such that 797 rq # 0.
po="10"T0
Po=To
for i = 1: ip.y do
p=M"pi
q=Ap
a=pi-1/(0"q)
§=Ti—1 —aq
S=M"1s
t=As
w=(tTs)/(tTt)
T =x;—1+ap+ ws
r, =58 —wt
if ||ri]| < e then
exit.
end if
pi =70 r;
B = (api)/(wpi-1)
pi = 1i + B(pi-1 — wq)
end for

also be used to exploit low precision preconditioners. Our experiments in [47] confirm indeed
that convergence is maintained even when the preconditioner is built and applied in low precision,
providing a first source of acceleration. Crucially, this mixed precision variant does not require
to change the rest of the algorithm and does not incur any extra cost. This is notably in contrast
to GMRES, where the flexible variant FGMRES requires to double the size of the Krylov basis.

A second idea to employ mixed precision in BiCGStab is to run the entire solver in low
precision, thereby also accelerating matrix—vector and dot products, and recover the accuracy
by using an outer loop in high precision. Just like mixed precision restarted GMRES, this mixed
precision restarted BiCGStab is once again a form of iterative refinement: we therefore postpone
its discussion to Chapter 10, specifically Section 10.3.

71

Chapter 9

Block low-rank matrices

In many applications requiring the solution of a linear system Ax = b, the matrix A has a block
low-rank (BLR) structure: most of its off-diagonal blocks can be well approximated by low-rank
products. This property can be exploited to reduce the cost of computations with A, in particular
its LU factorization. In this chapter we give an overview of some of the important questions
regarding the use of BLR matrix compression: its algorithmic foundations and its asymptotic
complexity, its effect on the stability of the computation, how to optimize its performance on
parallel machines, opportunities to use mixed precision arithmetic, and possible extensions to
achieve further complexity reductions.

The contributions described in this chapter are based on the following papers: [8] for Sec-
tion 9.2; [13], [14] for Section 9.3; [16] for Section 9.4; [23], [24], [25], [26] for Section 9.5; [28]
for Section 9.6.

9.1 Basics

A block low-rank (BLR) representation A of a dense matrix A € R™*™ has the block ¢ x ¢
form

A 1112 s Alq
2[: A21 : , (91)
gql Aqq

where off-diagonal blocks A;; of size n; x n; are approximated by low-rank matrices gij = Xi; Y}
of rank k;;, where X;; € R™*ki; and Y € R *kij |

If the ranks k;; are chosen such that ||Z” — A;j|| < €||A||, we obtain a BLR approximation
satisfying a relative accuracy of order ¢, |A — A < ce||A||, where c is a constant that depends
on the choice of norm (for example, for the Frobenius norm, ¢ = ¢). If the rank k;; is small
enough so that k;;(n;+n;) < n;n;, storing the low rank factors X;; and Y;; requires fewer entries
than storing the full block A;;, and A;; is referred to as a low-rank block. Otherwise, it is more
efficient to keep A;; as is and it is referred to as a full-rank block.

Hereinafter, we denote by r the largest of the ranks k;;, and we assume for simplicity that
all blocks are of the same dimensions ¢ X t, so that n = ¢t. Assume that there are at most p
full-rank blocks on any block-row or block-column (note that p > 1 since the diagonal blocks are

73

always full-rank). Then the entire BLR matrix requires storing
pat? + 2¢°tr = ptn + 2n’r/t (9.2)

entries. By taking the block size t = /2nr/p, (9.2) attains its minimal value 1/2prn3; this shows
that the block size t should increase with both n and r. Importantly, in several applications such
as the solution of certain classes of discretized partial differential equations, both p and r can
be shown to be small constants independent of n [75, 74], [23]. Therefore, the BLR storage is
proportional to n3/2 instead of n? for the full uncompressed matrix. BLR compression thus leads
to a reduction of the asymptotic complexity, which means that the larger the matrix, the larger
the storage gain.

Algorithm 9.1 BLR LU factorization: UCF variant

1: {Input: a ¢ x ¢ block matrix A. Output: its BLR LU factors L and 17}
2: for k=1 to g do

3 UPDATE: o

4 App — App — Z;C;ll ijUjk.

5: fori=k+1topdo o
6: A — Ay — Zf;ll LijUjk and Ap; + Ap; — 25;11 ijUji-
7 end for

8 COMPRESS:

9 fort=k+1togdo _ B

10: Compute LR approximations A;; ~ A;r and Ag; =~ Ag;.
11: end for

12: FACTOR: o

13: Compute the LU factorization LipiUgr = Agg.

14: fori=k+1to gdo B o B B

15: Solve LUk = Aik for L, and LUy = Aki for Ug;.
16: end for

17: end for

The BLR representation is not only useful for reducing storage: it can also be exploited
to reduce the cost of computations, and in particular that of LU factorization. Algorithm 9.1
presents the UCF variant of the BLR LU factorization, whose name stands for the order in which
the three main operations are performed: update—compress—factor. Indeed, at each step k, the
kth panel (composed of the kth block-row and the kth block-column) is updated with respect
to the previously factored panels, which are already compressed; then, the off-diagonal blocks of
the panel are compressed; and finally, the panel is factored.

Other variants are possible and have been investigated in the literature. For example, the
UFC variant performs the compress after the factor, which increases the number of flops but
allows for an easier handling of numerical pivoting. Conversely, the CUF variant compresses the
panels at the very beginning (and thus the full uncompressed matrix never needs to be formed
or stored); it however performs the updates on blocks that are already low-rank, which requires
recompression operations (to prevent the ranks from growing) that are usually quite inefficient.
See [49] for a detailed discussion and comparison of these variants.

A flop count analysis similar to the storage analysis in (9.2) shows that, with the same suitable
choice of block size, the O(n?) flop complexity for the full LU factorization is reduced to O(n?r)
for Algorithm 9.1 [23]. Moreover, these reduced storage and flop complexities for dense systems
can be combined with the reductions obtained by exploiting sparsity for sparse systems. Indeed,

74

we can apply BLR compression to the frontal matrices in the multifrontal method (that is, by
representing each of the nodes in Figure 7.3 as a BLR matrix). Then, using formula (7.1) with
Caense(+) as the BLR complexity, we obtain reduced complexities reported in the second row of
Table 9.1 (found in Section 9.5), under the assumption that the ranks are independent of the
matrix size (r = O(1)). In particular, for sparse 3D problems, the BLR multifrontal method has
a nearly linear O(nlogn) storage complexity, and a O(n*/3) flop complexity.

9.2 Stability

An important question is how the use of BLR compression affects the stability of LU fac-
torization. Indeed, while the threshold e straightforwardly controls the blockwise truncation
errors, the question of how these errors propagate within the LU factorization is far from ob-
vious. The difficulty in analyzing the stability of BLR LU factorization is twofold. First, the
low-rank approximations are computed on the fly during the factorization, interlaced with the
rest of the standard operations of LU factorization, and thus introduce errors during the com-
putation. Second, the rest of these standard operations are themselves modified in order to
exploit the low-rank structure of the blocks, to reduce the number of floating-point operations:
for example, the product of two blocks A;; and Aj is computed as Xij(ﬂ/;]TXjk)S/j:,; with an
appropriate parenthetization to minimize the cost.

To answer this question, we develop a dedicated rounding error analysis in [8], which derives
bounds on the errors introduced by each of the local modified low-rank kernels, and then combines
these bounds to conclude on the overall stability of BLR LU factorization. We obtain the
following theorem, which proves that backward stability is maintained with respect to €.

Theorem 9.1 (Theorem 4.3 of [8]). Let A € R™*™ be a nonsingular matriz partitioned into
q® blocks of order t. If Algorithm_9.1 in a precision with unit roundoff u runs to completion, it
produces BLR LU factors L and U satisfying

A=LU+AA, AA] < (& +70) 1Al + 7| ZIT + O(ue), (9.3)
where ¢ =t + 2r3/% + q, and where &, < ¢*/V6 (see Table 4.1 of [8] for a precise expression).

This bound is to be compared with the standard LU factorization bound of order ul|L||||U]|;
the BLR LU bound (9.3) exhibits an additional term of order || A||. This proves that BLR LU
is backward stable and that the ¢ parameter can be used to reliably control the accuracy of the
solution.

In [8] we also analyze the impact on the stability of several factors, such as the use of
intermediate recompressions in the low-rank updates, the use of variants other than UCF (such
as UFC), and the use of a global threshold (||g” — Aij|l < €||A|]) as opposed to a local one
(|Ai; — Aij|| < €]|Ajll). We find that the use of intermediate compressions, the UCF variant,
and a global threshold all achieve a better compression—accuracy tradeoff, that is, they allow for
significantly higher compression while only increasing the error by a modest constant factor (see
values of &, in Table 4.1 in [8]).

Theorem 9.1 on BLR LU factorization can be used to prove the backward stability of the
solution of a linear system Ax = b by BLR LU factorization and substitution.

Theorem 9.2 (Theorem 4.5 of [8]). Let A € R™*" be a nonsingular matriz partitioned into ¢>
blocks of order t, and suppose that Algorithm 9.1 produces BLR LU factors L and U. Let the

75

system LUz = b be solved by substitution. Then the computed solution T satisfies

(A+AA)Z=b+ Ab, (9.4)
IAA] < (&g + %) Al + 5l LT + Ofue),
1261 < ([lo + IZINTNIZ]) + O(w?), (9-6)

where ¢ =t + 2r3/2 4+ q, and where & < q2/\/6 (see Table 4.1 of [8] for a precise expression).

9.3 Communication-avoiding BLR factorization and solve

While the reduced complexity of BLR LU factorization should in principle lead to a sig-
nificantly faster execution time, translating these theoretical gains into actual speedups is quite
challenging, especially in a parallel computing environment. One of the main reasons is that BLR
computations tend to be memory (or communication) bound. Indeed, while BLR approximations
reduce both flops and memory costs, the former are reduced by a much larger factor than the
latter. This is for example reflected by the theoretical complexities for 3D regular problems (see
Table 9.1): the flops are reduced by a factor of order n?/n*/3 = n?/3 whereas the memory is only
reduced by a factor of order n*/3/(nlogn) = n'/3/logn. Moreover, BLR approximations not
only require partitioning the matrix into smaller blocks, but also replace these blocks by low-rank
products of even smaller dimensions. The granularity of BLR computations is therefore radically
smaller than standard dense linear algebra.

In order to achieve efficiency, it is therefore necessary to rethink standard algorithms in
order to reduce the amount of data movement or communications. We have developed such
communication-avoiding variants for both the BLR LU factorization and LU triangular solution.

In [13], we propose two modifications to make the BLR LU factorization communication-
avoiding. The first is to use a left-looking scheme rather than a right-looking one. We have
explained in Section 7.1 that right- and left-looking schemes usually perform comparably in
standard dense factorizations. In the BLR factorization, and more specifically the UCF variant
presented in Algorithm 9.1, a key difference appears, due to the fact that the LU factors are
gradually compressed, panel by panel, as the factorization advances. As illustrated in Figure 9.1,
in a right-looking scheme, the entire trailing submatrix, which is uncompressed, needs to be
accessed at each step to be updated. In contrast, in a left-looking scheme, we need to access
instead the previously factored panels, which are already compressed. Hence, the volume of data
movements is significantly lower with a left-looking scheme.

The second modification that we propose in [13] to improve the efficiency of the BLR LU
factorization is to group together low-rank updates in order to increase their granularity. Indeed,
let L;; = Xini;-F and Uj, = Xjijz,;; the update A;p + A;x — Z;:ll L;;Uji, can be rewritten as

Vi Xy,
A Ajge — [Xin -+ - X 1] Y-+ Xk—l,j]T
Y1 Xk,

This so-called low-rank update accumulation (LUA) strategy increases the compute intensity of
the BLR LU factorization. Our performance experiments with the MUMPS solver presented in
[13] show that combining a left-looking scheme with this LUA strategy can lead to significant
speedups.

In a later work, [14], we extend these ideas to accelerate the BLR triangular solution step with
many right-hand sides (RHS). While with a single RHS, the communication cost of the solution

76

Right-looking Left-looking

- read once - read at each step

- written at each step - written once

= =3[= =3[=3[=3[=3 — =

N O R [

[| = =3 =3 =3 =3 [(=]

N AN

Figure 9.1: Comparison of the memory accesses in the right- and left-looking BLR LU factorizations.

step is dominated by the accesses to the compressed BLR LU factors, with many RHS, the
bottleneck becomes instead the accesses to the RHS, which are uncompressed. This observation
holds for both right- and left-looking schemes. Indeed, consider step k of the forward solve and
denote B € R"*™ms the RHS matrix, partitioned in ¢ blocks B; € RtXmhs - The right-looking
scheme updates B; < B; — L; By, for all ¢ > k, which requires accessing all the bottom part of the
RHS. The left-looking scheme updates By < By — Ly; B; for all ¢ < k, which requires accessing
all the top part of the RHS. Both schemes thus share the common weakness of requiring multiple
accesses to the entire RHS.

To reduce these communication costs, we propose in [14] a hybrid scheme that divides the
updates By < By — zkl—Bl— = B — inYk:’;Bz- in two separate subtasks. We compute Wy,; = Yk:’;BZ-
at step 4, store it until step k, at which we then compute By < By — X;Wp;. In other words,
we compute the first half of the product in a right-looking scheme, but delay its second half in
order to compute it in a left-looking scheme. This hybrid scheme only needs to access one block
of the RHS per step, at the cost of having to store (and access) the temporary Wj; matrices,
but these are of smaller dimensions r X n,,s compared with the ¢ x n,,s RHS blocks. We carry
out a communication volume analysis that shows that the hybrid scheme significantly reduces
the volume of communications compared with either the right- or left-looking ones under the
condition

min(t, nyps) > 2r.

Thus, this hybrid scheme leads to significant gains if we have many RHS and if the LU factors
are sufficiently low-rank. Our performance experiments with the MUMPS solver in [14] confirm
the potential of this hybrid scheme, with which we obtained time reductions of up to 20%.

9.4 Adaptive precision BLR

In Section 6.3, we have presented an adaptive precision LRA approach developed in [16]. In
the same paper, we also show how this approach can be exploited for BLR matrices. Indeed, for

7

[Ibfloatl6

I fp32-bfloatl6

[fp64-fp32-bfloatl6
I fp64 (full-rank)

5 10 15 20 25 30

Figure 9.2: Precisions used for representing each block of a mixed precision BLR matrix with e = 10710 (taken
from Figure 2 in [16]).

each off-diagonal block A;;, we can compute its adaptive precision LRA

~ ~ ~ = ~ 1T

o

where U, P ik, and Vk are stored in precision uy and where the singular values are partitioned
such that ||X|| < e]|Al|/ug. By Theorem 6.1, this yields [|A;; — Ai;|| < (2p — 1)e||A||. Note that
this criterion and its associated error bound involve the norm of the global matrix ||A||, rather
than the norm of the block || 4;;]|. As mentioned in Section 9.2, using a global criterion is indeed
stable and more efficient than using a local criterion [10]. In the context of adaptive precision
BLR, a global criterion is even more beneficial because it allows for using low precision on more
entries. In fact, blocks whose norm is sufficiently small may be stored entirely in lower precision:
specifically, if ||A;;|| < e||A||/ux, precisions uq, ..., ug—1 are not needed for this block and it
may be stored directly in precisions ug, ..., up. This is illustrated in Figure 9.2, which shows
that most blocks (those in green and yellow) do not need any entry in fp64, even for an accuracy
e = 10710 far smaller than the unit roundoff of fp32 arithmetic. This observation motivates a
simple idea for a mixed precision block representation that uses the same precision for all entries
in a given block, but different precisions for different blocks (low-rank or not). This approach is
for example used by Abdulah et al. [53] (see also [54, 115]).

This adaptive precision BLR representation can do more than just reduce storage: we prove
in [16] that the computations for the BLR LU factorization can also be performed in mixed
precision. For example, consider two adaptive precision low-rank blocks A = >¥_, X, ¥;T and
B = 22:1 UkaT, where X}, Yi, Uy, and V}, are stored in precision ug. The product AB is then
given by

p P
AB =Y "> "x,vj'uv”

i=1 j=1
p p

S IE O WELAT
i=1 j=1

78

Table 9.1: Flop and storage complexities of LU factorization depending on the matrix format, for n X n systems,
with a constant rank bound r = O(1). For the BLR? format we also assume a constant rank s = O(1) for
the shared bases. BLR., denotes BLR with an O(n*) fast matrix multiplication complexity, with 2 < w < 3
(w =logy 7 & 2.81 for Strassen’s algorithm).

Flop complexity Storage complexity

Dense Sparse 2D Sparse 3D Dense Sparse 2D Sparse 3D
Uncompressed O(n?) O(n®/?) O(n?) O(n?) O(nlogn) O(n*/3)
BLR O(n?) O(nlogn) O(n*?) O(n®/?) O(n) O(nlogn)
BLR? O(n?/%) O(n) O(n®/%) O(n*/3) O(n) O(n)
MBLR (¢ =2) O(n®/3) O(n) O(n'0/9) O(n*/3) O(n) O(n)
MBLR (¢ = 3) O(n?/?) O(n) O(nlogn) | O(n®/*) O(n) O(n)
MBLR (¢ = 4) O(n/?) O(n) O(n) O(n®/%) O(n) O(n)
H O(nlog’n) O(n) O(n) O(nlogn) O(n) O(n)
H? O(n) O(n) O(n) O(n) O(n) O(n)
BLR,, O(n@*H/2) O(n) O(n@*V/3) | O(n®/?) O(n) O(nlogn)
BLR, (w =~ 2.81) | O(n!9%%) O(n) O(n'27) O(n?/?) O(n) O(nlogn)

The error analysis in [16] shows that S; = ?:1 YiTUjVjT can be computed in precision

max(u;, u;), and Zle X;S; can be computed in precision u;. We also analyze other kernels
such as the product between low-rank and full-rank blocks, or the triangular solve with a low-
rank block right-hand side, and show that these kernels can similarly exploit mixed precision.
Overall, we prove that backward stability is maintained, with a result analogous to Theorem 9.1
with slightly different constants (Theorem 4.4 in [16]).

This adaptive precision BLR representation has been integrated into the MUMPS solver,
where it is currently used to reduce the size of the LU factors and thus the memory cost of the
solver (see Section 9.6 for an illustrative application). Reducing the size of the LU factors can
also lead to time reductions for the triangular solve phase; this requires the development of an
optimized memory accessor as will be described in Section 12.4.

9.5 Further reducing the complexity

As mentioned, BLR compression reduces the asymptotic storage and flop complexities of LU
factorization; however, as indicated in the second row of Table 9.1, these complexities remain
highly superlinear for dense matrices, and, to a lesser extent, for sparse ones arising from 3D
problems. In this section, we discuss more sophisticated approaches to further reduce these
complexities.

9.5.1 Hierarchical formats: taxonomy and discussion

A natural approach to reduce the asymptotic complexity is to define hierarchical represen-
tations, which use block sizes as large as possible for the off-diagonal low-rank blocks, and
recursively partition the full-rank blocks (including in particular the diagonal ones) into smaller
blocks. Among such hierarchical representations, the most studied is the H matrix format [149,
78]. We recommend the books of Hackbusch [150] and Bebendorf [74] for a comprehensive re-
view. Several other variants have also been proposed; these different hierarchical formats can
be classified based on two main criterions: whether they use weak or strong admissibility, and

79

nested bases HSS

HBS
weak ady
> HQ

HODLR

weak adn/
H

nested bases

flat
flat flat v
BS
%;ak adm.
Y

BI:R shared bases BLR?

Figure 9.3: A taxonomy of structured matrix formats.

whether they use nested bases or not. Figure 9.3 summarizes this taxonomy of structured matrix
formats.

Weakly admissible formats directly approximate all off-diagonal blocks as low-rank matrices,
regardless of their rank, whereas strongly admissible formats recursively partition the off-diagonal
blocks until their rank becomes small enough. While strongly admissible formats lead to more
complex algorithms, especially for LU factorization, they can achieve better compression by
partitioning blocks whose rank would be too large—in particular, the constant rank assumption
r = O(1) rarely holds for weakly admissible formats. H matrices use strong admissibility; with
weak admissibility, they reduce to a format called HODLR [63].

The so-called nested bases structure consists of two main components. First, all blocks on
the same block-row or block-column share the same X or Y basis, respectively. Second, these
low-rank bases are nested across the levels of the hierarchy, that is, the basis at a given level is
implicitly represented by the bases at the lower levels. H? matrices [78] add to H these nested
bases for an even more compact representation. The HSS [252, 94] and HBS [138] formats are
weakly admissible versions of 2 matrices.

As indicated in Table 9.1, H matrices achieve quasilinear complexities already for dense
problems, and the logarithmic terms can be dropped by using H? matrices. As a result, both
formats achieve O(n) complexities for sparse problems. It is crucial to note that these formats
are somewhat of an “overkill” for attaining linear complexities for sparse problems, even 3D ones.
Indeed, a complexity strictly lower than O(n'-5) for dense problems would already be enough
to achieve O(n) complexity for sparse 3D problems. Importantly, a lower complexity exponent
is usually associated with a larger prefactor hidden in the big O(:), which makes H matrices
less suitable for medium-scale dense matrices or even large scale, but sparse ones. Moreover,
hierarchical formats can also be more complex to implement, especially in parallel, fully-featured,
general purpose sparse solvers. For these reasons, the BLR format has been preferred in most
sparse direct solvers, including MUMPS [13] and PaStiX [224]; STRUMPACK [136] adopts a
composite approach [98] which combines the BLR format [97] with hierarchical ones, notably
HSS [225], [30] and HODBF [192], the butterfly-based equivalent of HODLR (see Chapter 13).

Nevertheless, the superlinear complexities of BLR become a limiting factor when dealing with
extreme scale matrices. This motivates the development of structured formats that achieve a
middle ground between BLR and hierarchical matrices. We discuss several such ideas in the next
subsections.

80

9.5.2 The BLR? format

A first idea is to exploit the nested bases structure in BLR matrices. Since BLR is a flat
format with no hierarchy, the low-rank bases cannot be nested; however, they can still be shared
across blocks on the same block-row or block-column. We refer to this structure as shared bases
and to the resulting matrix format as BLR2, since it can be understood as the #? analogue to
BLR matrices.

BLR? matrices, just like BLR ones, have a flat block ¢ x ¢ form defined as in (9.1). The
difference is that the off-diagonal blocks Zij are not represented independently from each other
as Xing, but rather as XiC’injT, where the bases X; € R™*% and Y; € R™*% are shared across
all off-diagonal blocks on block-row i and block-column j, respectively. The C;; € R®**% matrices
are called the coupling matrices; if the shared bases X; and Yj are built to have orthonormal
columns, then Cj; contains all the spectrum information of the Zij block and can therefore be
represented as a rank-r;; product C;; = @ijlllz;.

Gillman et al. [138] describe a flat version of their HBS format, called block separable (BS),
which is a weakly admissible variant of BLR?. However, BS was only presented as a first step
towards HBS, and not studied in its own right. In [25], we carry out a dedicated study of the
BLR? format to assess the potential of exploiting shared bases in BLR matrices. We propose
algorithms to construct a BLR? matrix, both from a dense one and from one already compressed
as BLR. We also propose LU factorization and solution algorithms in order to solve linear systems.

Assume for simplicity that the ranks of the coupling matrices are all equal to » = O(t*) and
that the size of the shared bases are all equal to s = O(t?), where ¢ is the block size and a, 3 > 0.
In [25], we show that the BLR? LU factorization achieves the following asymptotic complexities:

Storage = O(né:zig), (9.8)
Flops = O(ngizigfz) (9.9)

In particular, if the ranks r and s are both O(1) constants (that is, « = 8 = 0), then we
obtain complexities in O(n*/3) for storage and O(n®/®) for flops, which represents an asymptotic
improvement over standard BLR, as indicated in Table 9.1.

However, our experiments on a range of real-life matrices suggest that the ranks of the shared
bases are rarely constant, and can on the contrary become quite large if too many blocks are
forced into the shared bases, such as when weak admissibility is used. We propose a hybrid
strategy in which the blocks of rank larger than some 7,y are kept separately, outside the basis
(under BLR form, that is, either low-rank or dense), so that only the remaining blocks of small
rank share their bases. The relevance of this approach is illustrated in Figure 9.4, which plots
the storage cost for various matrices depending on rp,.. As we increase ry,y, more and more
blocks share their bases; the figure shows that the optimal storage is always significantly lower
than the storage for either of the two extreme strategies (no shared bases with rya.x = 0 or all
blocks share their bases with rpa, = 00).

9.5.3 The MBLR format

As explained previously, hierarchical formats recursively partition full-rank blocks in order to
reduce the asymptotic complexity. In the H format and its variants, this recursive partitioning
is applied until the full-rank blocks become smaller than a given constant independent of the
matrix size; thus, there are about log, n levels of hierarchy in an H matrix of order n.

In [24], we propose a format that we call multilevel BLR (MBLR), which is based on the
idea of using a fixed number of levels ¢ instead. This is motivated by the fact that, as mentioned

81

T

& —6—P160

=) —k— Serena

& Geo_1438
= —8— Cube_Coup_dt0
= —&—GaAsH6
2 nd24k

N ——Fault_639
= —s—nlpkkt80
-

Z,

Tmax

Figure 9.4: Storage for strongly admissible BLR? format depending on the maximal rank value rmax allowed
in the shared bases. Storage is normalized with respect to BLR format (rmax = 0). Weakly admissible BLR?
corresponds t0 rmax = 0o. We have used € = 10~8.

in Section 9.5.1, a deeper hierarchy usually leads to a larger prefactor term in the complexity, is
more complex to implement, and, most importantly, is not needed to achieve O(n) complexity
for sparse problems. The main question that we elucidate is therefore: how many levels ¢ are
actually necessary to achieve linear complexity for sparse problems?

To give an intuition of how the MBLR format works, let us consider to the two-level case
(¢ = 2). We consider a block ¢ x ¢ matrix partitioned into ¢ X ¢ blocks, and we assume that
there are at most p = O(1) full-rank blocks on any block-row or block-column. Moreover, for
simplicity, we also assume that the remaining blocks are of rank at most » = O(1). Then, with
a two-level BLR format, each of the full-rank blocks is compressed as a (one-level) BLR matrix.
Hence, its storage cost is in O(t%/?), according to the one-level BLR complexity. The storage
complexity is therefore of order

gt3? + ¢*t = ntt/? 4 n2/t,

and for t = n?/3, this expression attains its minimal value O(n4/ 3). We conclude that using two
levels reduces the asymptotic storage complexity from O(n3/2) to O(n*/?).

The flop complexity can also be reduced using more levels. To do so, we must adapt the BLR
LU factorization described in Algorithm 9.1 to the MBLR format. The algorithm is essentially
the same as presented in Algorithm 9.1, except that the kernels now involve MBLR blocks rather
than full-rank ones. For example, the line that computes the LU factorization LipUkr = Ak
now consists in a (recursive) MBLR LU factorization, rather than a dense one. Similarly, the
line that solves ZMJNI;” = ﬁ;ﬂ now takes the form of an MBLR triangular solve since Zkk is an
MBLR matrix. Moreover, with strong admissibility (that is, off-diagonal blocks are allowed to be
MBLR), further kernels are necessary, such as an MBLR triangular solve with an MBLR block
right-hand side, and block products between any combination of low-rank and MBLR blocks.
We omit a detailed description of these kernels, which can be found in [24].

In [24], we carry out a recursive analysis to compute the asymptotic complexity for a general
number of levels ¢, both in terms of storage and flops. We obtain the following result.

Theorem 9.3 (Theorem 5.1 in [24]). Let us consider a dense matriz of order n represented as
an £-level MBLR matriz and let r be a bound on the maximal rank of any block on any level.

82

Then the storage and flop complexities of the MBLR LU factorization are

Storage = O(n% r“%l), (9.10)
Flops = O(n% N%) (9.11)

Theorem 9.3 proves that the asymptotic complexity for dense MBLR matrices steadily de-
creases as the number of levels increases. Table 9.1 reports the resulting complexities for
¢ = 2,3,4, under the assumption that » = O(1). Crucially, this confirms that only a few
levels are enough to achieve linear complexities for sparse problems. Even for 3D problems, two
levels suffice to achieve O(n) storage complexity, and three levels suffice to achieve O(nlogn)
flop complexity. We confirm these complexity bounds experimentally in [24].

9.5.4 Fast matrix multiplication

A completely different idea to improve the asymptotic flop complexity is to consider the use
of fast matrix multiplication. Indeed, all previously given complexity bounds assume the use of
conventional matrix multiplication, whose complexity for n x n matrices is in O(n?). So-called
“fast” algorithms can reduce this complexity to O(n*), with 2 < w < 3. The first and most
well-known one is Strassen’s algorithm [239], for which w = log, 7 ~ 2.81.

Pernet and Storjohann [223] investigate the use of fast matrix multiplication for accelerating
computations on HODLR (that is, weakly admissible H) matrices. Since the complexity is
already linear in n in the hierarchical case, their goal is to reduce the asymptotic dependence
on r. They show that exploiting fast matrix multiplication for each intermediate product in
the H factorization can reduce its asymptotic complexity from O(nr?) to O(nr*~!) (we hide
logarithmic factors in the O(-) notation for simplicity).

Can fast matrix multiplication similarly be used with BLR matrices? In this case, the com-
plexity O(n?r) is linear in 7; it is its quadratic dependence on n that we would like to reduce.
We investigate this question in [26]. We first show that accelerating each intermediate product
separately as in [223] only reduces the O(n?r) BLR complexity to O(n?r“~2). This is not a
satisfactory result, since only the asymptotic dependence on 7 is reduced, instead of that on n.
We explain in [26] that this is because the fast multiplication of rectangular matrices reduces
the complexity exponent associated with the smallest of the three dimensions. Unfortunately,
the flop bottleneck of the BLR factorization consists of multiplying b x b blocks of rank r with
r < b, and hence involves highly rectangular matrix products.

To overcome this obstacle, we devise a new BLR factorization algorithm (Algorithm 4.1 in
[26]) that concatenates low-rank bases across a given block-row or block-column together. This
is similar to the construction step for building a BLR? matrix from a BLR one that we proposed
in [25]: the low-rank bases are concatenated before being compressed to find a shared basis.
Here, we only concatenate them in order to increase the granularity of the low-rank operations.
This allows for better taking advantage of fast matrix arithmetic and successfully reduces the
asymptotic dependence on n of the complexity. We prove indeed in Theorem 4.1 of [26] that the
complexity is reduced to O(n+1/2p(@=1/2) " This is a significant asymptotic reduction, even
for practical values of w. For example, for Strassen’s algorithm (w = log, 7 & 2.81), we obtain a
complexity approximately in O(n!:90470-904)

A possible drawback of fast matrix arithmetic is its larger error bounds in floating-point
arithmetic [159], [162, sect. 23.2]. Interestingly, this problem is less visible in the BLR setting.
Indeed, Theorem 9.1 shows that the low-rank truncation errors (of order €) combine additively
with the floating-point rounding errors (of order u), where usually u < . Since the use of
fast arithmetic only concerns rounding errors, we can expect it to have a limited impact on the
accuracy of the BLR LU factorization. This is for example illustrated in Figure 3.1(B) of [8].

83

9.5.5 Triangular solves with sparse right-hand side or sparse solution

So far we have been concerned with the complexity of the LU factorization. The complexity
of the LU triangular forward and backward solves is also relevant in contexts where its cost
is significant, such as when dealing with multiple right-hand sides or when using BLR as a
preconditioner for iterative methods.

In general, the number of flops required for the triangular solves is proportional to the number
of entries in the LU factors, and hence its asymptotic flop complexity is the same as the storage
complexity. However, complexity reductions can be obtained when dealing with a sparse right-
hand side b (for the forward solve Ly = b) or a sparse solution x (for the backward solve Uz = y).
Such sparse b and z arise in several applications, such as in geosciences for seismic imaging [31,
32], [61].

In the context of sparse direct solvers such as the multifrontal method (see Section 7.2), the
forward and backward solves amounts to bottom-up and top-down traversals of the multifrontal
tree, respectively, where at each node, a dense triangular solve is performed. However, a node
only needs to be traversed if it is on the path between the root node and a node associated with
a nonzero coefficient in b or x. Therefore, when b or x are sparse, entire parts of the tree can
be skipped. As an extreme example, if b or x only have one nonzero element, it is sufficient to
traverse the branch connecting that nonzero element to the root.

Naturally, skipping part of the tree affects the complexity calculations given in (7.1) for reg-
ular problems reordered with nested dissection. Crucially, the asymptotic complexity reduction
obtained by exploiting the sparsity of b or x strongly depends on dense storage complexity Cqense
of each front; the reductions are indeed significantly larger for compressed formats such as BLR.
Intuitively, this is because without BLR compression, the large fronts at the top of the tree tend
to dominate the total complexity, and so removing branches from the tree is less impactful. In
contrast, with BLR compression, the relative storage of the bottom of the tree increases, and so
exploiting the right-hand side or solution sparsity becomes even more beneficial.

This phenomenon can be quantified more precisely by using some sparsity model for b and
x. We have carried out the following complexity analysis in the context of the PhD thesis of
Moreau [200, chap. 2]; it has been presented at some conferences without proceedings such as [50]
but was never published. Let us consider a 3D problem (d = 3 in (7.1)) of order n = N3. Let
p denote the number of nonzeros of b or x. Clearly, if p = O(1) (that is, if p is a constant
independent of n), then the solves requires traversing O(1) branches of the tree, which yields the
complexity formula

logy, N

ZZ:; Cdense(iv—;). (9.12)

If Cgense(m) = O(m?) (no compression), we recover the same O(n*/?) solve complexity as when
b or x are dense. In this case, the sparsity of b and x may reduce the solve time, but not its
asymptotic complexity. In contrast, let Cgense(m) = O(m3/2) (BLR compression with constant
ranks). Now, (9.12) yields O(n) complexity, to be compared to the O(nlogn) BLR solve com-
plexity for dense b or x. We can therefore expect the solve time reduction to increase as log,,.
Interestingly, lower dense complexities lead to even higher asymptotic improvements. For ex-
ample, with the two-level MBLR. format (see Section 9.5.3), we have Cgense(m) = O(m?*/?) and
hence (9.12) yields an O(n®/?) complexity, which is sublinear in n, and a factor n'/3 smaller than
the two-level MBLR solve O(n) complexity for dense b or x.

This analysis extends to a number of nonzeros p = O(n®) that depends on n; this can
certainly happen, for example, when the nonzeros correspond to a 2D plane in a 3D domain, in
which case 8 = 2/3. In such cases, it is useful to distinguish where the p nonzeros are located

84

geometrically, since it affects the resulting asymptotic complexity. In the worst case, they are
uniformly distributed in the domain, and so the greater p is, the more branches need to be
traversed; in this case, the asymptotic complexity directly depends on p and the asymptotic
reduction obtained from the sparsity of b and x might be less than when p = O(1). However,
in typical applications with sparse b and x, such as in geosciences, the nonzeros correspond
to physical locations surrounding a given so-called “source” point in the domain, and so are
geometrically clustered. As a result, the number of branches to be traversed remains small and
the asymptotic reduction from exploiting the sparsity of b and = might be the same as when
p = O(1). Specifically, for 3D domains, assuming a dense complexity Cgense = O(m®) with
a < 3/2, the asymptotic complexity of the solve with p = O(n?) clustered nonzeros is the same
as with O(1) nonzeros for any 8 < 2a/3 [200].

Finally, the above complexity analysis for a single vector b or x also extends to multiple
right-hand sides B and solutions X. Because the nonzero structure of each column of B and
X is potentially different, we must pay attention to how we handle such cases since a naive
implementation would require traversing the nodes corresponding to the union of the sparsity
patterns across all columns. Naturally, one option is to process each column sequentially but this
prevents the use of efficient BLAS-3 operations. A better approach is to process the columns by
blocks, and permute them so that columns that belong to the same block share a similar sparsity
pattern; see the study of Amestoy et al. [62] for various such strategies.

9.6 An illustrative application: full waveform inversion

We conclude this chapter by illustrating the impact on applications of the BLR compression
(and its adaptive precision variant), which we have integrated in the MUMPS sparse direct
solver [13]. The results presented here were obtained in the context of a collaboration with the
WIND project dealing with full waveform inversion (FWI) applications; see [28].

High resolution imaging has many applications in civil engineering, oil exploration, earth-
quake seismology, medical imaging, nondestructive control testing, etc. FWI has become the
baseline imaging method in many application domains with the development of new acquisition
technologies and the continuous advances of high-performance computing. FWI relies on simple
principles: it aims at estimating the constitutive parameters of a medium contained in the co-
efficients of the wave equation by minimizing a distance between waves recorded by an array of
sensors and their numerically simulated counterparts. As such it is a PDE-constrained optimiza-
tion problem, which is solved with iterative gradient-based methods. At each iteration, building
the gradient of the misfit function with the adjoint-state method requires to compute the inci-
dent wavefields triggered by each source of the experiment and the so-called adjoint wavefields by
propagating the data residuals backward in time from the sensors. The wave equation is classi-
cally solved with numerical methods such as finite difference or finite element schemes to exploit
the full information content in the data. Moreover, the wave equation can be solved either in the
time-space or in the frequency-space domain. In the former case, solving the wave equation is an
initial condition evolution problem, which can be solved with explicit (matrix-free) schemes. In
the latter case, solving the time-harmonic wave equation for each source of the experiment is a
boundary value problem requiring the solution of a large and sparse complex-valued linear system
with multiple sparse right-hand sides. Operto and al. [213] have developed a frequency-domain
FWI for geophysical applications to image a geological medium containing tens to hundreds of
millions of unknowns and hundreds to thousands of seismic sources (right-hand sides). They
implement FWI in the frequency domain, where the Helmhotz equation is solved with a finite
difference method and the MUMPS solver.

85

https://www.geoazur.fr/WIND/bin/view
https://www.geoazur.fr/WIND/bin/view

Wavespeed (m/s)

FWI Gorgon model

z=1360m

Figure 9.5: Seismic imaging of the Gorgon field by frequency-domain Full Wavform Inversion (FWI) using MUMPS
solver. Top left: Reconstructed medium parametrized by compressional wavespeed. Top right: Same as previ-
ous figure with 25-Hz monochromatic wavefield superimposed. Bottom panels: depth slices of the medium
reconstruted by FWI. From left to right, tidal channels, mass-transport deposits, polygonal faults, and reservoir
partitioned into fault blocks. At 25 Hz, the matrix contains 531 million unknowns.

Table 9.2: Results for the Gorgon field. FR: standard full-rank MUMPS solver in fp32; BLR: block low-rank
solver with € = 1075; +mixed: adaptive precision variant (Section 9.4) using three precisions (fp32, rp24, rp16
from Table 12.1) for storage. Ana.+Fac.: analysis+factorization time; Solve: time to compute solution with one
right-hand side. Results obtained on Adastra supercomputer using 48 000 cores (500 MPI x 96 threads/MPI).

LU size (TBytes) Flops Time (s) Backward error
FR BLR +mixed FR BLR+mixed BLR+mixed BLR+mixed
Ana.+Fac. Solve
73 34 26 | 26x10® 05x10" | 5946 27 | 7x107*

In [28], we show how the memory and computational time of the LU factorization can be
reduced with BLR approximations and their adaptive precision variant, which allows for tackling
large scale (high frequency) problems that would be unfeasible with the standard full-rank (FR)
solver. Figure 9.5 presents the Gorgon gas field, an industrial seabed case study from the North-
West continental shelf, Australia. The matrix to be solved is a complex matrix with 531 million
unknowns. Table 9.2 reports the corresponding costs. The number of flops for the FR LU
factorization is 2.6 x 10'®, and the estimated memory necessary for the FR LU factors in fp32 is
equal to 73 TeraBytes. This is an estimate because the FR factorization could not actually be
carried out due to the large memory requirement. Here fp32 arithmetic is the baseline because
it provides sufficient accuracy for this class of applications.

The results in Table 9.2 show that BLR approximations with a threshold ¢ = 107° reduce
the size of the LU factors by a factor over 2x. Moreover, lower precisions can be used via
the adaptive precision approach described in Section 9.4. Here, the BLR+mixed approach uses
three precisions: fp32, and two 24- and 16-bit custom formats with truncated significand, rp24
and rpl6, that will be defined in Table 12.1 in Chapter 12. The use of adaptive precision BLR
further reduces the LU size by 25%, bringing the total reduction factor to almost 3x compared
with the fp32 FR baseline. Moreover, the backward error remains satisfactory and of order ¢, as
guaranteed by our analysis.

BLR approximations also reduce the flops for the LU factorization by a factor over 5x with

86

respect to the FR baseline. Here, mixed precision is only used for storage, and does not affect
the flop count. It may introduce a small time overhead due to the need to convert between
custom and fp32 precisions, but this overhead is typically very small for the factorization. For
the solve, which is a memory-bound operation, we may hope that the reduced LU size in mixed
precision would translate into a reduced time, but this requires developing an efficient memory
accessor that we will describe in Section 12.4. Note that the results in Table 9.2 predate the
development of this accessor and so the indicated solve time may be further optimized. This is
an important point because hundreds to thousands of right-hand sides need to be processed, so
the FWI simulation can easily be dominated by the time for solution, which thus becomes more
critical that the time for factorization.

These results have been achieved on the Adastra supercomputer at CINES (Montpellier,
France), using 48,000 cores (500 MPI processes x 96 threads/MPI). While the number of cores
used is mainly dictated by the memory requirements of the solver, it is interesting to measure
how efficiently we make use of them. Each node of Adastra is equipped with two 96-core AMD
Genoa EPYC 9654 processors, running at 2.4 GHz, which leads to a theoretical FLOPS rate of
38.4 GFLOPS per core in fp64 arithmetic. This yields a total theoretical peak of 3686 TFLOPS
on 48,000 cores using fp32 arithmetic. The actual FLOPS rate of the BLR LU factorization
is obtained by dividing the 0.5 x 10'® x 4 complex fp32 flops by the time, yielding about 336
TFLOPS. This corresponds to 9% of the theoretical peak, which is quite satisfactory considering
the large number of cores and the use of BLR approximations, which reduce the absolute time
but significantly degrade the arithmetic intensity and thus the FLOPS rate as explained in
Section 9.3. In fact, if we take instead the FR flops as baseline to compute an “effective” TFLOPS
metric, we nearly obtain an impressive 50% of the peak.

87

Chapter 10

Iterative refinement

Iterative refinement (IR) for solving a linear system Az = b is perhaps the oldest mixed
precision algorithm, and certainly one of the most successful ones. It was programmed by
Wilkinson in 1948 and since then it has been extensively analyzed and discussed.

In its most general form, IR simply repeats the following three steps to refine a given initial
approximate solution xg to Ax = b.

1. r=b— Axg
2. Solve Ad =1r
3. x1=x9+d

This corresponds to Newton’s method to find the zero of the function f(z) = b — Ax; in fact,
IR converges in one iteration if step 2 is solved exactly. The difficulty, but also what makes this
algorithm interesting to analyze, is that rounding errors delay its convergence.

IR is a versatile method that can take many different forms depending on both the precisions
used for each of its steps, and the solver used to compute the correction term d. In this chapter,
we review some of the most popular variants that use direct LU factorization—based methods,
Krylov methods such as GMRES, or their combination.

The contributions described in this chapter are based on the following papers: [5], [27], [15]
for Section 10.1; [11], [15], [17] for Section 10.2; [47] for Section 10.4. The discussion on the
historical developments of IR are based on the survey paper [10]; see also [245, Chap. 3].

10.1 LU factorization—based iterative refinement (LU-IR)

Algorithm 10.1 presents a version of IR based on an LU factorization of A, hereinafter referred
to as LU-IR. In its most general form, LU-IR uses three precision parameters. The LU factoriza-
tion is computed in precision uy and is used to compute the initial solution xy by substitution
in precision uy. Moreover, the LU factors are then reused at each step of the refinement loop to
solve for the correction term d by substitution, also in precision uy. The residual is computed in
precision u,., and the solution z is stored and updated in the working precision wu.

Carson and Higham [88] analyze this three-precision form of LU-IR and obtain the following
result, in which the componentwise condition number

AYIA]|z|] se
conde (4, 2) = |||L”|||”

appears. (Note that conde (4, z) < keo(4).)

89

Algorithm 10.1 LU-IR

Input: A € R b e R"™
Output: an approximate solution x € R™ to Az = b.

: Compute the factorization PA = LU in precision uy.
: Solve LUxo = Pb by substitution in precision wuy.
: for ¢ = 0 to iax or until converged do
Compute ; = b — Ax; in precision wu,..
Solve LUd; = Pr; by substitution in precision uy.
Update z;41 = x; + d; in precision u.
end for

NP g @

Theorem 10.1. Let LU-IR (Algorithm 10.1) be applied to a linear system Ax = b, where
A € R™" s nonsingular, and let L, U be the computed LU factors. If ¢ = |||A_1Hf||l7|||oouf
1s sufficiently less than 1 then at each refinement step the forward error is reduced by a factor ¢
until an iterate T is produced for which

[= Z]loo

T < 4pu, conds (4,) + u, (10.1)
z 0o

where p is the mazimum number of nonzeros in any row of [A b].
Proof. This is a direct application of [88, Corollary 3.3] to LU-IR, using [88, Eq. (7.2)]. O

Theorem 10.1 captures two essential properties of LU-IR. First, it shows that the limiting
accuracy (10.1) is independent of the precision uy, which only affects the convergence of the
algorithm; this motivates the use of lower precision for the LU factorization. Second, it shows
that the limiting accuracy depends on the condition number cond (A, z) only via the precision
of the residual u,, but not the working precision u; this motivates the use of higher precision for
the residual. Thus, in practice, the combinations of interest for the precision parameters satisfy
Ur < u < ug.

10.1.1 Historical developments

IR was programmed on a digital computer by Wilkinson in 1948 [249, p. 111 ff.]. The
traditional form of IR used by Wilkinson and others used a stable LU factorization with partial
pivoting, with uy = w and u, = u?. With such a stable LU factorization and with uy = u,
the convergence condition ¢ < 1 in Theorem 10.1 reduces to xK(A)u < 1. Thus, as long as the
problem is not numerically singular with respect to the working precision, this form of LU-IR
will converge. The use of extended precision in the computation of the residual is motivated by
the limiting accuracy (10.1). Indeed, if we set u, = u?, we obtain a limiting accuracy of order
u, independent of the conditioning of the problem as long as cond (A, z)u < 1. Wilkinson, and
subsequent authors, took advantage in computing the residual of the ability of many machines
of the time to accumulate inner products at twice the working precision at little or no extra cost.
The method was also used by Wilkinson and colleagues on desk calculating machines, making
use of their extra length accumulators in computing residuals [130].

In the 1970s, another usage of IR came to the fore: fixed precision refinement, in which only
one precision u = uy = w, is used. This is motivated by the term |||A7!||L||U||« in Theo-
rem 10.1, which can be much larger than k. (A) if the LU factorization is unstable. This is
notably the case when a weaker form of pivoting is used to accelerate the factorization and/or

90

preserve the sparsity of the matrix (see Section 10.1.3). Other types of unstable, but faster,
factorizations have been combined with iterative refinement to remedy their instability, such
as incomplete LU factorization [263] or Cholesky factorization for quasidefinite systems [137].
Jankowski and Wozniakowski [171] proved that an arbitrary linear equation solver is made norm-
wise backward stable by the use of fixed precision IR, as long as the solver is not too unstable
to begin with and A is not too ill conditioned. Skeel [235] analysed fixed precision IR for LU
factorization with partial pivoting and showed that one step of refinement yields a small compo-
nentwise backward error under suitable conditions. Higham [160] extended the componentwise
backward error analysis of fixed precision IR to a general solver, and later gave an analysis [161]
that covers the traditional and fixed precision forms and a general solver.

In the 2000s, hardware emerged in which fp32 arithmetic was much faster than fp64 arith-
metic, such as Intel chips with SSE instructions (a factor about 2) and the Sony/Toshiba/IBM
(STI) Cell processor (a factor up to 14) [179]. Motivated by this speed difference, Langou et
al. [181] proposed a new usage of IR in which the LU factors are computed at a precision lower
than the working precision (specifically, single versus double precision), that is, uy > u. If
the LU factorization algorithm is numerically stable, convergence is guaranteed provided that
k(A)us < 1. This approach is attractive because most of the work (O(n®) flops for dense sys-
tems) is done in the factorization phase; the refinement phase (O(n?) flops per iteration) has
negligible cost for large n, as long as the number of iterations remains reasonable. Thus, asymp-
totically, we may expect the speed of the entire solution to be determined by the speed of the
lower precision arithmetic. Using the Cell processor, Langou et al. [181] solved linear systems
with double precision accuracy, but speedups of up to a factor 8 over a double precision factor-
ization, by using LU-IR with a single precision factorization. Further experimental results are
reported by Buttari et al. in [84] for dense linear systems and in [83] for sparse ones. See [70]
for an overview of the methods developed in this period.

The popularity of LU-IR with a lower precision factorization has grown again in the recent
years with the emergence of half precision arithmetic (fpl6 and bfloat16). Indeed, half precision
arithmetic can be much faster on some hardware, notably GPU accelerators. However, LU-IR
with a half precision factorization can only guarantee convergence for well-conditioned problems:
the condition k(A)uy < 1 translates to x(A4) < 2000 in fpl6 and x(A) < 300 in bfloat16.
Two main approaches have been proposed to extend the applicability of half precision iterative
refinement to a wider range of problems: the first uses a more accurate solver, such as GMRES,
for computing the correction term d (see Section 10.2); the second uses more accurate hardware
such as tensor cores (see the following Section 10.1.2).

10.1.2 LU-IR with GPU tensor cores

As discussed in Section 4.1, GPU tensor cores and other similar units satisfying Model 4.1
can be much more accurate than standard half precision floating-point units by using single
precision for the intermediate accumulations in matrix products. In practical implementations
of LU factorization (see Algorithms 7.1 and 7.2), the matrix is partitioned by blocks so that the
LU factorization mostly relies on matrix products. Thus, such tensor cores units can also be
used to improve the accuracy of LU factorization. Haidar et al. [153] propose a right-looking LU
factorization algorithm (Algorithm 7.2) that harnesses mixed precision fp16,/fp32 tensor cores to
accelerate the updates of the trailing submatrix (the UPDATE step), which account for the O(n?)
part of flops; the remaining O(n?) flops (the FACTOR step) are carried out in fp32 arithmetic.

In [5], we analyze this algorithm and we obtain the following results.

91

Theorem 10.2 (Theorem. 4.3 of [5]). Let the partitioned LU factorization (Algorithm 7.2) of
A € R™™ be computed using precision unigh for the FACTOR step and using a mized precision
matriz multiplication unit satisfying Model 4.1 for the UPDATE step. Then the computed LU
factors L and U satisfy

Eﬁ = A+ AA, |AA‘ < (2ulow + U120W + 'Y:;igh(l + ulow)Q) (lA‘ + |E||fj‘)7 (102)
where YREY = nupign /(1 — Nunign)-

Theorem 10.3 (Theorem. 4.4 of [5]). Let the partitioned LU factorization (Algorithm 7.2) of
A € R™™ be computed using precision unign for the FACTOR step and using a mized precision
matriz multiplication unit satisfying Model 4.1 for the UPDATE step. Moreover let the system
LUx = b be solved by substitution in precision unign. Then the computed solution T satisfies

(ATAAE = b, |AA] < (2t FAEE (o420 4 (112 (| A1 ZI|D1). (103)

where yhigh = NUnigh/ (1 — NUnigh)-

Theorems 10.2 and 10.3 show that the reduced error bound (of order oy + NUpigh instead
of nuey) for matrix multiplication in Theorem 4.1 is inherited by both LU factorization and the
solution of linear systems, respectively. This error bound reduction translates into a significant
accuracy boost in practice: for example, Figure 4.2 in [5] shows that this mixed precision LU
factorization algorithm achieves a reduction of the backward error by about two orders of magni-
tude compared with a standard fp16 factorization. Therefore, using it in LU-IR leads to a faster
convergence and allows for handling a wider range of condition numbers (see for example [153,
Figure 7(b)]).

One weakness of this approach is that the matrix is stored in fp32 arithmetic, and thus
the reduced memory consumption and data movement of fpl6 arithmetic are not exploited. It
is thus tempting to switch the matrix storage to fpl6; however, special care has to be taken
not to lose the accuracy boost of tensor cores in doing so. Indeed, if one simply switches the
matrix A to fp16 in Algorithm 7.2, the update operations A;; < A;; — L;,Uy; will accumulate in
fp16 arithmetic even when using tensor cores with fp32 accumulation. This will negate almost
entirely any accuracy benefit from using tensor cores. In [27] we propose a solution to this
issue which allows for storing the matrix in fpl6 while retaining the accuracy boost of tensor
cores. The key idea is to use a left-looking algorithm (Algorithm 7.1) instead of a right-looking
one (Algorithm 7.2). Indeed, in the left-looking algorithm, all updates to a given block A;; are
performed together one after the other. This allows for introducing a temporary fp32 buffer B,y
in which we accumulate the updates in fp32 arithmetic: we change the operation

k-1
A — Ay — ZLijUjk

=1
in Algorithm 7.1 to
By, = fp32(Air)
k-1
Bix < Bix — Z LijUjk,
j=1

Aik = fplG(Blk)

92

The updates to the blocks Ay; are handled similarly. We carry out a rounding error analysis
that proves that this modification preserves an error bound where the term proportional to iy
is independent of n. Since this approach only requires fp32 buffers of small size, it halves the
memory footprint of algorithm. Moreover, we also analyze the volume of data movement and
show that it is also halved. As a result, the factorization is significantly faster: on A100 GPUs,
we obtain a peak performance of 170 TFLOPS, whereas the algorithm of Haidar et al. using
fp32 storage only achieves 52 TFLOPS (see Figure 6 in [27]).

We also analyze in [27] the effect of the precision used for the FACTOR step. We show
that rather than performing this step entirely in precision jow OT Unigh, the best performance-
accuracy tradeoff is achieved by doubly partitioning the matrix and using the mixed precision
tensor cores in the FACTOR step as well.

10.1.3 LU-IR with sparse direct solvers

Sparsity presents both opportunities and obstacles to the use of IR.

On the one hand, while LU factorization of dense matrices in single precision tends to run
twice as fast as in double precision, this speedup may not be attained for sparse matrices. This is
notably because the analysis phase of the solver (matrix reordering and symbolic factorization)
does not involve floating-point arithmetic and so does not benefit from reducing the precision.
More subtly, the ratio between the cost of the LU factorization and the LU substitutions in
the refinement loop is typically smaller for sparse systems. Indeed, while this ratio is of order
n3/n? = n for dense systems, it is only of order n?/n*/3 = n?/3 for sparse systems arising from
a regular 3D problem, and this ratio is even smaller for a 2D problem (see Section 7.2 and
Table 9.1). Therefore, the relative cost of the LU factorization is lower for sparse systems, which
provides less room to amortize the cost of the iterations in the refinement loop.

On the other hand, some of the features of iterative refinement are especially attractive when
the matrix is sparse. First, as we explain in [15], iterative refinement with a lower precision LU
factorization can lead to significant memory savings due to the fact that the LU factors of a sparse
matrix are typically much denser, and unlike for dense matrices, the overhead of keeping a high
precision copy of the original matrix is negligible. Second, as mentioned in Section 7.3, to best
preserve the sparsity of the matrix, sparse direct solvers often employ relaxed pivoting strategies,
such as threshold partial pivoting [118, Chap. 7] or the more aggressive static pivoting [186],
which can lead to large growth factors; iterative refinement can overcome the resulting numerical
instability.

In [15], we implement LU-IR with the sparse direct solver MUMPS, and compare it to
GMRES-IR as discussed in the next section.

10.2 GMRES-based iterative refinement (GMRES-IR)

As evidenced by Theorem 10.1, one of the main limitations of LU-IR is that its success
is guaranteed only when |[[|A7![|L||U]|| < 1, which reduces to k(A)us < 1 for a stable LU
factorization. Thus, if the LU factorization is computed in low precision, LU-IR is limited to
well-conditioned matrices. This limitation can be overcome by using a more accurate solver for
the correction system Ad = r. In particular, a natural idea is to solve the system by GMRES (see
Algorithm 8.1), using the low precision LU factors as a preconditioner. This GMRES-IR approach
is presented in Algorithm 10.2, in which GMRES is used to solve the left-preconditioned system
Ad = U'L7'Pr, where A = U 'L™'PA. The products with A are computed in a precision
up that is potentially different from the precision u, of the rest of the GMRES operations, for
reasons that will be made clear shortly.

93

Algorithm 10.2 GMRES-IR with LU preconditioner.
Input: A, b.
Output: An approximate solution to Ax = b.

: Compute the factorization PA = LU in precision uy.

: Solve LUxy = Pb by substitution in precision uy.

: for ¢ = 0 to iax or until converged do

Compute r; = b — Ax; in precision u,.

Solve UT'L™'PAd; = U 'L7'Pr; GMRES in precision u, with the products with
U~'L7'PA in precision u,.

Update z;41 = x; + d; in precision u.

7: end for

<

GMRES-IR was proposed by Carson and Higham [87] and was originally intended to solve
linear systems nearly singular to the working precision w; however, Carson and Higham [88]
subsequently proposed using it to exploit LU factors computed in a lower precision. The rationale
in this case is that while solving the correction equations Ad; = r; by direct substitution can
only provide a relative accuracy of order k(A)uy, GMRES does not share the same limitation.
In particular, Carson and Higham [88] analyze Algorithm 10.2 with the constraints u, = u and
u, = u?. With a stable GMRES implementation such as MGS-GMRES (Section 8.2, [219]), the

correction equations are solved with relative accuracy x(A)u, which is a significant improvement
since we have v < uy and usually also (A) < r(A). However, the constraints ug = u and
especially u, = u® are quite strong in practice. Notably they require the LU factors to be
applied in precision u?, twice the target precision (hence, if we target double precision accuracy,
we would need to apply them in quadruple precision, which is very slow on most systems).

In [11], we relax these requirements by allowing the products with A to be performed in a
precision u,, possibly lower than u?, and the rest of the GMRES computations to be performed
in a precision u, possibly lower than u. This results in the five-precision algorithm described in
Algorithm 10.2. Analyzing this algorithm requires extending the stability analysis of Paige et
al. [219] to the two-precision preconditioned GMRES used here; as discussed in Section 8.2 (see
Theorem 8.2), we obtain a backward error bound of order x(A)u, +ug. The correction equations

are thus solved with relative accuracy x(A)(k(A)u, + ugy), and we obtain the following theorem.

Theorem 10.4 (Section 3.3 of [11]). Let GMRES-IR with LU preconditioner (Algorithm 10.2)
be applied to a linear system Ax = b, where A € R™*" is nonsingular. If ¢ = k(A)(ug+r(A)u,) <
/<;(A)2ufc(ug + k(A)up) is sufficiently less than 1 then at each refinement step the forward error

is reduced by a factor ¢ until an iterate T is produced for which

[=]l

Tz < 4dpu,. cond (4,) + u, (10.4)

where p is the mazimum number of nonzeros in any row of [A b].

Theorem 10.4 shows that GMRES-IR and LU-IR can attain the same limiting accuracy (10.4),
which depends on v and w,. GMRES-IR improves the convergence condition from s(A)uy < 1

to k(A)(k(A)up +uy) < 1, which depends on w,, u4, and the condition number x(A); since A is
preconditioned by the LU factors computed in precision uy, the convergence of GMRES-IR also

depends on uy through the bound £(A) < x(A)*u? [88, Eq. (8.3)]. Note that this bound is often

pessimistic and that we typically have k(A) ~ k(A)uy.

94

Algorithm 10.2 allows for a flexible tradeoff between performance and robustness depending
on the choice of its five precisions. There are thousands of possible combinations, which we
narrow down in [11] to a few combinations of practical interest. One combination of particular
interest uses low precision only for the LU factorization (u; = wow) and double precision for
the rest of the operations (uy = u, = u, = u = upign). Haidar et al. [153, 152] implement
this variant with GPUs using fpl6 as the low precision and fp64 as the high precision; they
show that for several matrices for which LU-IR takes a large number of iterations to converge,
GMRES-IR converges in a much smaller number of iterations and, for some of them, retains an
attractive performance boost compared with LU-IR with an fp32 factorization. However, a fast
convergence can be obtained with LU-IR by using the mixed precision fp16/fp32 tensor cores
units, as discussed in Section 10.1.2.

In [15] we implement the same combination but with fp32 as the low precision, using the
multifrontal solver MUMPS for the LU factorization, and we compare this variant of GMRES-IR
with LU-IR for solving a range of large and ill-conditioned sparse systems coming from a variety
of applications. We obtain reductions of up to a factor 2 in both execution time and memory
consumption over the double precision MUMPS solver, with LU-IR being usually faster than
GMRES-IR, although the latter is more robust and successfully converges for all test problems.

Note that the bounds on k(A) for convergence guarantees are not always sharp, so it can
be difficult to decide which variant should be preferred for a particular problem. To address
this issue, Oktay and Carson [209] propose a multistage iterative refinement that switches to
increasingly robust but also more expensive variants, starting with LU-IR and moving to a
subset of the five-precision GMRES-IR variants analyzed in [11]. The decision of when to switch
is based on the error bounds obtained by Demmel et al. [109].

10.2.1 GMRES-IR with BLR factorization

As discussed in Chapter 9, in many applications the matrix is amenable to block low-rank
(BLR) compression. As established by Theorem 9.1, the stability of the BLR LU factorization
is controlled by the low-rank truncation threshold e. Thus, BLR solvers can be used either as
direct solvers (setting e to the target accuracy) or as preconditioners to iterative methods. In
particular, they can be used in conjunction with iterative refinement, both LU-IR or GMRES-IR.

In the study [15] already mentioned above, we also investigate the use of BLR compression.
This first requires to extend the error analysis of IR to a more general model of approximate LU
factorization where the approximations are not necessarily coming from the use of lower precision
arithmetic. Theorem 4.1 of [15] achieves this, and shows that LU-IR and GMRES-IR converge
under the same conditions as usual by replacing uy (the precision of the factorization) with e.
Since the study focuses on sparse direct solvers, for which relaxed pivoting strategies are quite
common, we also investigate the role of the growth factor p,, in the convergence of LU-IR and
GMRES-IR. Interestingly, we prove that p, multiplies the terms proportional to both uy and
up, but not those proportional to €. Since we usually have € > uy > wu,, this implies that the
effect of a large growth factor p,, is much less visible when employing BLR compression.

We illustrate experimentally the behavior of IR with BLR compression by using the MUMPS
solver. Our results show that IR can still converge with a relatively aggressive compression
corresponding to large values of e, while allowing for large performance gains with respect to
the double precision solver: we obtain reductions of the execution time of up to 5.5x and of the
memory consumption of up to 3.5x. Moreover, GMRES-IR can converge for larger values of ¢
than LU-IR, which leads to increased performance in some cases, especially in terms of memory
consumption.

95

10.2.2 GMRES-IR with cheaper (or no) preconditioner

Algorithm 10.3 GMRES-IR with no preconditioner.
Input: A, b, xg.
Output: An approximate solution to Ax = b.

1: for ¢ = 0 to iyax or until converged do

2: Compute r; = b — Ax; in precision u,

3: Solve Ad; = r; by GMRES in precision u,.
4: Update z;41 = x; + d; in precision u.

5: end for

Computing an LU factorization can be expensive, especially for large, sparse matrices. GMRES-
IR can also be effective with a cheaper preconditioner M ~!, or with no preconditioner at all. In
this latter case, Algorithm 10.2 reduces to Algorithm 10.3, which has the form of an inner—outer
scheme: the outer loop for iterative refinement (in precision u, with the residual computed in a
possibly higher precision w,.), and the inner loop for solving the correction equations with GM-
RES in lower precision u,. Assuming a backward stable form of GMRES is used, the correction
equations are solved with relative accuracy k(A)u, and thus we obtain the following theorem.

Theorem 10.5. Let GMRES-IR with no preconditioner (Algorithm 10.3) be applied to a linear
system Ax = b, where A € R"*™ is nonsingular. If ¢ = k(A)ugy is sufficiently less than 1 then
at each refinement step the forward error is reduced by a factor ¢ until an iterate T is produced
for which

I — Zlloo

2l < 4dpu,. cond (A,) + u, (10.5)
T||oo

where p is the mazimum number of nonzeros in any row of [A b].

Proof. A backward stable form of GMRES in precision u, will eventually converge to a relative
accuracy of order k(A)ug, so this is a direct consequence of Theorem 6.2 of [10]. See also
Theorem 6.3 of [12]. O

Note that the inner GMRES solver can be terminated before reaching a backward error u,:
then in the convergence condition x(A)u, < 1 in Theorem 10.5, u, should be replaced with the
backward error actually achieved.

Algorithm 10.3 is one form of mixed precision restarted GMRES; however, to guarantee
convergence, the inner GMRES solver must be allowed to continue to iterate until a sufficiently
small residual has been achieved, rather than terminating after a fixed number m of iterations,
as is more commonly implemented due to cost and memory constraints. However, this result
can also provide insight on this more practical GMRES(m) variant. Indeed, even though the
convergence of GMRES(m) cannot be guaranteed when m < n (to any level of accuracy, and
regardless of the choice of precisions), this theorem does indicate that if a relative accuracy
¢ < 1 is reached for sufficiently many outer iterations (cycles), then the process will eventually
converge. Moreover, in some cases running GMRES in low precision u, does not affect its
convergence history until the residual becomes close to uy; in these cases, we can state that if
the full precision (u, = v) GMRES(m) converges, then its mixed precision form (u < u,) will
do so too. Naturally, if m inner iterations achieve a residual smaller than ug, then the use of
mixed precision will deteriorate the convergence. Hence, the use of mixed precision tends to be
more noticeable for large values of m; this effect is analyzed in detail by Zhao et al. [259].

96

Algorithm 10.3 was first described by Turner and Walker [241], who perform the inner loop in
single precision (u,) and the outer loop in double precision (u and u,), and use a fixed number of
inner GMRES iterations. Buttari et al. [83] implement several inner—outer iterative algorithms
similar to GMRES-IR employing single and double precisions for the solution of sparse linear
systems. In particular, one version uses GMRES for the inner loop and FGMRES for the outer
loop; this version is also studied by Baboulin et al. [70]. More recent implementations of these
methods, still using only single and double precisions, are described by Lindquist et al. [188,
190] and Zhao et al. [259] for CPUs and by Loe et al. [193] for GPUs. Iwashita et al. [170]
propose a restarted GMRES where the inner loop uses integer arithmetic and the outer loop
uses floating-point arithmetic.

10.2.3 GMRES-IR with mixed precision preconditioned GMRES

The advances in the error analysis of GMRES-IR have been achieved concurrently (and often
in the same work) as those in the analysis of GMRES itself. Indeed, the two are closely related
since the bounds on the attainable error of GMRES directly determine the convergence conditions
(and speed) of GMRES-IR.

The GMRES-IR convergence bounds given in the previous sections predate the most recent
and general analysis of mixed precision preconditioned GMRES presented in Section 8.3.1. We
have indeed made the choice to keep the above GMRES-IR results in their original form, for
consistency with the corresponding papers. However, the more general bounds of Section 8.3.1
are highly relevant in the context of GMRES-IR. Notably, we have seen that it is meaningful
to decouple the precision u, of the products with the preconditioned matrix into two distinct
precisions u,, and u, used for the products with the preconditioner and the original matrix,
respectively. In addition, GMRES-IR has focused on using left-preconditioned GMRES for the
correction system [87, 88|, [11, 15], but we have seen that right and flexible preconditioning
can be more (or less) robust depending on the combination of precisions. This motivates a
unified experimental study to compare the performance of these different options in the context
of GMRES-IR; see Research Problem 16.9.

10.3 BiCGStab-based iterative refinement

GMRES-IR is a general inner-outer method and many of the results described above also
apply if the inner GMRES is replaced by another iterative solver. In particular, in this section we
discuss the use of BiCGStab (see Section 8.4) and in the next one that of the conjugate gradient
(CG) method.

In [47], we investigate BICGStab-based iterative refinement (hereinafter BICGStab-IR), that
is, iterative refinement with a low precision BiCGStab as inner solver. This amounts to using
a restarted BiCGStab solver, which is much less common than restarted GMRES, primarily
because restarting GMRES is helpful to contain the size of the Krylov basis, whereas restarting
BiCGStab (in a uniform precision context) is generally unhelpful and can on the contrary delay
convergence. However, in a mixed precision context, restarting BiCGStab becomes relevant since
it allows for attaining high accuracy despite performing most of the operations in low precision.
The downside of this approach is that restarting can slow down the convergence; hence there is a
tradeoff between the cost of the iterations and their number. We note that the same idea has been
investigated by Zhao et al. [258], who also observed the same issue with delayed convergence.

Motivated by this delayed convergence issue, in [47] we investigate a variant of BiCGStab
called “flying restart” (hereinafter BiCGStab-FR), which was proposed in 1995 by Sleijpen and
Van der Vorst [236]. The original motivation for this variant was to improve the attainable

97

1.4+ . B Outer

[Other inner
B SpMv
B Precond

@ # iterations

=
N
|
L]

=
o
I

)
n
o
(S
T]
w0.8
N
'© 0.6
£
1S
S0.4-
0.2
0.0-
t @ S x <t o o
O — O - o - L
& e &
gcs ivaskbo petrobras50

Figure 10.1: Normalized execution time of three solvers (uniform fp64 BiCGStab, BiCGStab-IR, and BiCGStab-
FR) for three IFPEN matrices. We indicate the time breakdown in the outer loop and in the inner loop (itsef
composed of the SpMVs, the preconditioner application, and other vector operations).

accuracy of BiCGStab in finite (uniform) precision. Similarly to BiCGStab-IR, BiCGStab-FR
regularly restarts the solver by replacing the right-hand side with the explicit residual of the
current solution; however, BiCGStab-FR. does not reset the internal state of the solver and thus
can decrease the risk of delaying the convergence. In [47], we propose a mixed precision version
of BiCGStab-FR. We show that it also attains high accuracy and can sometimes converge faster
than BiCGStab-IR. Moreover, the convergence of this mixed precision BiCGStab-FR method is
less sensitive to the restart parameter than BiCGStab-IR, which makes its numerical behavior
more consistent.

Figure 10.1 illustrates the performance of mixed precision BiCGStab-IR and BiCGStab-FR,
using fp32 for the inner solver and fp64 for the outer loop. The bars correspond to the execution
time normalized with respect to the uniform fp64 BiCGStab, and also show a breakdown of the
time spent in the outer loop (which initializes the system) and in the inner loop (itsef composed
of the SpMVs, the preconditioner application, and other vector operations). This breakdown
shows that the inner operations are accelerated thanks to the use of the lower fp32 precision
in BiCGStab-IR and BiCGStab-FR. Speedups can thus be expected when this acceleration is
achieved without increasing the number of iterations too much. The black dots in the figure
show that this is always the case for BiCGStab-FR, which is able to maintain a fast convergence
even when BiCGStab-IR does not. Overall, significant speedups of up to nearly the ideal 2x are
achieved.

98

10.4 CG-based iterative refinement

If the matrix A is symmetric positive definite, it is natural to seek to exploit this property to
reduce the cost of the solution. Higham and Pranesh [163] investigate a version of Algorithm 10.2
in which GMRES is replaced by CG and the LU factorization is replaced by a Cholesky one.

This raises two potential issues. First, unlike GMRES, CG is not backward stable, and the use
of finite precision arithmetic could in principle prevent its convergence. However, the experiments
in [163] suggest that in practice, CG often converges as fast as GMRES. Second, the use of low
precision may lead to a loss of positive definiteness, which causes the Cholesky factorization to
break down. To minimize the risk of this happening, Higham and Pranesh [163] propose to scale
and shift the matrix as Ay = p(D"*AD™! + cuyl). The two-sided scaling H = D~ *AD™1,

where D = diag(a}i/ 2)7 produces a unit diagonal matrix with off-diagonal elements bounded in
magnitude by 1. The diagonal of H is then shifted by cus, an amount intended to lift the smallest
eigenvalue sufficiently above zero. Finally, a multiplicative factor g = 6 fiax /(14 cuy) is applied,
where § < 1 and fiax is the maximum representable floating-point number in precision uy. This
scaling aims at utilizing as much as possible the range of the low precision, an idea first proposed
by Higham, Pranesh and Zounon [164] for LU factorization. As explained in [163], shifting H by
a multiple of I is better than shifting A by a multiple of I, as it is equivalent to shifting A by a
multiple of diag(a;;) and so it makes the same relative perturbation to each diagonal element of

A.

99

Chapter 11

Adaptive precision algorithms

Summation exhibits a very special property: summing small numbers to large numbers tends
to leave the large numbers mostly unchanged. In the most extreme case, the small number may
be completely absorbed, lost, and if this occurs repeatedly we run into the phenomenon that we
have called “stagnation” (see Section 3.1), which can be problematic. However, more generally,
when adding two numbers a + b where |b| < |a|, the small number b might change the large
number a, but only by a small quantity. This is illustrated in Figure 11.1, where many of the
least significant bits of b are ignored.

In cases where the sum is ill conditioned and suffers from cancellation, this observation can
be quite problematic, since the lost bits of the small number b might be important to the final
result. This difficult case requires the use of more accurate summation algorithms, such as those
discussed previously in Section 4.3. However, if the sum is well conditioned, or the amount of
cancellation is in any case acceptable, then this observation stops being a problem and becomes
an opportunity. Indeed, if we accept the fact that most of the bits of b are going to be lost anyway,
then we may decide to store b in low precision (with as few as p bits in Figure 11.1), without
impacting significantly the accuracy. Moreover, if b is the result of a previous computation, this
computation can be performed in low precision.

This key idea is at the foundation of an emerging subclass of mixed precision algorithms,
that we have called “adaptive precision” (see section 14 of [10]). Adaptive precision algorithms
dynamically adapt the precision of each operation or variable based on the data at hand. The
precisions are chosen based on the magnitude of the variables being summed together. Since
these magnitudes can usually be expected to vary in a somewhat continuous way, adaptive
precision algorithms can deliver a similarly continuous level of accuracies. They have thus been
called “variable accuracy”, as opposed to “variable precision”, algorithms. For the same reason,
adaptive precision algorithms can leverage a continuum of different precision formats—the more
formats are available, the larger gains can be expected, since we can adapt more finely the
precisions to the data. Throughout this chapter, we will denote as € > 0 the desired accuracy

64 bits

+b LT T Ty

p bits Ignored bits

Figure 11.1: Summing a small number to a large number leaves the large one mostly unchanged.

101

and we will consider p different precisions with unit roundoffs u; < e < ug < ... < u, (we only
need the first precision to provide an accuracy of at least €, and the remaining p — 1 precisions
are the “low” precisions).

The contributions described in this chapter are based on the following papers: [18], [36] for
Section 11.1; [16] for Section 11.2.

11.1 Adaptive precision sparse matrix—vector product

In [18], we develop an adaptive precision algorithm for computing a sparse matrix—vector
product (SpMV) y = Az. Given p available precisions u1,. ..,u,, the idea is to split A into p
matrices A, ... A®) with disjoint sparsity patterns (that is, each element of A belongs to
exactly one of the A®*) matrices) and to store matrix A®*) in precision uy. Then, the SpMV can
be efficiently computed as

where the partial SpMV ARz is performed in precision wuy.
The following result provides a precise criterion to decide which elements of A go into each
A®) matrix, so as to obtain a backward error bounded by a user-controlled parameter .

Theorem 11.1 (Theorem 3.1 of [18]). Let A € R™*™ and x € R™. Let ¢ > 0, consider p
precision parameters such that u; < e < up < ... < up, and let upy; = 1. Define the split
Am YV) AR such that for any nonzero element ai; we have, for k=1:p,

a;

. A A
R {ﬂk(aij) if laig| € (G S, (11.1)

0 otherwise,

where () denotes the operator that rounds to precision uy,. Let y*) = A®)z be evaluated in
precision ui and let y = Zi:l y® be evaluated in precision uy. Then the computed § satisfies

y=(A+AA), [|AA] <ce|lAl, (11.2)

where ¢ is a small constant (c < ¢2, where q is the maximum number of nonzero elements per
row of A).

The criterion (11.1) shows that a given element a,; should be stored in a precision uy, that is
inversely proportional to its magnitude |a;;|. The bound (11.2) should be compared to the bound
|AA| < qui||A|| obtained by computing the SpMV entirely in uniform precision u;. By setting
€ = w1 we recover almost the same accuracy while potentially allowing the use of lower precisions
if the elements of A exhibit wide variations in magnitude. Moreover, we can also use larger values
of € to achieve any level of desired accuracy that is not constrained by the precision parameters
of the available arithmetics. Finally, while (11.2) is a normwise bound, a componentwise one can
be obtained by replacing ||A|| with (|A||z]); in (11.1) (see Theorem 3.1 and Section 3.1 of [18]
for details).

Note that, since we have set 4,11 = 1 in Theorem 11.1, elements of magnitude smaller than
g||A|| will not belong to any A®) and will thus be dropped, that is, replaced with zero. This
observation can significantly increase the sparsity of the adaptive matrix representation.

Since the SpMV is a memory-bound operation, its cost is expected to follow the cost of storing
A. In order to measure the latter, we need to account for the cost of storing the indices. For

102

[y
o
o

W —&— Uniform {p32, storage=1

| —e—Uniform bfloat16, storage=0.50
Adaptive & = 272, storage=0.88|3

—s— Adaptive ¢ = 272, storage=0.80

—+— Adaptive e = 2718, storage=0.68 |]

* Adaptive e = 2716, storage=0.61

=
o
N

Backward error
5 = = =
. 5 & &
o © (2] B

,_\

S)
KR
N
:

10-14 I I I I I I I T
500 1000 1500 2000 2500 3000 3500 4000

Iteration

Figure 11.2: Convergence of restarted GMRES for uniform and adaptive precision variants of SpMV. The matrix
is ML _Laplace from SuiteSparse, restart size is 80, a diagonal Jacobi preconditioner is used. Storage costs for
the matrix (normalized with respect to the uniform fp32 variant) are provided.

example, for a compressed sparse row (CSR) representation, storing A requires nnz(A) floating-
point values and nnz(A) +n + 1 indices, where nnz(A) denotes the number of nonzero elements
of A. In bytes, the storage cost is therefore nnz(A) f1 + (nnz(A) +n + 1)i where f; and 4 are the
byte sizes of floating-point numbers in precision u; and of integers, respectively. In comparison,
the cost of storing A, ..., AP ig

zp: <nnz(A(k))fk + (nnz(A®) +n + 1)i> < (nnz(A) +p(n+1))i+ zp: nnz(A®) i, (11.3)
k=1

k=1

where °F_ nnz(A®) < nnz(A) since the A®) have disjoint sparsity patterns (the left-hand
side may be smaller than nnz(A) if some elements are dropped). Formula (11.3) shows that
the adaptive precision representation of A requires at most only (p — 1)(n + 1) extra indices, an
overhead cost which should largely be compensated by the reduction of the size of the floating-
point values, provided that the matrix presents sufficient elements that can be switched to low
precision (nnz(A™M) < nnz(A)) and sufficient nonzero elements per row (nnz(4) > n).

We carry out an extensive experimental study in [18] that confirms that this adaptive pre-
cision approach can lead to significant storage reductions for a wide range of sparse matrices
from various applications. We also confirm that these storage reductions translate to signifi-
cant speedups on multicore CPU architectures when using two precisions, fp64 and fp32, which
are supported in hardware. In principle, the approach may benefit from a larger number of
precisions, and since SpMV is memory-bound, it could be further accelerated by using custom
precisions that are not supported in hardware. We undertake this goal in [36], by developing
a seven-precision SpMV which, in addition to the standard fp64 and fp32 arithmetics, also uses
custom precision formats using 56, 48, 40, 24, and 16 bits (the CPU hardware targeted here does
not support half precision arithmetic). Achieving efficiency with these custom formats requires
developing the memory accessor that will be described in Section 12.2.

In [18], we also investigate the use of this adaptive precision SpMV to accelerate mixed
precision restarted Krylov solvers, including GMRES and BiCGStab. We show that the use of
adaptive precision SpMYV is particularly attractive in this context, due to several factors. First, if

103

we use small restart sizes and a cheap preconditioner (or none at all), the SpMV is the bottleneck
of the computation. Second, we require many SpMVs where the matrix A is fixed and only the
vector changes: thus, the overhead of computing an adaptive precision decomposition of A is
negligible since it can be reused for all iterations. Third, as we have explained in Chapter 10,
restarted Krylov solvers are a form of iterative refinement that allows for converging to high
accuracy even when the inner solvers use lower precision. As illustrated in Figure 11.2, this is
doubly beneficial for the adaptive precision SpMV because, first, we can set ¢ to a larger value
which leads to greater storage reductions and, second, we can tune ¢ to find the best tradeoff
between the convergence speed and the cost of the SpMV (remember that € is a continuous
parameter that need not match the unit roundoff of any specific floating-point arithmetic).

11.2 Adaptive precision low-rank approximation

In Section 6.3, we have described an adaptive precision low-rank approximation from [16]
that approximates a low-rank matrix UXV 7 as
o}
~~T —~ —~ ~ PUEVA
SVo= {Ul...Up} [Vl...V;,} (11.4)
5

S

p

where ﬁk, ik, and KA/k are stored precision ug, and we have shown in Theorem 6.1 that the
partitioning (11.4) should be built such that ||Xx|| < €]|A||/ur. This criterion shows that the
singular values and their associated singular vectors can be stored in a precision that is inversely
proportional to their magnitude. It is similar to the criterion on the magnitudes of the matrix
elements for the adaptive precision SpMV presented in the previous Section 11.1. In fact, the

~A~a~T

two methods share a link: indeed, (11.4) can be rewritten as a sum of p matrices, ULV =
Sy Uk ik‘?kT, where the coefficients of ﬁkikf/kT are bounded in magnitude by ||3||. Thus the
SpMV criterion \Ukikf/kﬂ” < ¢||A||/ux is consistent with the LRA criterion ||| < €||All/uk.
Like other adaptive precision methods, the choice of precisions is adapted to the data at hand,
and so the potential of this approach is completely dependent on the matrix that it is used on.
In this case, significant gains can be expected if the singular values of the matrix decay rapidly.

11.3 Adaptive precision block Jacobi preconditioner

A popular preconditioner for iterative methods is the block Jacobi method, which uses the
block diagonal matrix

D,
M=D=
D,
as preconditioner. D~ can be efficiently applied by inverting each of its blocks D; independently:
Dyt
y=D"lz= :
Dq_la:q

Anzt et al. [65] propose an adaptive precision preconditioner which uses different precisions for
different blocks D;. This is motivated by the fact that, in floating-point arithmetic, the computed

104

¥ satisfies
Dl_ll‘l + Ayl
y=Dla+Ay= : Ay < cieik(Dy),
Dq_lxq + Ay,

where ¢; is the precision used for inverting D; and ¢; is a constant depending on the inversion
method (for example, if we use an LU factorization of D; € R"*", ¢; ~ 3n3p,, by Theorem 7.4).

Therefore, if we wish to have ||Ay|| < e for some € > 0 target accuracy, we should balance
each of the error terms ||Ay;||, or rather their bounds, so that c;e;k(D;) = ¢ for all i = 1: ¢. If
we assume the constants ¢; to be of comparable size (their effect on the actual error ||Ay;|| is
anyway known to be pessimistic, as discussed in Chapter 3), we obtain the criterion &; =~ ¢/k(D;).
Hence with p different precisions vy < € < us < ... < u, at our disposal, we should set
g; = maxy {ug : up < ¢/k(D;)}.

This adaptive precision block Jacobi preconditioner has been implemented in the Ginkgo
library [129], where it is shown to accelerate the preconditioned CG by up to 30%. The im-
plementation uses up to six precision formats, including custom ones, for storing the explicitly
inverted blocks D, ! and applies them in double precision, using a memory accessor for perfor-
mance (see the next Chapter 12).

The approach presented in this section is not exclusive to block Jacobi preconditioners. It
can apply to other types of preconditioners that also rely on inverting subparts of a given matrix
separately. This is in particular the case for domain decomposition preconditioners, such as the
additive Schwarz method: see Research Problem 16.20.

11.4 Adaptive precision relaxed GMRES

The mixed precision relaxed GMRES method described in Section 8.3.3 shows that the pre-
cision of the matrix—vector product can be adapted to be inversely proportional to the norm of
the residual, which is a continuously decreasing quantity throughout the iterations. Therefore,
relaxed GMRES is well suited to an adaptive precision implementation: the more precision for-
mats are available, the more we can benefit from this observation. Moreover, we can combine
relaxed GMRES with the adaptive precision SpMV algorithm presented in Section 11.1: this
leads to a doubly adaptive method, in the sense that the precisions vary both across matrix
coefficients and across iterations; see Research Problem 16.18.

105

Chapter 12

Memory accessors

This chapter is interested in strategies that decouple the precisions used for storage and for
computations. Such strategies are beneficial in various contexts, many of which we have discussed
in previous chapters of this manuscript. For example, in the context of preconditioned GMRES
(Section 8.3.1) and GMRES-based iterative refinement (Section 10.2), we may want to store the
preconditioner in low precision but apply it in high precision. If the preconditioner is an LU
factorization of the matrix, this requires performing triangular solves in a compute precision
higher than the LU storage precision. Another important application is to handle a storage
precision based on custom floating-point types with no hardware support. In this case we must
indeed use a higher compute precision based on a standard type with native support.

In order to achieve efficiency, strategies that decouple the storage and compute precisions are
based on so-called memory accessors: the idea is to access the data in low precision and convert
it on the fly to high precision before performing arithmetic operations on it. This allows for
reducing the cost of data transfers and should therefore improve the performance of memory-
bound computations. This concept of memory accessor was first proposed by Anzt et al. [66]
and implemented in the Ginkgo library [146] to accelerate various memory-bound BLAS kernels
such as matrix—vector products and triangular solves.

Memory accessors are a critical tool for the efficiency of several adaptive precision algorithms
(Chapter 11), which can naturally exploit a continuum of precision formats for storing the data.
For example, memory accessors have been developed by Flegar et al. [129] for the adaptive
precision block Jacobi preconditioner (Section 11.3), and by Kriemann [176, 177] for hierarchi-
cal matrix—vector products based on adaptive precision low-rank approximations (Sections 6.3
and 11.2). This chapter will present memory accessors developed for the adaptive precision sparse
matrix—vector product (Section 11.1) and the adaptive precision block low-rank triangular solve
(Section 9.4).

The contributions described in this chapter are based on the following papers: [41] for Sec-
tions 12.1, 12.3 and 12.4; [36] for Section 12.2;

12.1 Efficient conversion from custom to standard floating-point
formats

A central component of memory accessors is the conversion from the storage (often custom)

precision formats to the compute precision format. This conversion must indeed be efficiently im-
plemented in order be lightweight and leave the performance bottleneck on the memory transfers.

107

Table 12.1: List of custom reduced precision (rp) formats obtained by truncating the standard fp64 and fp32
formats.

Format Numbers of bits Unit roundoff
Sign Exponent Significand

fp64 1 11 52 (+1) 278 x~1x 10716
rp56 1 11 44 (+1) 27 x=3x 1071
rp48 1 11 36 (+1) 273 =~7x 10712
rp40 1 11 28 (+1) 27¥ =~2x107°
fp32 1 8 23 (+1) 27# ~6x1078
rp24 1 8 15 (+1) 2716 52 x107°
rpl6 1 8 7(+1) 278 ~4x1073

In this section, we describe the conversion implemented in [41] that will be used for Sections 12.3
and 12.4; the one implemented in [36] and used in Section 12.2 is very similar.

One simple approach to define custom floating-point formats is to take a standard precision
format, such as fp64 or fp32, and truncate some of the least significant bits. Table 12.1 defines five
such custom “reduced precision” (rp) formats: rp56, rp48, and rp40 are obtained by truncating
the fp64 format, and rp24 and rpl6 are obtained by truncating the fp32 format (note that rpl6
is in fact the bfloat16 format, although in this chapter we do not assume hardware support for
bfloat16 arithmetic).

Note that we have restricted our focus to custom formats with a total number of bits that is a
multiple of 8 (that is, an integer number of bytes), because this greatly simplifies their handling.
Indeed, we can represent a custom rp number as an array of 8-bit integers (uint8_t). For
example, the rp48 format can be represented as uint8_t[6]. We can then write the conversion
in a relative lightweight fashion by only using bit shifts and additions on the standard integer
types. Note that, for efficiency, we do not process each of these 6 bytes individually (as uint8_t).
Rather, we decompose this 6-byte array as the concatenation of a 4-byte array and a 2-byte one,
which we can process as uint32_t and uint16_t, respectively. We thus only need to manipulate
two integers, which reduces the number of required bitshifts and additions. Note that the number
of integers that are needed depends on the target custom format: for example, for the 56-bit
(7-byte) rp56 format, three integers (uint32_t, uint16_t, and uint8_t) are needed.

When converting between the standard fp64 format and the custom formats rp24 and rpl6,
we also need to handle the different number of bits used for the exponent. In order to do that
efficiently, we use the standard fp32 format as intermediary. For example, for converting from
rpl6 to fp64, we first convert from rpl6 to fp32 in a similar fashion as described above, and
then convert from fp32 to fp64 with a standard conversion. This illustrates that, if the compute
precision is fp64, using custom formats with 8-bit exponent as storage precision requires an extra
conversion between fp32 and fp64. The cost of this extra conversion is however small and usually
worth gaining 3 bits of precision compared with 11-bit exponent formats that could in principle
be obtained by directly truncating the significand of an fp64 number.

So far, we have discussed how to convert a single scalar number, but in many cases we will
need to convert an entire array of such numbers. Naturally, we could simply loop on each element
and apply the conversion described above. However, a more efficient conversion can be obtained
by exploiting vectorized instructions. Specifically, in [41], we show how to use the permutexvar
instruction, which is available on recent hardware that possess the AVX512-VBMI feature flag. The
permutexvar instruction takes a permutation array [168, volume 2C, pp. 471-472| containing as
many elements as there are in the register (for example, to permute a 512-bit register byte-wise,

108

the permutation array holds 64 elements). We can therefore use different permutation arrays to
define different custom formats by specifying which parts of each element to extract (see Figure
5.2 in [41] for an illustration). This vectorized instruction allows for converting multiple numbers
in a single instruction, regardless of the custom format, and is therefore quite efficient.

12.2 Memory accessor for sparse matrix—vector product

Sparse matrix—vector product (SpMV) is a key kernel in many applications, in particular
the solution of sparse linear systems via iterative methods, for which the SpMV can represent
a significant fraction of the total cost. On the one hand, storing the matrix in lower precision
allows for reducing its storage cost and, since SpMV is a memory-bound operation, its time cost.
On the other hand, performing the SpMV in a higher precision can significantly improve the
attainable error bound, as we discussed in the case of GMRES in Section 8.3.1. Therefore, a
memory accessor for SpMV is of high interest.

An important point to consider when analyzing the performance of SpMV is that the volume
of memory accesses depends not only on the matrix values but also on the indices, and thus on
the specific sparse matrix format that is used. Since the use of low precision only reduces the
storage for the values, but not for the indices, sparse formats that minimize the weight of the
latter will make the most out of mixed precision memory accessors. For example, Griitzmacher
et al. [146] develop a memory accessor for the ELL format [76], which employs padding to force
the same number of nonzeros per row, and is particularly suited for GPUs [64]. Mukunoki et
al. [203] develop a memory accessor for the standard compressed sparse row (CSR) format and for
the adaptive multilevel blocking (AMB) format [206], which can significantly reduce the weight
of the indices. They compare the performance of both formats and show that AMB can often
achieve larger speedups from the use of low precision than CSR.

As we have presented in Section 11.1, matrices exhibiting values with wide variations in
magnitude can significantly benefit from the use of an adaptive precision representation in which
gradually smaller elements are stored in gradually lower precisions [18]. The more precision
formats are available, the more we can adapt the representation to the elements’ magnitudes.
This motivates developing a memory accessor for adaptive precision SpMV with efficient support
for custom precision formats. We do so in [36] by extending the accessor of Mukunoki et al. [203].
As explained in Section 11.1, the CSR format allows for a simple and efficient implementation of
the adaptive precision SpMV, and therefore we focus on this format; see Research Problem 16.17
regarding the extension to other matrix formats. Our implementation uses the seven custom
precision formats defined in Table 12.1 and implements the conversion in a very similar fashion
as what is described in Section 12.1.

Figure 12.1 illustrates the performance of this memory accessor—based, seven-precision SpMV
for the Long Coup dt0 matrix of the SuiteSparse collection. We compare the storage and time
costs of the uniform and adaptive precision SpMV variants for various accuracies & corresponding
to the unit roundoffs of the formats. This allows for directly comparing the uniform and adaptive
variants for an equivalent accuracy €, where the uniform variant uses the corresponding precision
for all matrix values, whereas the adaptive variant also uses lower precisions (for the small matrix
values) and dropping (that is, matrix values less than £ in magnitude are replaced with zero).
Both variants use 32-bit integers for the indices. The figure shows that, as expected, the time
cost of the SpMV is directly proportional to the storage cost. As mentioned above, the cost of the
uniform precision variant comprises an incompressible part corresponding to the 32-bit indices,
which explains why, even with 16-bit values, the uniform precision storage is still 50% of the
fp64 storage. The adaptive precision variant does not share this limitation because, in addition
to lower precisions, it also employs dropping, which increases the sparsity of the matrix and thus

109

2, AEORAR
‘

100

=

I 8

60 NS

(I ~

o N

IS s

- 40 N

xR =~
Q

o —%— Uniform storage

20 | |—&— Adaptive storage
Uniform time
- © - Adaptive time

3—53 27‘45 27‘37 2—29 2—24 2716 2—8
fp64 rph6 rp48 rp40 fp32 rp24 rpl6
9

Figure 12.1: Storage and time cost of uniform and adaptive precision SpMV for various accuracies € (corresponding
to the unit roundoffs of the formats defined in Table 12.1).

reduces the storage cost of the indices. Overall, these performance results show that SpMV can
be significantly accelerated by reducing the storage precision and confirm the relevance of using
custom floating-point formats.

In [36], we also investigate the use of custom formats with reduced exponent. This is moti-
vated by the observation that, with the seven precisions defined in Table 12.1, coefficients being
stored in the same precision have magnitudes that can differ by a factor of at most 2%—the
ratio between the unit roundoffs of two consecutive precisions. Hence, only 3 exponent bits are
sufficient to represent the coefficients; this represents a significant opportunity to further reduce
storage compared with the formats in Table 12.1 that use 11 or 8 exponent bits. We extend the
conversion operations described in Section 12.1 to also handle a reduced exponent. This creates
a tradeoff because the exponent manipulation makes the conversion more expensive, introducing
an overhead cost that we hope to amortize with the reduced storage. Our experiments show that
the use of reduced exponents sometimes improves performance and other times degrades it.

12.3 BLAS-based block memory accessor for dense triangular solve

One limitation of most existing memory accessor approaches is that the data is accessed
at the scalar (elementwise) level: the matrix coefficients are converted from the storage to the
compute precision one at a time. This requires entirely handcoding the target kernel, which
makes achieving efficiency and portability difficult, and goes against the traditional separation of
concerns whereby high level linear algebra operations rely on low level BLAS kernels optimized
for a particular architecture.

In [41], we take a different approach: we propose a BLAS-based block memory accessor that
loads into memory and converts entire blocks of scalars at a time, and relies on BLAS libraries
to perform computations on these blocks. This approach avoids the heavy programming duty of
rewriting and extending the BLAS, and allows for exploiting optimized uniform precision BLAS
kernels. This block approach has been much less investigated than the scalar approach; it has
also been used in [176], where it is called a “semi-on-the-fly” approach.

110

We perform a thorough investigation of this block approach focusing on triangular solves. We
consider both dense matrices (this section) and matrices compressed with BLR approximations
(Section 12.4). Algorithm 12.1 presents a mixed precision implementation for an upper triangular
solve Uz = y with two precisions: uioy, the low storage precision, and upigh, the high compute
precision. The matrix U is partitioned into b x b blocks U;; and the system Uz = y is solved
by blocks. Whenever a given block U;; needs to be used, it is loaded from the main memory,
where it is stored in precision ujow, and converted (upcasted) to precision Upigh into a temporary
workspace B. The computation is then performed with B in precision upjgn. The workspace B
is reused for all blocks U;; and therefore we only require an extra storage of manageable size
b x b. All BLAS calls are executed with standard uniform precision routines (trsv and gemv);
such routines are highly optimized for a given target architecture and can thus be expected
to be very efficient. Moreover, the conversion operations from precision oy to precision upigh
can also be efficiently implemented as described in Section 12.1. Therefore, the performance of
Algorithm 12.1 should be mainly driven by the data transfers, which are reduced thanks to the
low storage precision.

Algorithm 12.1 Mixed precision triangular solve with a block memory accessor.

Input: U, an m X m upper triangular matrix stored in precision ujow and partitioned into b x b
blocks U;;, with m = pb; y, an m-vector stored in precision unigh; B, a b X b workspace stored in
precision Upigh-
Output: x, an m-vector stored in precision upigh, solution to Uz = y.

1: Initialize z = y.

2: for j=p,...,1do

3: Read Uj;, upcast it to precision upien, and store it in B.

4 Solve Bx; = x; in precision upign using the BLAS kernel trsv.

5 fori=j5—-1,....,1do

6 Read Uj;, upcast it to precision unign, and store it in B.

7: Compute x; = x; — Bx; in precision upijgn using the BLAS kernel gemv.
8 end for

9: end for

The block size parameter b presents a tradeoff between the efficiency of the BLAS calls and
the efficiency of the data transfers. Indeed, in order for the data transfers to be efficient, it is
important that the workspace B remains in the fast memory before the BLAS call, since if it
spills back into the slow memory, it would need to be reloaded in high precision. Therefore, b
must be sufficiently large for the BLAS calls to be efficient, but sufficiently small for B to fit into
the fast memory. Note that what constitutes the “fast” and the “slow” memory is architecture
dependent; we may expect the registers and highest levels of cache to be fast, and the main
memory to be slow.

The performance and behavior of Algorithm 12.1 is illustrated in Figure 12.2. We consider
a parallel configuration corresponding to the bottom of the elimination tree in sparse direct
methods (see Section 7.2) where each thread solves its own independent triangular system of
order m = 4096. The compute precision unign is set to fp64 and we compare various lower
storage precisions ujoy corresponding to Table 12.1. We also report the performance of the
uniform precision triangular solve in fp64 or fp32 arithmetic for reference. The figure illustrates
several of the points mentioned above. First, we can see that small block sizes achieve poor
efficiency; performance quickly improves as b increases and as the BLAS calls become more
efficient, until it reaches a plateau. For the uniform precision variants, this plateau persists no
matter how large b becomes, whereas the behavior of the mixed precision accessor variants is

111

200

—
0
oY
9 150
LL
e
8 100
c
©
€
g 50
(O]
o
0
0 100 200 300 400 500
Block size b

storage precision + compute precision

= p56+fp64 fp32+fp64 wmmmmm P64
— p48+fp64 rp24+fp64 fp32

mmm— (p40+fp64 === rp16+fp64

Figure 12.2: Performance of the block memory accessor for triangular solves, with fp64 as the compute precision
and various lower storage precisions, depending on the block size b. Uniform fp64 and fp32 precision variants are
also provided for reference.

very different, with an abrupt performance drop occurring when b exceeds a certain value. We
have performed a detailed analysis in [41] that relates this value to the maximum block size
such that two copies of the block (one in precision unign and one in precision uioy) still fit into
the L1 and L2 caches of the computer; this explains why the performance drop occurs slightly
later for lower storage precisions. Most importantly, the performance plateau of each variant is
higher for lower storage precisions. Therefore, provided that a suitable block size is chosen, our
block memory accessor is able to translate the continuum of storage precisions into a continuum
of performance.

12.4 Memory accessor for block low-rank triangular solve

In [41], we also describe how to extend Algorithm 12.1 to block low-rank (BLR) matrices
(see Chapter 9). At first sight, this may seem straightforward: a naive implementation would
be to use the same block size for the BLR approximation and for the memory accessor and,
whenever a low-rank block must be accessed, load its low-rank factors into the fast memory and
convert them to high precision. However, the BLR block size, while under our control, must be
set to a sufficiently large value to achieve high compression rates. As explained in Section 9.1,
this is because the BLR block size should increase with the matrix size m; in practice, even
for medium-sized matrices, BLR block sizes of order 500 are typically necessary to obtain good
performance [23, 13]. Based on the experiments with the dense triangular solve reported in
Figure 12.2, this naive approach would therefore not be efficient since the memory accessor
requires much smaller block sizes that fit into the fast memory. However, it is important to note
that this difficulty mainly concerns full-rank blocks. Indeed, low-rank blocks of large size may

112

Table 12.2: Impact of the memory accessor on the adaptive precision BLR triangular solve in MUMPS
(Queen_ 4147 matrix, e = 3 x 1079).

Compute Storage Accessor | Backward LU factor Solve

precision precisions method error storage (GB) time (ms)
Full-rank fp64 fp64 — 1016 112 871
BLR fp64 fp64 — 10~ 57 505
BLR fp64 fp64, p32 Naive 10-1 44 922
BLR fp64 fp64, fp32 [41] 10~ 44 509
BLR fp64 fp64, rp56, ..., rpl6 Naive 10~ 11 37 1089
BLR fp64 fp64, rp56, ..., rpl6 [41] 10~ 37 479

still fit into the fast memory if their rank is small enough. Therefore, one idea to overcome this
issue is to further partition the full-rank blocks into smaller subblocks and to load them one
subblock at a time. This is essentially a recursive memory accessor: for example, to perform the
dense triangular solves with the (full-rank) diagonal blocks, we rely on Algorithm 12.1 where b
plays the role of the subblock size and m the role of the BLR block size. Similarly, we use a gemv
memory accessor for the matrix—vector products with the off-diagonal blocks.

The experiments presented in [41] confirm that, provided the BLR compression rate is large
enough, subblocking the full-rank blocking significantly extends the range of block sizes for which
the memory accessor performance is optimal (see Figure 6.2 in [41]).

Moreover, we have also extended our memory accessor to the adaptive precision BLR repre-
sentation described in Section 9.4, in which the low-rank blocks are further partitioned in multiple
lower rank components each stored in a different precision. In this context, efficient support for
custom floating-point formats is crucial for performance. We have integrated the ingredients
presented in the previous sections (efficient conversion routines, a BLAS-based block memory
accessor, subblocking for BLR matrices, etc.) in the MUMPS solver. Table 12.2 illustrates the
resulting benefits: with the naive accessor originally implemented in MUMPS, the storage re-
ductions achieved by using adaptive precision did not lead to corresponding time reductions but
were on the contrary achieved at the expense of time. With our new accessor from [41], we
obtain significant speedups (greater than 2x), which brings the adaptive precision solve back
to being as fast as the uniform precision one, or even slightly faster when the full continuum
of precisions is used. These results illustrate the potential of memory accessors to optimize the
storage cost of the solver while maintaining its efficiency and accuracy.

113

Chapter 13

Butterfly factorizations

This chapter deals with the problem of butterfly factorization, which amounts to writing an
n x n (usually dense) matrix Z, with n = 2%, as a product B ... By, where each butterfly factor
By is an n X n sparse matrix with a fixed sparsity pattern. Such a factorization is useful to reduce
the time and memory complexity of computations involving matrix Z. Butterfly factorizations
appear in particular in fast transforms such as the discrete Fourier transform or the Hadamard
transform [101], and, thanks to their strong expressivity and extreme sparsity, find a wide range
of applications in various domains such as signal processing, machine learning, and numerical
linear algebra.

We first review some basic properties of butterfly factorizations and discuss their possible
applications. Then, we describe the main contribution of this chapter, which deals with the
quantization of butterfly factorizations in floating-point arithmetic. The presented methods are
based on the optimal quantization of rank-one matrices described in Section 6.7.

The contributions described in this chapter are based on the following papers: [42] for Sec-
tion 13.3.

13.1 Butterfly factorizations via rank-one approximations

Each butterfly factor B, satisfies a fixed sparsity pattern, also called support. We define the
support S = supp(A) of a matrix A as the binary matrix S with the same sparsity pattern as A
but with 1 replacing all nonzero coefficients. The support S, of butterfly factors By is defined as

11
S[= I2£71 & (1 1) ®In/24a

with [the identity matrix of order k and ® the Kronecker product. This leads to highly sparse
factors: each By has exactly two nonzero elements on each row and on each column. The support
of the butterfly factors for n = 16 are depicted in Figure 13.1.

The butterfly supports have the interesting property that for any subset of consecutive factors,
the product between X = By, ... By, € R™™ and YT := By, 41... By, € R™" with 1 < /5 <
l1 < 3 < L, can be written as

xXyT = zn:xzyT = zn: c;, (13.1)
=1 =1

115

(a) S1 (b) S2 (c) S3 (d) Sa

Figure 13.1: Support of the butterfly factors, n = 16. Each factor S; is an n X n matrix with binary entries. Zeros
are represented in white, ones in orange.

where the n rank-one matrices C; == z;y! € R™ " (the rank-one components) associated with
the columns of X and Y have disjoint supports [183, Lemma 2], that is,

supp(C;) o supp(Cj) = 0n, i # J, (13.2)

where o denotes the Hadamard product and 0,, the n X n zero matrix. Moreover the matrices
C; partially retain the sparsity of the butterfly factors: a product of p consecutive factors has
exactly 2P nonzero elements on each row and on each column.

These crucial properties can be exploited to design an efficient factorization algorithm, which
employs the SVD to compute the best rank-one approximations x;y; , with bounded complexity
and error guarantees [183, 182, 260, 184]. We will see in Section 13.3 how to exploit these
properties for the quantization of butterfly factors.

13.2 Applications of butterfly factorizations

Butterfly matrices are widely used in signal processing, machine learning, and numerical
linear algebra. They appear, for instance, in the factorizations of the Hadamard and Fourier
matrices [101].

Butterfly factorizations can be used to accelerate the solution of Az = b by Gaussian elimi-
nation by removing the need for pivoting. Originally proposed by Parker in 1995 [220], the idea
is to preprocess A by premultiplying it with random butterfly transformations (RBT); Parker
proved that the resulting matrix can be factored without pivoting with high probability. Note,
however, that this does not guarantee a small growth factor p,,, and despite limited theoretical
results [222], stability in finite precision remains an open issue. This RBT approach is therefore
often combined with iterative refinement (see Chapter 10) to recover high accuracy [71, 189].
One limitation of butterfly factorizations is that they assume the matrix size n = 2% to be a
power of two, which implies a significant overhead cost to handle matrices that do not satisfy this
constraint. Lindquist et al. [191] propose a generalization of RBT that overcomes this limitation.
While this RBT approach has encountered success for dense systems, it is much less suited for
sparse ones. Baboulin et al. [72] investigate its application to sparse LU factorization and, while
the method still allows for avoiding pivoting, it can increase the fill-in of the LU factors quite
significantly in many cases.

Butterfly factorizations have also been used to design fast structured linear solvers. In the
same spirit as block low-rank and hierarchical solvers (see Chapter 9), the idea is to approximate
off-diagonal blocks of the matrix as butterfly factorizations. In particular, Liu et al. [192] have
proposed a multifrontal solver that uses the HODBF format, the butterfly extension of the
HODLR format, to compress the frontal matrices. Claus et al. [98] employ a composite approach

116

that uses HODBF only on the largest fronts. See [192] and references therein for more examples
of applications using butterfly factorizations as a rank-structured compression format.

Finally, butterfly factorizations have also been used in machine learning. In a series of papers,
Dao and co-authors have explored the use of butterfly factorizations to compress neural networks.
In [105], they show that fully-connected layers can be replaced by matrices of the form BPB’ P’
where B, B’ denote butterfly factorizations and P, P’ denote permutation matrices. In [106], they
present the extension to more general “Kaleidoscope” matrices, which are of the form (BB*)" for
some power w. In [103], they propose “pixelated butterfly” matrices, a more hardware-friendly
variant of butterfly factorizations that uses blocks of entries and approximates the layers as the
sum of butterfly factors rather than their product, so that they can be applied in parallel; they
add to this representation a low-rank term in order to improve its expressivity (see also the study
[96] on sparse+low-rank representations). Finally, in [104], they propose “Monarch” matrices,
which are obtained from butterfly factorizations by multiplying each half of their factors together;
the resulting Monarch factorization is denser, requiring O(n®/?) entries instead of O(nlogn), but
is more expressive and more hardware-friendly.

13.3 Quantization of butterfly factorizations

Given L = log,(n) butterfly factors By,..., By, € R™*" (that may have been obtained using
an existing algorithm to approximate some target dense matrix), in [42], we develop a method

to quantize the factors By, ..., By while minimizing the relative error
B,...B,—B...B
IBi...Br—Bi.. By 133
|By...BLl
The quantized factors §1, cee B r, must have coefficients in F, the set of floating-point numbers

with ¢ bits of significand, and retain the same support as the unquantized factors: supp(B;) =
supp(B¢), £ =1: L.

We first discuss the case of a two-factor decomposition XY7T, in which case an optimal
quantization XY 7T can be found by solving a series of rank-one problems through our optimal
rank-one quantization method presented in Algorithm 6.8. Indeed, exploiting the decomposition
(13.1) into rank-one components with disjoint supports, the optimal quantization problem

X,Y €argmin [XYT — XY7?, (13.4)
Xy

where X , Y have coefficients in F; and the same supports as X, Y, decouples into n independent
optimal rank-one quantization problems. Its solution can thus be computed by n independent ap-
plications of Algorithm 6.8 and yields diagonal matrices A, M € R™*" such that X = round(XA)
and Y = round(Y M).

We can then use this optimal two-factor quantization algorithm as a building block in a
heuristic procedure to quantize a decomposition Bj ... By, with more than two factors (L > 2).
We can use different parenthesizations of the product to sequentially divide it in a series of
two-factor products with disjoint rank-one components. Note that the quantizations of each
individual two-factor product will be optimal, but there is no guarantee that the entire process
is globally optimal.

We consider two heuristics based on different parenthesizations. The first heuristic uses a
pairwise parenthesization (B1Bs)(BsBy) ... (Br-1Br) (assuming that L is even), and quantiza-
tions are performed on each pair of consecutive factors (ByByy1) separately. If the number of
factors L is odd, the last factor By, is simply quantized as EL = round(Byr). As this pairwise

117

10° T

T T
—%— Pairwise (fit: 0(271.3:))
—— Left-to-right (fit: O(2714))
RTN (fit: O(271%))

Error

Figure 13.2: Relative quantization error (13.3) for butterfly factors with either the RTN baseline or pairwise or
left-to-right algorithms, as a function of the number of bits ¢t. The matrices are of order n = 216,

heuristic acts very locally, we also propose a second heuristic that can provide more accuracy.
This second heuristic uses a parenthesization from left to right and quantizes the factors one by
one in L steps. At step ¢, the first £ — 1 factors have already been quantized, and the remaining
factors are parenthesized as (M By)(By+1 - .. Bp), where the current diagonal scaling M comes
from the quantization at step £ — 1. The quantized factor Ee is obtained using the optimal
two-factor quantization with X = M By and Y” = By, ... By.

The left-to-right heuristic is more expensive than the pairwise one. Indeed, the pairwise
heuristic preserves the extreme sparsity of the butterfly matrices; in fact, it does not require
forming any explicit intermediate matrix product and can directly work in-place by replacing
the butterfly factors by their quantized version. In contrast, the left-to-right heuristic requires
forming the explicit product of up to L — 1 consecutive factors into Y7, which is an almost dense
matrix. However, this matrix can fortunately be formed only one row at a time, and so does
not require much additional storage. In fact, both heuristics have the same space complexity
in O(2" + nlogn). The time complexities are in O(2'nlogn) for the pairwise heuristic and in
O(2'n?) for the left-to-right one.

We illustrate the accuracy of these two heuristics in Figure 13.2, which plots the quantization
error obtained for a number of bits ¢ varying from 2 to 11, for a butterfly factorization of
order n = 2!6 (this shows that the proposed heuristics, while limited to low precisions, can
tackle large matrices). We compare three approaches: the naive baseline where each factor
is separately quantized with round-to-nearest (RTN), and our two heuristic approaches based
on the optimal two-factor quantization. We find that both heuristics significantly reduce the
quantization error with respect to the RTN baseline and that, as expected, the more expensive
left-to-right heuristic is more accurate than the pairwise one. Importantly, both heuristics achieve
an accuracy that behaves significantly better than the O(27%) RTN accuracy: the pairwise and
left-to-right heuristics approximately behave as O(271-3!) and O(271-4!), respectively. Thanks to
this improved accuracy, our algorithms can achieve an accuracy equivalent to the RTN baseline
with a lower precision; for example, the left-to-right heuristic can reduce the number of bits to
t/1.4, which represents a 1 —1/1.4 ~ 30% reduction of storage for the same accuracy. In [42], we
also report the time cost of running these two heuristics, which we show to be very reasonable;

118

we are able to tackle large scale matrices (of order up to 2'8 ~ 260000) despite using a MATLAB
code run on a single core laptop.

Given the success of butterfly factorizations to compress neural networks (see the previous
Section 13.2), and the resilience of these networks to low precision quantization, a natural research
perspective is to apply our quantization method to this context, and to extend it to other butterfly
factorization variants tailored for neural networks; see Research Problem 16.27.

119

Chapter 14

Tensor approximations

Tensors are the higher-dimensional generalization of matrices. The size of a tensor X €
Rm™M*--XN"d ig exponential in its order d, so it is critical to develop compression methods that
compute compressed representations, similar to low-rank approximations in the matrix case.
However, unlike low-rank matrices, which can always be written under the form XY, there is
not a unique format for low-rank tensors. Several formats have been proposed, some of the most
popular ones being the tensor train [215], the Tucker [107], and the hierarchical Tucker [151, 141]
formats.

Figure 14.1: Tree tensor network representation

These different representations can be elegantly unified using tree tensor networks (TTN) [214]
(see Figure 14.1). The nodes of a TTN X represent tensors and the edges represent the dimen-
sions of the tensor; thus the degree of a node is the order of the associated tensor. There are two
types of edges: inner edges that connect two nodes, and outer edges that are only connected to
one node. Two nodes connected by an inner edge represent the contraction of the corresponding
tensors along the dimension that connects them. Therefore, the whole network represents a full
tensor X € R™*--*"4 of order d, the number of outer edges of X.

Such compressed TTN representations can be computed via successive matrix LRA. For
example, in Figure 14.1, node Us can be computed by matricizing X € R™ X" along its

121

first dimension n; as X € R™X"2" "4 and computing the matrix LRA X ~ UsY7T, where
U, = Uy € RM*™ and Y € R™2"ax"1 The remaining nodes can then be computed by
reshaping Y back to tensor form and matricizing it along another dimension.

In this chapter, we do not aim to provide an exhaustive or detailed description of tensor
formats and algorithms, for which we rather refer to existing surveys [174, 142]. We only provide
a brief discussion of what the use of approximate LRA methods for computing TTN entails, in
terms of numerical stability (Section 14.1) and potential use of approximation techniques such
as mixed precision (Section 14.2).

The contributions described in this chapter are based on the following papers: [39] for Sec-
tion 14.1.

14.1 Stability of TTN operations

While the stability of approximate tensor computations subject to low-rank truncation errors
is well understood in exact arithmetic, it has been much less studied in finite precision arith-
metic. This lack of analysis can be explained by mainly two reasons: first, the truncation errors
tend to dominate the rounding errors when high precision is used, so that the latter have been
traditionally neglected; and second, there is a wide range of different tensor formats, and their
associated algorithms can be very complex to analyze. Importantly, the first reason is becoming
less and less valid due to the growing prevalence of low precision arithmetics, which offer sig-
nificant performance benefits on modern hardware. And the second reason makes it even more
critical to develop a rounding error analysis precisely to identify which tensor algorithms are
stable and which will become problematic in low precision.

We begin tackling these questions in [39]. In order for our analysis to be applicable to as many
cases as possible, we propose a general framework based on TTNs and we define the essential
operations that are needed to express some of the most common computations of interest. We
consider two abstract kernels, SPLIT, which replaces a node A by two connected nodes B and C,
and MERGE, which performs the converse operation. We assume these two kernels to be locally
stable with respect to a precision parameter e:

BC =SpLiT(A) = A+ E, ||E| < ce|Al, (14.1)

A =MERGE(B,C) = BC+ &, ||€]| < c=|Bl[C]I. (14.2)

We then carry out an error analysis of an abstract computation formed of a sequence of such
SPLIT and MERGE operations. Our analysis reveals a key condition for the computation to be
stable: the norm of the tensor should be tightly concentrated around a single node of the network,
a property that we formalize as follows.

Definition 14.1. Consider a network X composed of n nodes Uy, ..., U,. X is said to be -
normalized with respect to a node U; if there exists a vector of constants o = (a1, ...,a,) € R”
such that ||U;|| < o;||X|| and such that the matricization U; of all the other nodes U;, i # j, in
the direction of U;, satisfies, for any matriz M of compatible dimensions, |[U; M| < ;|| M]|.

In this definition, the matricization of a node U; in the direction of U; refers to the matri-
cization of the tensor U; along its dimension that belongs to the path connecting it to Uf;: for
example in Figure 14.1, the matricization of U3 in the direction of U; is a matrix Us € R"2*"s74,

We are now ready to state the following result, which identifies conditions for an abstract
TTN computation to be stable.

122

Theorem 14.1 (Theorem 3.2 in [39]). Let X be obtained by applying a sequence of p opera-
tions SPLIT or MERGE to X. Under the assumptions (14.1) and (14.2), and assuming that at
each step k of the computation, the intermediate network Xy, is a®) -normalized as defined in
Definition 14.1 with o*) € R™ | we have

1 — X < se|lX|| + O(e”) (14.3)
with
p—1 n
s = Z Cr'r H O[Ek),
k=0 =1
where 1, is the largest inner dimension of Xy and c is the constant in (14.1) and (14.2).

The bound (14.3) can be simplified to
|% — 2| < pra”ee| x|,
with r = maxy ry, o = max; i, agk), and where
n= mlgmx# {z =1: ng, agk) #* 1}

is the maximum number of nodes that are not 1-normalized at any step k. Therefore, Theo-
rem 14.1 shows that the error grows linearly with the kernel error ce, the largest inner dimension
r of the network, the number of operations p, and the term «a', which is exponential in the
number of nodes n that are not 1-normalized. Therefore, if the kernels are stable (small ¢), the
main condition for the overall network computation to also be stable is that o™ is small.

There are two important examples of TTN when this condition is satisfied. The first is when
all nodes of the network except one are orthonormal; in this case the network is a-normalized
with o = e, the vector of all ones, and thus o™ = 1. This first example shows that if the
orthonormality of all nodes except one is maintained throughout the computation, numerical
stability is guaranteed.

The second example is a TTN X = Y + Z that is the sum of two e-normalized TTNs Y
and Z; this can arise in computations involving TTN arithmetic. In this case, the inner nodes
of X become the block diagonal concatenation of the corresponding nodes in Y and Z, and
thus remain orthonormal. On the other hand, the outer nodes (that is, the leaves) of X become
the horizontal concatenation of the corresponding nodes in Y and Z, and therefore lose their
orthonormality; they are, however, v/2-normalized. In this case, we thus have a” = 2¢/2, where
¢ is the number of leaves. For some TTN formats, ¢ is small (for example, £ = 2 in the tensor
train format), and so stability is once more guaranteed. For other formats (such as Tucker),
¢ = O(d) and so stability is only guaranteed for low order tensors. In practice, however, the
constant 2¢/2 is pessimistic because it does not take into account the specific structure of TTN
given by X = Y + Z; see Research Problem 16.21.

In any case, Theorem 14.1 applies to a wide range of TTN computations that can be ex-
pressed in our framework, and shows that their stability is conditioned on orthonormality being
maintained throughout the computation. In view of this conclusion, a second contribution of
[39] is to propose a stable TTN rounding algorithm that is careful to maintain orthonormality.
Essentially, the algorithm consists in truncating the inner dimensions one by one, while trans-
ferring the non-orthonormality throughout the network from node to node; see Algorithm 5.1 in
[39] for a detailed description.

The algorithm works for any tree topology of tensor and can thus be applied to a wide range
of tensor formats. When applied to specific tree topologies, it can be shown to be equivalent

123

to existing algorithms such as TTSVD [215] or HODSVD [243], which we have thus proven to
be stable in finite precision arithmetic. We compare this stable rounding algorithm with the
Gram LRA-based rounding, a popular choice for hierarchical Tucker [141] and tensor train [58]
topologies, despite being unstable: as discussed in Section 6.6 and [9], the accuracy of Gram LRA
is proportional to y/u, the square root of the machine precision u. We confirm experimentally
that our stable algorithm can significantly improve the accuracy of the rounding in finite precision
arithmetic, and can reliably exploit a precision as low as u ~ &, the truncation threshold and
target accuracy, whereas Gram LRA-based rounding must set u ~ ¢2. Therefore our algorithm
is better suited to take advantage of all the performance benefits of lower precision arithmetics
on modern hardware. While the asymptotic complexity of both approaches is comparable, Gram
LRA is however more parallel: this is because our algorithm must transfer the non-orthonormality
throughout the network and cannot, for example, process independent branches of the network
in parallel. This observation therefore motivates a performance study to compare the practical
performance of both algorithms on various computer architectures depending on their parallel
and arithmetic precision environment; see Research Problem 16.22.

14.2 Approximate tensor computations

As mentioned, tensor computations heavily rely on matrix operations and in particular matrix
LRA. Therefore, many of the approximate LRA methods discussed in Chapter 6 extend to
tensors. To give a few examples:

e We have already mentioned Gram LRA (Section 6.6) in the previous section. It has indeed
been shown to be particularly useful for the rounding of tensors. It was initially proposed for
the compression of the tensor train (TT) format [216], and even though a stable rounding
approach was later proposed as an alternative [215], Gram LRA remains highly efficient;
the recent work of Al Daas et al. [58] presents a high performance parallel implementation
where Gram LRA is a key component. Gram LRA is also a central tool for the rounding
of hierarchical Tucker tensors [141, 175].

e There is a large body of literature on using randomized algorithms for computing tensor
decompositions. In particular, the randomized range finder method described in Section 6.2
can be applied to compute the matrix LRA underlying tensor decompositions: see Ahmadi-
Asl et al. [56] and references therein; in particular, Minster et al. [199] describe a randomized
HOSVD method based on the fixed-accuracy range finder Algorithm 6.4. Randomized
algorithms have also been proposed for the tensor rounding operation in Al Daas et al. [57].

e As explained in Section 6.4, randomized LRA methods are especially amenable to the
use of multiword arithmetic (Chapter 5). The same remark applies in the tensor case:
multiword arithmetic has been leveraged for accelerating randomized HOSVD by Ootomo
and Yokota [212].

e In Section 6.5 we have described an iterative refinement method for LRA that we proposed
in [22]. This method is actually quite general and can apply to both matrices and tensors.
In particular, the refinement leads to tensor arithmetic operations and thus to the growth of
the inner dimensions, which is mitigated by the recompression step (line 5 in Algorithm 6.6),
which corresponds to the tensor rounding operation. We perform experiments on various
tensor formats that confirm that high accuracy can be achieved even though low precision
operations are used for the tensor compression.

124

Some other recent advances on accelerating or improving matrix LRA methods have not, to
our knowledge, yet been extended to tensors. In particular, it seems most promising to inves-
tigate adaptive precision (see Research Problem 16.23) and optimally quantized (see Research
Problem 16.24) tensor decompositions.

125

Chapter 15

Neural networks

Neural networks are a fundamental tool appearing in a wide range of artificial intelligence
applications. Approximate linear algebra computations are of high interest for neural networks,
because neural networks are both computationally intensive yet also quite resilient to errors.
Despite the widespread adoption of approximate computing techniques in neural networks, there
remains a significant gap in our mathematical understanding of the impact that these approxi-
mations have on the behavior of neural networks.

In this chapter, we aim to start reducing this gap by developing error analyses that investigate
the propagation of errors in feedforward neural networks. Specifically, we model the computation
of interest as

Yo = ¢e(Aeye—1), L=1:1, (15.1)

where yo € R™ is the input vector, L is the number of layers, A, € R™*™~-1 are L weight
matrices, and ¢y : R™ — R™ are L nonlinear activation functions. Typical activation functions
include ReLU and tanh.

We mainly focus on multilayer perceptron (MLP) networks, whose fully-connected layers lead
to dense weight matrices A,. However, our analyses can also apply to convolutional networks
(CNN), by interpreting the convolutional layer operators as sparse weight matrices; a dedicated
analysis for CNNs might however lead to sharper bounds or specific insights. Finally, due to
their efficiency to train large language models (LLMs), transformer networks have become widely
popular. Our analyses do not directly apply to transformers but could be extended; see Research
Problem 16.29.

We investigate both backward and forward errors; a componentwise analysis of the latter
allows us to derive a new mixed precision algorithm for neural network inference.

The contributions described in this chapter are based on the following papers: [44] for Sec-
tion 15.1; [43] for Section 15.2.

Componentwise notations This chapter will make intensive use of Hadamard’s componen-
twise notations. We denote as z oy and x @ y the vectors resulting from the componentwise
multiplication and division of z and vy, respectively. The Hadamard product of a matrix with
a vector (denoted z o A or A o) multiplies the rows of the matrix by the components of the
vector. We also generalize the v notation to vectors: -, denotes the vector whose components
are ,,. Inequalities between vectors z < y or matrices A < B of identical dimensions hold com-
ponentwise; moreover, an inequality A < x between a matrix A € R™*" and a vector x € R™
applies to each row of A componentwise, that is, a;; < z; for all ¢, j. Finally, operations (such

as x + ¢) and inequalities (such as x < ¢) with scalar constants ¢ € R also apply componentwise.

127

15.1 Backward error analysis

In [44], we develop a backward error analysis of the computation (15.1). Our goal is thus to
recast the errors incurred in such a computation as perturbations on the network’s parameters,
specifically the weight matrices.

Assuming standard floating-point arithmetic, the rounding errors incurred in the matrix—
vector products vy = Agy,_1 directly satisfy the desired form: the computed v, satisfies indeed

o= (Ae+ AA)Ye-1, DA < npy [All- (15.2)

For the errors incurred in the evaluation of the activation function yp = ¢¢(v¢), we use a similar
model to the standard Model 2.1 for elementary floating-point operations: we assume that the
computed 7, satisfies

Yo = oe(V) + Aye, | Aye| < eloe (V)] (15.3)

for some constant c. Available implementations of typical activation functions usually satisfy
this model for small values of ¢. The perturbation Ay, applies to the output of ¢y; in order to
recast it to the input, we introduce the relative condition number of a function f:

kp(x) = |zf'()] @ |f(2)]. (15.4)
Assuming that x4, (U¢) > 0, we can then rewrite (15.3) as

Yo = de(Ve + Ave), |Avg| < Ve|be(D0)] @ Ky, (,)- (15.5)
We can now state the following backward error result.

Theorem 15.1 (Theorem 2 in [44]). Consider a neural network with L layers whose output is
given by (15.1). Assuming (15.2) and (15.5), the computed Yy, satisfies

UL = ¢r((AL + AAL)pL 1 ((AL—1 + AAL 1) ... (A2 + Ad2)p1 (A1 + AAr)yo) ...)) (15.6)

where, for ¢ =1: L,
|AAL < Yy yte/mg, (Ace—r) © 1Al (15.7)

Theorem 15.1 shows that the computed output g; can be expressed as the exact output
of a network with perturbed weights. We can conclude that the backward stability of such a
neural network computation is conditioned on the term 7, | 1c/x op (AcTie_1) being close to the
unit roundoff for all layers. In the following, we abbreviate this term simply as v,/ for the
ease of discussion.

The first term that may pose problems to stability is n, the size of the layers. Indeed, since n
can be large for complex models such as LLMs, the resulting rounding error accumulation in the
matrix—vector products could be problematic, especially given the low precisions typically used.
Fortunately, multiple factors come to mitigate this risk. First, as we have discussed in Chapter 3,
the statistical distribution of rounding errors leads to reduced probabilistic error bounds. We
prove indeed in [44] (Theorem 3) that, under Model 3.1, n can be replaced by /n. Since we have
seen in Section 3.2 that stochastic rounding enforces this model to hold, this provides a theoretical
explanation of the success of this rounding mode in machine learning [147, 125]. Moreover, we
also prove in [44] (Theorem 5) that /n can be further reduced to a constant independent of n
if the weight matrices have mean zero coefficients, that is, if they satisfy Model 3.2 with p, = 0.
We illustrate experimentally that this property is indeed approximately satisfied for networks
trained on some typical datasets. Yet another mitigation factor is the fact that Al-specialized

128

hardware, such as GPU tensor cores, often provide high precision accumulators; as analyzed
in Section 4.1, in this case 7, =~ nu can be replaced by 2uiow + Nunigh. Finally, even if all of
the above does not apply, there always remains the possibility of using in the underlying inner
products a summation algorithm that reduces error accumulation. Blocked summation has for
example been used by Wang et al. [248].

This leaves the second term, ¢/k. Importantly, for nonlinear functions, the condition number
k can be smaller than 1, and can in fact be arbitrarily close to 0 or even exactly 0. For example,
k = 0 when the activation function is constant, which is notably the case for the negative half
of ReLU. Therefore, the term ¢/k can be arbitrarily large and a small backward error cannot
be guaranteed for any input. We however note that this issue is largely an artifact of forcing
the error to be expressed as a backward error. In fact, we will prove in the next Section 15.2
that the computation is forward stable, in the sense that it satisfies a forward error bound of the
same order as if it was backward stable [162, sect. 1.6] (that is, of order the condition number
times the unit roundoff). Informally, this can be seen by multiplying the backward error bound
by k, yielding 7v,x+c; this however neglects to take into account the condition number of the
matrix—vector product.

15.2 Forward error analysis and a mixed precision accumulation
algorithm

In [43], we carry out a forward error analysis of (15.1). The analysis is similar in spirit to
the backward error one of the previous section, but presents two significant differences. First, as
anticipated above, we will prove forward stability whereas backward stability is not guaranteed.
Second, we use a more general error model that will suggest a mixed precision strategy.

Model 15.1. We assume that 5y = yo and that each computed ¥, satisfies
o= de((Ago (1+ AA))Ge-1) o (1+Agy), |AA <, |Agy| <ef, (15.8)

where AAy € R"*™-1 Agp, € R™, 524 € R™ s a nonnegative vector whose components bound
the backward errors incurred in the evaluation of the inner products with the rows of Ay, that is,
I(AAg)i;| < ()i, and ef € R™ is a nonnegative vector whose components bound the forward
errors incurred in the evaluation of ¢y.

Through its precision parameters Eg‘ and EZ), Model 15.1 is indeed very general. First, we can
use different precisions for the inner products (¢) and the activation functions (¢?). Second, we
can vary these precisions between layers (different ¢). Lastly, we can also vary these precisions
across different components (different (¢);). As our analysis will reveal, this flexibility in choosing
the precisions allows for devising a meaningful mixed precision strategy.

Theorem 15.2 (Theorem 2.4 and Corollary 2.5 in [43]). Let yo = ¢o(Aeye—1) be computed
inexactly such that the computed y, satisfies Model 15.1. Then, we have

Je=yeo(1+Aye), |Ay <ef,
where €} satisfies the recurrence relation
ef = g, (v0) 0 fin, © (7! + el lloo (1 + €7')) 0 (14 €7) + &7,

where Ky, is the condition number of ¢, (see (15.4)) and k,, is the condition number of the
matriz—vector product vy = Apye—1 defined as Ky, = |Aol|ye—1] @ |Aeye—1|. To first order, the

129

computed final output of the network yy, therefore satisfies
yr=yro(1+Ayr), |Ayr| Sei,

with

L L
letlle = 3= [IT Monto)omnlloc) (I (00 0 0l + 1) |-+ (159

(=1 k=0(+1

One lesson that can be drawn from bound (15.9) is that the errors Ef from the activation
functions appear in the infinity norm. This suggests that it is meaningless to vary the precision
of the activations between different components, because only the maximum error component
from the previous layer is propagated; thus we may as well compute all the components in the
same precision. On the other hand, the term ||k, (ve) © Ky, © €700 tells quite a different story.

The precisions 524 are multiplied componentwise by the condition number

Ko = K, (V) 0 Ky,, (15.10)

and so we should try to balance each component of k4 o 6? to minimize their maximum. This
therefore suggests that we should choose the precision of the inner product with the ith row of
Ay to be inversely proportional to the ith component of x,. This represents a good opportunity
to introduce mixed precision in the computation: we expect the components of k; to exhibit
wide variations in magnitude. Indeed, as mentioned before, for typical activation functions such
as ReLU or tanh, k4, can be arbitrarily small or even equal to zero. The corresponding inner
products can be computed in very low precision, while still maintaining a high accuracy on the
overall computation.

In order to leverage this observation into a practical algorithm, one critical difficulty must be
overcome: we do not know the values of k¢! Indeed, recall that k, = kg,(v¢) © Ky, depends on
vp = Apye_1; therefore, computing x, and thus vy in high precision would defeat the purpose of
using mixed precision, since vy, is precisely the result of the matrix—vector product that we aim
to accelerate. Moreover, for any layer ¢, v, depends in particular on yg, the input of the network,
so the precision choices depend on the input and cannot be reused across different inputs.

Fortunately, we do not need a very accurate computation of x,: estimating its order of
magnitude is sufficient to decide which precision to use. This key observation is at the foundation
of a practical method outlined in Algorithm 15.1. For each layer, we first compute v, in precision
Ulow, that is, we perform the entire matrix—vector product in low precision. We also compute
the corresponding activation y, = ¢¢(v,) in low precision. Then, we use these approximate v,
and y, to estimate kg; while k4, can be readily computed, computing k., = (|Ae||lye—1]|) @ |ve]
would be too costly since it would require an extra matrix—vector product for evaluating the
numerator. We can however avoid this computation, thanks to the key observation that the
variations in magnitude of k,, are mostly due to variations of the denominator (we support this
argument experimentally in [43]). Finally, for each component (k¢);, we check whether it was
safe to compute (vg); in low precision. Given some tolerance parameter 7, if (k¢); < 7, the
component (vg); computed in low precision is kept, whereas if (r¢); > 7, (v¢); is recomputed in
high precision upjgp.

This approach will therefore work best in situations where most components can be computed
in low precision, and high precision is only needed to recompute a few of the most sensitive com-
ponents. Indeed, if the criterion leads to too many components needing to be recomputed, this
mixed precision approach may end up being more expensive than simply computing everything
in high precision from the start. In order to quantify this more precisely, let us thus focus on

130

Algorithm 15.1 Neural network inference with mixed precision accumulation

Input: A;,...,Ap, the weight matrices; yg, the input vector; 7, a tolerance controlling the
precision choice; Uiow, Unigh, the precisions.
Output: yr,, the output of the network.

1: for{=1,...,L do

2: Compute vy = Apyp_1 in precision gy

3: Compute ys = ¢¢(ve) in precision Ujey-

4: Compute kg, (ve) = |vg © ¢} (ve)| @ |ye| in precision uigy.
5. Compute k¢ = K¢, @ |v¢| in precision ujoy.

6: for every component (k¢); do

7: if (k¢); > 7 then

8: Recompute (vp); = (Arye—1); in precision unigh.
9: Recompute (y¢); = ¢¢((ve);) in precision upigh.
10: Requantize (y¢); back to precision ujoy-

11: end if

12: end for

13: end for

the cost of the matrix—vector products, which are likely to be the computational bottleneck.
Let ciow be the cost of performing all the matrix—vector products (across all layers) in uniform
precision uiow, and let cpignh be the corresponding cost when using uniform precision upigh in-
stead. Let p € [0,1] be the fraction of components—and thus of inner products—that need to
be recomputed in precision upigh. Then the cost of the mixed precision Algorithm 15.1 is

Cl
Cmixed = Clow T PChigh = (—+ p) Chigh; (15.11)
Chigh

Thus, for ¢mixed to be less than chigh, we must have the condition ciow/cnigh + p < 1. In other
words, the mixed precision cost will be less than the high precision one if the costs ratio between
the low and high precision is sufficiently small, and the fraction of components that need to be
recomputed in high precision is also sufficiently small.

Figure 15.1 illustrates the potential of Algorithm 15.1 for accelerating the inference using a
three-layer MLP network with ReLU activations, trained on the fashion MNIST dataset (see [43]
for more experiments with different numbers of layers, tanh activations, and other datasets). We
use fpl6 as unigh and fp8 (e4m3) as uiow, and we compare the test accuracy of Algorithm 15.1 for
various choices of tolerance 7 with the fp8 and fp16 uniform precision baselines. The figure shows
that, as 7 decreases, the fraction p of inner products recomputed in fp16 increases, as does the
test accuracy. Strikingly, with 7 = 0.1, our mixed precision algorithm reaches the same (actually
slighty better) test accuracy than the uniform fp16 baseline, while only (re)computing 20% of
the inner products in fp16; the other 80% are computed in fp8! Assuming ciow/chigh = 0.5, the
cost formula (15.11) yields ¢pmixed = 0.7¢high, that is, we can expect a 30% time reduction.

131

-@- Mixed fp8/fpl6 fpl6
1.01 P uniform fp8 *

Y Uniform fp16
0.84
0.6

P
0.4
(1=0.3) (r=0.1)
0.2 (t=1)
(T-.S)/o/.—__.
0.04 >
fp8

081 082 083 084 085 086 087 088
Test accuracy

Figure 15.1: Test accuracy (z-axis) depending on the fraction p of inner products (re)computed in fpl6. We
compare our mixed precision Algorithm 15.1 with varying 7 with the uniform fp8 (p = 0) and fpl6 (p = 1)
baselines.

132

Chapter 16

Conclusion

I conclude this manuscript by presenting some research directions that aim to fulfill the
initial objectives discussed in Chapter 1: making approximate computing the standard, default
mode of computing at exascale. Indeed, while it is now clear that approximations will have an
important role to play in the future of computing, there still remains a long road before they can
be integrated seamlessly, safely, and efficiently in mainstream general purpose computing.

In Section 16.1, I first discuss in general terms some of the most pressing challenges and
put forward some of the methods that I expect to become more and more important. Then, in
Section 16.2, I list several concrete research problems that I think are worth investigating in the
near future; most of them build upon the contributions previously presented in this manuscript.

16.1 Future challenges and research directions

Exascale methods for exascale computers While exascale computers are starting to ap-
pear, we do not yet have “exascale” methods that can exploit them efficiently. Indeed, despite
the size and power of exascale computers, we cannot afford to solve today’s problems exactly due
to their extreme size and the high computational cost of exact computations. We must therefore
resort to approximate computing to reduce the size of the problems and the complexity of the
computations. However, while approximate computing methods do significantly outperform ex-
act methods, they are also much less efficient at exploiting exascale computers. This is due to a
combination of several factors. Approximations tend to reduce flops by a much larger factor than
storage, and so approximate methods are much more memory- or communication-bound than
exact ones. Approximations lead to unpredictable and unbalanced workloads, that are much
harder to balance and schedule in parallel environments. These issues are even more critical on
accelerators, which require high amounts of concurrency and large regular workloads. Therefore,
to harness both the power of exascale computers and that of approximate computing, it is nec-
essary to develop new approximate methods that are specifically designed for being efficient on
massively parallel computers. As such, communication-avoiding, randomized, and other meth-
ods improving the efficiency and scalability of the computations are likely to become even more
prevalent.

Specialized hardware Since the IEEE 754 standard for floating-point arithmetic was es-
tablished in 1985, the relative stability of the floating-point landscape has allowed numerical
algorithms to be developed almost independently of the target arithmetic and even hardware.
However, the situation is changing with the emergence of specialized mixed precision hardware,
primarily designed for artificial intelligence applications. Such specialized hardware offers truly

133

unprecedented performance, but only for a few dedicated tasks (such as matrix multiplication)
and only when using low precision (16-bit and lower). Moreover, the rise of such specialized
hardware is also concomitant with the decreasing support of higher precision arithmetics; gen-
eral purpose scientific computing is threatened by a gradual disappearance of 64-bit arithmetic in
modern hardware. As such, multiword arithmetic is likely to become a crucial tool for emulating
higher precisions while preserving efficiency. Moreover, this not merely a question of perfor-
mance: it is necessary to take into account the specific numerical features of such specialized
hardware when designing algorithms, especially approximate ones, in order to maximize accuracy
and ensure robustness. For example, one should take advantage of high precision accumulators
whenever possible, and one should employ scaling in order to maximize the utilization of the
range of representable values.

Automatization and industrialization The industrialization of approximate methods, that
is, their use in a realistic setting by an end-user with little knowledge on approximate computing
and with no intervention from the developer/designer of the method, is extremely challenging.
First, approximate methods tend to introduce additional parameters that affect their efficiency
and/or accuracy, and that need to be controlled, or even carefully tuned, by the user. Second,
some approximate methods, by design, only work on a subset of problems and fail on the rest (for
example, if the problem is too ill conditioned), so that they should not be used blindly. Third,
the behavior (both in terms of performance and accuracy) of approximate methods is hard to
predict and may depart significantly from theory. All of these factors contribute to making it
very challenging for end-users to be able to safely and easily rely on approximations. To tackle
these challenges, it is therefore necessary to develop automated strategies, that incorporate both
a priori predictors, to help decide which method should be used and with which parameters, and
a posteriori checks, to verify that the method succeeded or on the contrary detect failures and
adopt suitable fallback strategies. A priori tools are especially challenging to develop since the
numerical behavior of many methods is still not well understood. This motivates the development
of modular error analyses, to help refine our understanding of the role of each parameter, and of
probabilistic error analyses, to ensure the sharpness of these a priori estimates. These analytical
tools should be coupled with practical ones, such as condition number estimators.

Modular approximations As mentioned above, the behavior of many complex numerical
algorithms is still not well understood. While some approximate methods were able to be de-
veloped by combining educated intuitions and empirical heuristics, this methodology will be
increasingly unlikely to yield meaningful results, as the number of available precisions and types
of approximations grows. To face this challenge, I advocate for a systematic approach that
makes algorithms and their analysis modular by breaking them into independent smaller parts
(the “modules”). The granularity of the parts is context-dependent: in some cases, it may suffice
for each part to be standard linear algebra kernels whose behavior we understand, while in other
cases, descending to the level of scalar instructions may be beneficial. This modular approach
presents several advantages for approximate computing: from a theoretical point of view, an-
alyzing modular algorithms where each module is parameterized by an independent precision
parameter allows for identifying the role of this specific module on the behavior of the algorithm;
this methodology can be used to discover new mixed precision strategies. Beyond that, modular
computing makes it natural to combine different approximate techniques, such as mixed preci-
sion, low-rank approximations, randomization, or multiword arithmetic. This leads to questions
(and hopefully answers) about the stability and efficient implementation of such combinations.

134

Adaptive approximations The behavior and potential of approximations strongly depend
on the input data that they are applied to. In order to make the most out of approximations
regardless of the input, adaptive methods should be used. Adaptive methods seek to dynamically
detect numerical structure in the data at hand and to take advantage of it whenever possible. This
notably includes adaptive precision algorithms, to which we have dedicated Chapter 11 of this
manuscript. These algorithms have already been proven successful in a few specific contexts, but
they have the potential to be effective in a much wider range of computations and applications,
thanks to their many strengths. They can exploit a continuum of precisions and are thus well
suited to harness emerging hardware where arithmetics range from 64-bit to just 4-bit. They
can deliver a continuum of accuracies and thus offer flexible and versatile performance—accuracy
tradeoffs. Perhaps most importantly, they can be used in a fully automated way: it suffices to
give them a target accuracy and they will do the rest, that is, exploit as much approximations as
possible while provably meeting the target. Moreover, when applied to adversarial inputs that
do not present any approximation opportunities, their behavior often simply becomes equivalent
to the standard non-approximate (uniform precision) approach. This makes them robust not
only in terms of accuracy but also performance. For these reasons, I believe adaptive algorithms
to be an ideal tool for black-box, industrial approximate computing.

16.2 Some research problems

16.2.1 Probabilistic error analysis

Research Problem 16.1 (Sharper probabilistic bounds for matrix factorizations). While the
constant () appearing in probabilistic error bounds (see Theorem 3.1) is sharp for summation,
inner products, and matrix—vector products (see Figure 3.1), there are cases where it still remains
pessimistic. In particular, the backward error for matrix factorizations is in practice independent
of the matrix size. We have developed in Section 3.3 an analysis that takes into account the
data distribution and produces sharper bounds for zero-mean data. Unfortunately, these bounds
are not applicable to matrix factorizations, since the entries of the LU factors of a matrix with
random independent entries are no longer independent. Besides, the absence of error growth is
observed for matrices with entries in both [0,1] and [—1,1], so a different mechanism seems to
be at play. Providing an explanation for this phenomenon is an important open problem.

Research Problem 16.2 (Probabilistic analysis of fast matrix multiplication). Fast matrix
multiplication, like Strassen’s algorithm [239], can compute n X n matrix products in O(n*)
complexity with w < 3. Unfortunately, in floating-point arithmetic, they lead to a larger error
growth; for example, the worst-case error bound for Strassen’s algorithm grows as n'°%212 ~
n36 [162, Thm. 23.2]. However, in practice, this bound is quite pessimistic; a probabilistic
analysis of such algorithms might lead to sharper error bounds. Note that the error analysis
of Strassen’s algorithm is not based on the standard inner product—based analysis involving the
Yrn constant, so that Theorem 3.1 is not directly applicable. Deriving probabilistic error bounds
for fast matrix multiplication would not only provide a better understanding of its numerical
behavior, but could also help improve its accuracy. Indeed, Dumas et al. [122, 123] develop
more accurate variants by minimizing the growth factor appearing in the worst-case bounds; if
more descriptive probabilistic bounds can be obtained, minimizing those might lead to even more
accurate variants in practice.

135

16.2.2 Multiword arithmetic

Research Problem 16.3 (Multiword arithmetic for iterative refinement). In Section 5.2, we
have explained how fp32 arithmetic can be emulated using multiword arithmetic based on fp16
(or bfloat16) GPU tensor cores. Using the Ozaki approach [210], fp64 arithmetic can also be
emulated, usually using int8 arithmetic, but requires a lot more flops. In the context of the
solution of linear systems, an interesting problem is how to best combine multiword arithmetic
with iterative refinement (Chapter 10). For example, if {fp64 accuracy is needed, the following
approaches should be compared:

e compute a 16-bit LU factorization and refine the solution to 64-bit accuracy with LU-IR
or GMRES-IR (refinement only, no emulation);

e compute a 32-bit LU factorization with fpl6-based fp32 emulation and refine the solution
to 64-bit accuracy (fpl6-based emulation and refinement);

e compute a p-bit LU factorization with int8-based emulation, where 32 <« p < 64, and
refine the solution to 64-bit accuracy (int8-based emulation and refinement);

e compute a 64-bit LU factorization with int8-based fp64 emulation and directly obtain the
solution (int8-based emulation only, no refinement).

The best choice between these approaches is likely to depend on both the condition number of the
system and the architecture (more specifically, the speed ratio between low and high precision),
therefore leading to multiple possible tradeoffs.

Research Problem 16.4 (Multiword arithmetic for randomized low-rank approximations). As
explained in Section 6.4, multiword matrix multiplication can be used to accelerate randomized
low-rank approximation algorithms. An interesting perspective is to combine this idea with the
adaptive precision randomized algorithms described in Section 6.3. Indeed, multiword approaches
like the Ozaki scheme [210] can emulate higher precision with a relatively flexible choice of
accuracy, depending on the number of words (or “slices”) used. Therefore one could accelerate
randomized low-rank approximations by progressively reducing the number of words based on
an adaptive precision criterion, such as the one derived in Theorem 6.2.

Research Problem 16.5 (Mixed precision multiword arithmetic over prime finite fields). In
Section 5.3, we have described a multiword approach to compute C' = AB mod p. A promising
perspective is to extend this approach to use mixed precision, and in particular GPU tensor
cores that provide 32-bit precision accumulators. Indeed, in this context, we can decompose
A= Z;”:A()_l A; and B = E}U:BO_I Bj such that the A; and B; matrices are stored in low precision,
and we can then efficiently compute A;B; mod p by blocks, with a large block size A thanks the
high precision accumulation. Interestingly, while storing the matrices in fp16 would in principle
allow for integer coefficients of up to 11 bits, the 24-bit size of the fp32 accumulator will in
practice become limiting in order to keep the block size A large enough. For example, if we wish
to have A > 28, the integer coefficients of A; and B; must fit on 8 bits. This suggests that using
int8 arithmetic will in practice be more efficient, since it is twice faster than fpl16 arithmetic,
and the accumulation uses int32 arithmetic with 32 full bits instead of 24. Moreover, high
precision accumulation can also make multimodular arithmetic approaches [114] more efficient,
and even superior to our multiword approach. A thorough assessment depending on the storage
and accumulation bitwidths should be performed.

136

16.2.3 Low-rank approximations

Research Problem 16.6 (Robust and efficient fixed-accuracy randomized sketching in finite
precision). In Section 6.2, we have described fixed-rank and fixed-accuracy randomized range
finder algorithms. While the fixed-accuracy variant is often of greater applicability since it
does not require the a priori knowledge of the rank, it is also significantly more expensive. For
example, the fixed-accuracy Algorithm 6.4 by Martinsson and Voronin [196] costs 6mnk+o(mnk),
whereas the fixed-rank Algorithm 6.3 only costs 4mnk + o(mnk). This cost difference is further
exacerbated when using a sketch that allows for fast matrix—vector products such as subsampled
Fourier or Hadamard transforms [154, sect. 4.6], in which case the fixed-accuracy variant can
require up to twice as many flops as the fixed-rank one. As mentioned in Section 6.2, it is
possible to reduce the cost of the fixed-accuracy variant to almost the same as the fixed-rank one
by using a different stopping criterion; rather than explicitly forming the error matrix, the idea
is to estimate its norm by implicitly multiplying it with the next sketch [154, sect. 4.4]. However,
this criterion is less robust, especially in finite precision arithmetic when the truncation threshold
¢ approaches the unit roundoff u. An interesting perspective is therefore to investigate the reason
behind this numerical issue, and attempt to stabilize the algorithm.

Research Problem 16.7 (Fixed-accuracy randomized interpolative decomposition). A partic-
ularly cost-efficient randomized algorithm for computing low-rank approximations is the inter-
polative decomposition [154, sect. 5.2]. Its bottleneck is indeed the computation of the sketched
matrix A, which thus only requires 2mnk+ o(mnk) flops for a Gaussian matrix €2, and this cost
can even be reduced to O(mnlog k) with subsampled Fourier or Hadamard transforms. However,
the literature on randomized interpolative decomposition has mostly focused on the fixed-rank
case. A fixed-accuracy variant is quickly mentioned in [187], and we have implemented it in [37],
but it is based on the stopping criterion mentioned in the previous Research Problem 16.6, which
is not robust. Developing a fixed-accuracy randomized interpolative decomposition based on a
robust stopping criterion is an interesting perspective.

Research Problem 16.8 (Quantization of rank-r matrices). In Section 6.7 we developed an
algorithm to optimally quantize a rank-one matrix to low precision floating-point arithmetic.
Extending this method to rank-r matrices, with » > 1, is an interesting perspective. A naive
approach would simply quantize each rank-one component separately, but this is clearly not
optimal. A better approach would for example consist in quantizing the first rank-one component,
deflating it from the matrix, and quantizing the first rank-one component of the resulting deflated
matrix, continuing in this manner until r rank-one components have been computed. This
iterative approach is self-correcting in the sense that the quantization error for a given component
is taken into account when computing the next components. While potentially more accurate,
this approach is still not optimal. Whether a provably optimal algorithm can be developed
remains an open problem. Moreover, another interesting question is whether we should use
the same budget of bits for quantizing each component: clearly, the adaptive precision low-
rank approximation described in Section 6.3 suggests that this budget should be progressively
decreased.

16.2.4 Krylov solvers

Research Problem 16.9 (High performance mixed precision preconditioned GMRES). The
error analysis developed in Section 8.3.1 leads to bounds on the attainable accuracy of precon-
ditioned GMRES that suggest many meaningful mixed precision strategies. This theoretical
study should now be complemented with a practical one based on a high performance, parallel

137

implementation of mixed precision GMRES. This is required to assess the relevant performance—
accuracy tradeoffs between different variants on large scale, real-life problems.

Research Problem 16.10 (Mixed precision restarted GMRES with memory accessors). One
mixed precision GMRES variant that we have particularly discussed in Section 8.3.1 and that is
quite popular among practitioners is to apply the preconditioner in lower precision and recover
stability by using flexible GMRES [68, 166, 86]. This, however, comes at the cost of doubling
the storage cost for the Krylov basis, which may limit the restart size and thus the convergence
rate of the solver. An alternative approach is to rely instead on memory accessors (Chapter 12)
to apply the preconditioner in high precision while storing it in low precision; we have seen in
Sections 12.3 and 12.4 that LU triangular solves can be performed at the speed of the storage
precision. These two competing approaches should be compared as part of a large scale, high
performance study on real-life problems.

Research Problem 16.11 (Mixed precision augmented GMRES). Augmented GMRES meth-
ods [95, 102] consist in augmenting the standard Krylov subspace with additional vectors in
order to speed up the convergence of the solver. In particular, a common approach is to include
approximate eigenvectors associated with small eigenvalues [201, 202], to deflate them and make
the problem easier to solve. A promising perspective to improve the performance of Krylov
solvers is to combine these augmentation techniques with mixed precision, in order to cumulate
the reduced number of iterations of the former with the reduced per-iteration cost of the latter. A
first attempt was proposed by Oktay and Carson [209], but their method only uses low precision
for computing an LU factorization, which is then used as preconditioner for a GCRO-DR, [221]
solver entirely in high precision. In ongoing work [46], we have indeed observed that GCRO-DR
and the closely related GMRES-DR [202] present very limited mixed precision opportunities,
because they are based on some algebraic simplifications that only hold approximately in finite
precision arithmetic. To overcome this issue, we show that using a more general augmented GM-
RES method that does not operate these simplifications can leverage lower precision in a much
larger part of the solver—possibly all the inner operations including the sparse matrix—vector
product, the application of the preconditioner, and the orthonormalization.

16.2.5 BLR solvers

Research Problem 16.12 (Composite data sparse solvers). As discussed in Section 9.5, there
exists several data sparse matrix formats: BLR, hierarchical or multilevel formats (such as #H
or MBLR), formats with shared or nested bases (such as H? or BLR?), etc. Since the best
choice of format depends on various factors such as the problem class or the matrix size, it
seems interesting to combine different formats within the same solver; this is particularly natural
in sparse direct solvers that require factorizing many dense matrices of various sizes across the
levels of the elimination tree (see Section 7.2). Claus et al. [98] describe a composite method
that uses ZFP, BLR, and HODBF compression on the smallest, medium, and largest fronts,
respectively. This approach can be improved and generalized in three ways. First, it would be
useful to determine analytical criterions to decide when to switch from one format to the other;
this requires a non-asymptotic complexity analysis of the different formats. Second, rather than
switching directly from a fully flat to a fully hierarchical format, using the MBLR format would
allow for gradually increasing the number of levels ¢ as we go up in the elimination tree. Third,
different formats may also be combined within the same level and even within the same front:
for example, using shared/nested bases only for certain parts of the front.

Research Problem 16.13 (Adaptive precision BLR? and MBLR formats). The adaptive pre-
cision BLR approach described in Section 9.4 should be extended to other data sparse formats.

138

For MBLR and H formats, this is natural since each block is compressed independently; Krie-
mann [176, 177] develops an adaptive precision H-format, although it is mostly used as a com-
pression or storage format; how to extend the adaptive precision BLR LU factorization (which
uses lower precisions also in the computations) to multilevel or hierarchical factorizations remains
an open question. The case of formats with shared/nested bases, such as BLR?, is even more
difficult. One can expect the coupling matrices to also be representable in adaptive precision
form, but the question of whether this is also the case for the shared bases (which can represent
a significant part of the total storage) should be investigated. The answer will mainly depend
on whether the shared bases exhibit rapidly decaying singular values.

Research Problem 16.14 (Memory accessor for BLR “compute-bound” operations). In Sec-
tion 12.4, we have described a memory accessor approach to efficiently perform triangular solves
with adaptive precision BLR LU factors; in particular, we have shown that memory accessors
can handle custom floating-point formats efficiently, which allows for optimizing storage. An
important question is whether this memory accessor approach can also be successful for BLR
operations traditionally considered to be “compute-bound”, such as triangular solves with many
right-hand sides (RHS) or LU factorization. While these operations are indeed compute-bound
in absence of BLR compression, the use of low-rank approximations strongly reduce their arith-
metic intensity, as discussed in Section 9.3. For example, the communication-avoiding approach
for BLR triangular solve with many RHS described in that section could be extended to adap-
tive precision with memory accessors. Similarly, the adaptive precision BLR LU factorization
described in Section 9.4 should also be implemented; using a memory accessor is appealing be-
cause it would significantly reduce the programming effort by only relying on conversions and
not modifying the core computational kernels.

Research Problem 16.15 (BLR sparse solution for FEM-BEM problems). FEM-BEM prob-

lems typically require the solution of a linear system involving a matrix where A is

A B
BT C©
symmetric and sparse, B is sparse, and C' is dense. How to best tackle these problems with a di-
rect solver employing data sparse formats is an interesting question; a first study was carried out
by Agullo et al. [55], but was limited by API constraints of the solver. A first approach to com-
pute the Schur complement S = C' — BT A~! B is to factorize A = LLT (with BLR compression)
and to compute Y = L' B with forward solves exploiting the sparsity of the right-hand side B;
this then yields S = C — YTY. Another approach computes the fully dense Z = L~ L~! B with
forward and backward solves and then computes S = C — BT Z. The best approach will depend
on the sparsity of B and Y, and on the cost of the solves, which also strongly depend on the
sparsity and compression format used, as discussed in Section 9.5.5. Moreover, it is also desirable
to compress S, and forming the fully dense S (or C') before compressing it is not affordable. A
simple approach would be to form S one block at a time. However, a better approach would be
to use a randomized compression algorithm based on matrix—vector products with C' and with
YTY (or BTZ) without ever forming these matrices.

Research Problem 16.16 (Domain decomposition BLR preconditioners). As already men-
tioned in Research Problem 16.20, it is desirable to reduce the time and memory costs of the
local solvers in domain decomposition preconditioners. One idea is to use BLR compression for
the subdomains; however, this poses several challenges and questions. First, BLR compression
usually requires large or at least medium matrices, but the typical usage in domain decomposition
preconditioning is to use small subdomains to reduce the complexity and obtain embarrassing
parallelism. In order to benefit from BLR compression, larger subdomains should be used, and
parallel local factorizations employed; an additional benefit of increasing the subdomain size

139

would be to reduce the work of any coarse solver, as well as its criticality for convergence. If
the main goal is to reduce the memory consumption of the preconditioner, simply using BLR
local solvers might not be sufficient; this is because the memory consumption of BLR solvers is
largely dominated by the temporary workspaces needed for the factorization; the size of the com-
pressed LU factors is typically smaller. This represents an issue because domain decomposition
preconditioners typically factorize all subdomains in parallel, and so the memory peaks of each
local solver will be summed. An interesting idea is to partially sequentialize the subdomains by
factorizing them in batches. This approach, combined with a larger subdomain size, however
puts more pressure on the scalability of the direct solver.

16.2.6 Adaptive precision algorithms

Research Problem 16.17 (Adaptive precision SpMV formats). As discussed in Section 12.2,
the performance of the SpMV strongly depends on the sparse matrix format. When storing the
matrix values in low precision, larger speedups are obtained by using a format that minimizes the
weight of the indices, since they do not benefit from the use of low precision [203]. A promising
perspective is to use such matrix formats for accelerating the adaptive precision SpMV described
in Section 11.1. However, this poses significant constraints on the precisions chosen for each
matrix element: for example, block formats would require all elements in the same block to be
stored in the same precision; ELL-style formats would require for each row, the same number of
elements to be stored in each precision.

Research Problem 16.18 (Adaptive precision relaxed GMRES). As explained in Section 8.3.3,
it is possible to gradually lower the precision of the matrix—vector product in GMRES as the
norm of residual gets smaller. It is timely to revisit relaxed GMRES solvers in light of two
recent developments. First, the emergence of many different precision formats supported in
hardware, combined with the efficient handling of custom formats thanks to memory accessors
(Sections 12.1 and 12.2) makes it possible to refresh the SpMV precision much more frequently.
Second, the the adaptive precision SpMV (Section 11.1) allows for controlling its accuracy € in a
continuous matter; while in principle it could thus be refreshed at each iteration, in practice the
overhead cost of changing the adaptive precision representation should be taken into account.

Research Problem 16.19 (Adaptive precision incomplete factorizations). Incomplete factor-
izations such as ILU(k) or ILUT(g) compute the LU factorization of a sparse matrix while
dropping some coefficients of the LU factors in order to enforce a greater level of sparsity than
what would be obtained by an exact LU factorization. With such approaches, coeflicients are
thus either fully dropped or kept in full precision. It seems natural to extend the adaptive preci-
sion SpMV from Section 11.1 to incomplete factorizations, by storing the coefficients of the LU
factors in progressively lower precisions. The criterion for choosing the precisions could here too
be based on the coefficient magnitudes (this would be natural for ILUT(¢) factorizations), or on
other criterions such as the sparsity patterns of A, A2, ..., AF for ILU(k).

Research Problem 16.20 (Adaptive precision domain decomposition preconditioners). Do-
main decomposition methods rely on partitioning large sparse linear systems into several much
smaller, independent ones, and are thus particularly suited for massively parallel architectures.
Nevertheless, for extreme scale problems, the combined cost (in storage and time) of all the local
problems can become unaffordable when using exact local solvers. Hence, a promising research
direction is the use of approximate methods as local solvers. In this context, a natural question
is whether each local subdomain requires the same precision or if, on the contrary, it is mean-
ingful to adapt the precision to each subdomain. In ongoing work [48], we have carried out a

140

perturbation analysis of the additive Schwarz preconditioner with GenEO coarse sparce [113],
and obtained error bounds proportional to max; k(A4;)e;, where A; is the matrix associated with
the ith subdomain and ¢; is the error incurred in processing A;; this includes both the factor-
ization of A; to apply its inverse, and the generalized eigenvalue problem to compute the part of
the coarse space associated with A;. Our error bounds suggest that the precision used in each
subdomain should be set to be inversely proportional to its condition number, thereby creating
a significant opportunity to use mixed precision.

16.2.7 Tensors

Research Problem 16.21 (Stability of high order TTN computations). Our analysis of the
propagation of errors in TTN computations in Section 14.1 produced a bound proportional to o,
where « is the normalization factor (see Definition 14.1) and ¢ is the number of leaves of the TTN.
This bound suggests a possible exponential error growth, and thus a risk of instability, when o > 1
and / is large. In practice, however, no such error growth has been observed. Therefore, future
work should seek to, on the one hand, find adversarial examples where this bound is attained
to understand under which conditions instabilities may arise and, on the other hand, provide an
explanation as to why stability is maintained in practice. In particular, Definition 14.1 defines
« as the largest possible amplification factor of the error under multiplication. In practice, the
actual amplification factors may be smaller, especially if the error matrix is structured. An
important example is the sum of two e-normalized TTNs. In this case, the 1-normalized, nonleaf
nodes have a block diagonal structure. If the error produced on these nodes retains their block
diagonal structure, then multiplying it by a v/2-normalized leaf node does not amplify the error
at all, since each diagonal block is multiplied by an orthonormal matrix. This observation should
be formalized to rigorously establish in which cases stability is provably maintained.

Research Problem 16.22 (Performance comparison of TTN rounding algorithms). Two ap-
proaches to perform TTN rounding should be compared. On the one hand, Gram LRA-based
approaches [216, 141, 175, 58| are very parallel but unstable, preventing the use of lower precision
arithmetic. On the other hand, orthonormalization-based approaches [215, 243], [39] are less
parallel, because they require truncating each dimension sequentially, but stable, and can thus
safely exploit lower precision. This motivates a pratical study comparing the performance of
these two types of approaches on various computer architectures depending on their parallel and
arithmetic environment. Moreover, they should also be compared with other rounding methods,
such as randomized ones [57]. Finally, one may wonder to what extent it is necessary to transfer
the non-orthonormality to the node being rounded. Indeed, our error analysis in Section 14.1
shows that, to ensure stability, it is sufficient that all nodes except one are orthonormal, but that
one node need not be the one being rounded. While this would allow to parallelize the method,
rounding orthonormal nodes may result in suboptimal dimensions.

Research Problem 16.23 (Adaptive precision tensor decompositions). It is natural to seek to
extend the adaptive precision low-rank matrix representation described in Section 6.3 to higher
order tensors. One difficulty is that this representation is based on the singular values of the
matrix, but tensors do not have a direct equivalent. One idea could be to employ this adaptive
precision representation for the underlying low-rank matrix approximations that are computed
on matricized tensors. Another approach could instead be to generalize the idea of looking at the
singular values by taking into account the magnitudes of other coefficients in the low-rank tensor
that play a similar role; the so-called “core” node of Tucker tensors seems a natural candidate.

Research Problem 16.24 (Quantization of low-rank tensors). In Section 6.7, we have shown
how to optimally quantize a rank-one matrix zy” to t-bit floating-point arithmetic. Importantly,

141

the optimal error can be much smaller than that achieved by naively quantizing x and y indi-
vidually. It seems likely that this observation continues to hold for rank-one tensors of the form
1 ® -+ ® x4, whose entries are represented as the product of d t-bit floating-point numbers.
Finding an optimal quantization algorithm, and whether one of tractable complexity exists, is
an open problem.

16.2.8 Neural networks

Research Problem 16.25 (Adaptive precision pruning for neural networks). A common method
to compress large neural networks is to sparsify their weights by removing connections, also known
as pruning [77]. One approach consists in pruning weights of small magnitude [157]. While such
pruning can be naturally combined with low precision quantization by quantizing the weights
that are not pruned, a more efficient approach could be to employ magnitude-based adaptive
precision quantization, as in the SpMV approach developed in Section 11.1.

Research Problem 16.26 (Adaptive precision low-rank approximations for neural networks).
Low-rank approximations are also commonly employed for compressing large neural networks,
such as in the LoRA algorithm [167]. While LoRA has been combined with low precision quanti-
zation [112, 254], a more efficient approach could be to employ an adaptive precision quantization
based on the approach developed in Section 6.3. It remains to be seen whether the low-rank
structures in these networks exhibit a sufficient singular value decay for the use of multiple
precisions to be meaningful.

Research Problem 16.27 (Quantized butterfly factorizations for neural networks). As dis-
cussed in Section 13.2, butterfly matrices have been used to compress neural networks [105, 106,
103, 104]. In Section 13.3, we have developed an approach to quantize butterfly matrices to
low precision, based on our rank-one matrix optimal quantization described in Section 6.7. It
seems promising to explore the use of this quantized butterfly factorization to compress neural
networks.

Research Problem 16.28 (Static mixed precision accumulation). In Section 15.2, we have
proposed a mixed precision algorithm for neural network inference that accumulates different
inner products in different precisions. The algorithm is dynamic in the sense that we first com-
pute all inner products in low precision and then dynamically decide which ones to recompute
in high precision based on their estimated condition number. While this approach is robust, the
recompute overhead cost makes it practical only if a small fraction of inner products need to
be (re)computed in high precision. This overhead cost could be removed by instead statically
deciding which inner products to compute a priori in high precision—regardless of the input.
Naturally, this requires “learning” the precision configuration on a representative set of input
vectors. This static strategy may achieve better performance—accuracy tradeoffs than the dy-
namic strategy presented in Section 15.2. Moreover, using a static precision configuration would
allow for exploiting mixed precision not just for the accumulation, but for the quantization too.

Research Problem 16.29 (Error analysis for transformers). The error analyses developed in
Section 15.1 and Section 15.2 consider MLP networks with fully-connected layers. An interesting
perspective is to extend these analyses to other types of network architectures, in particular
transformers [244]; they have been analyzed by Budzinskiy et al. [80], but further investigation is
required, in particular, concerning mixed precision opportunities. Indeed, transformers involve
the softmax function, which amplifies variations in magnitude in the data—the mixed precision
approach developed in Section 15.2 might thus be applicable.

142

References: personal publications

Journal articles

1
2]
3l
4]
5]

16]
7]

18]
19]
[10]

[11]

[12]

[13]

N. J. Higham and T. Mary. A new approach to probabilistic rounding error analysis.
SIAM J. Sci. Comput. 41.5 (2019), A2815-A2835.

N. J. Higham and T. Mary. Sharper probabilistic backward error analysis for basic linear
algebra kernels with random data. SIAM J. Sci. Comput. 42.5 (2020), A3427-A3446.

M. P. Connolly, N. J. Higham, and T. Mary. Stochastic rounding and its probabilistic
backward error analysis. STAM J. Sci. Comput. 43.1 (2021), A566—-A585.

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: Imple-
mentation, error analysis and applications. Roy. Soc. Open Sci. 9.3 (2022), 1-25.

P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed precision block
fused multiply-add: Error analysis and application to GPU tensor cores. SIAM J. Sci.
Comput. 42.3 (2020), C124-C141.

T. Mary and M. Mikaitis. Error analysis of matrix multiplication with narrow range
floating-point arithmetic. STAM J. Sci. Comput. 47.4 (2025), B785-B800.

M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis. Matrix multiplication in
multiword arithmetic: Error analysis and application to GPU tensor cores. SIAM J. Sci.
Comput. (2023).

N. J. Higham and T. Mary. Solving block low-rank linear systems by LU factorization is
numerically stable. IMA J. Numer. Anal. 42.2 (2021), 951-980.

T. Mary. Error analysis of the Gram low-rank approximation (and why it is not as unstable
as one may think). STAM J. Matriz Anal. Appl. 46.2 (2025), 1444-1459.

N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta
Numerica 31 (2022), 347-414.

P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. I’Excellent, T. Mary, and B. Vieublé. Five-
precision GMRES-based iterative refinement. SIAM J. Matriz Anal. Appl. 45.1 (2024),
529-552.

A. Buttari, N. J. Higham, T. Mary, and B. Vieublé. A modular framework for the back-
ward error analysis of GMRES. HAL EPrint hal-04525918; to appear in IMA J. Numer.
Anal..

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and scalability
of the block low-rank multifrontal factorization on multicore architectures. ACM Trans.
Math. Software 45.1 (2019), 2:1-2:26.

143

https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1334796
https://doi.org/10.1137/20M1334796
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/24M1685109
https://doi.org/10.1137/24M1685109
https://doi.org/10.1137/21M1465032
https://doi.org/10.1137/21M1465032
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1137/24M1687649
https://doi.org/10.1137/24M1687649
https://doi.org/10.1017/s0962492922000022
https://doi.org/10.1137/23M1549079
https://doi.org/10.1137/23M1549079
https://hal.science/hal-04525918
https://hal.science/hal-04525918
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094

[14]

[15]

[16]

[17]

(18]

[19]
20]
21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and
T. Mary. Communication avoiding block low-rank parallel multifrontal triangular solve
with many right-hand sides. STAM J. Matriz Anal. Appl. 45.1 (2024), 148-166.

P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieublé.
Combining sparse approximate factorizations with mixed precision iterative refinement.

ACM Trans. Math. Software 49.1 (2023).

P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T.
Mary. Mixed precision low rank approximations and their application to block low rank
LU factorization. IMA J. Numer. Anal. 43.4 (2022), 2198-2227.

N. J. Higham and T. Mary. A new preconditioner that exploits low-rank approximations
to factorization error. STAM J. Sci. Comput. 41.1 (2019), A59-A82.

S. Graillat, F. Jézéquel, T. Mary, and R. Molina. Adaptive precision sparse matrix-vector
product and its application to Krylov solvers. SIAM J. Sci. Comput. 46.1 (2024), C30-
C56.

P. Blanchard, N. J. Higham, and T. Mary. A class of fast and accurate summation algo-
rithms. SIAM J. Sci. Comput. 42.3 (2020), A1541-1557.

S. Graillat and T. Mary. Condense and distill: fast distillation of large floating-point sums
via condensation. STAM J. Sci. Comput. 47.2 (2025), B583-B594.

A. Buttari, T. Mary, and A. Pacteau. Truncated QR factorization with pivoting in mixed
precision. SIAM J. Sci. Comput. 47.2 (2025), B382-B401.

M. Baboulin, O. Kaya, T. Mary, and M. Robeyns. Mixed precision iterative refinement
for low-rank matrix and tensor approximations. HAL EPrint hal-04115337; to appear in
SIAM J. Sci. Comput..

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the complexity of the block
low-rank multifrontal factorization. STAM J. Sci. Comput. 39.4 (2017), A1710-A1740.

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Bridging the gap between flat
and hierarchical low-rank matrix formats: The multilevel block low-rank format. STAM
J. Sci. Comput. 41.3 (2019), A1414-A1442.

C. Ashcraft, A. Buttari, and T. Mary. Block low-rank matrices with shared bases: Po-
tential and limitations of the BLR? format. SIAM J. Matriz Anal. Appl. 42.2 (2021),
990-1010.

C.-P. Jeannerod, T. Mary, C. Pernet, and D. S. Roche. Improving the complexity of
block low-rank factorizations with fast matrix arithmetic. SIAM J. Matriz Anal. Appl.
40.4 (2019), 1478-1496.

F. Lopez and T. Mary. Mixed precision LU factorization on GPU tensor cores: reducing
data movement and memory footprint. Int. J. High Perform. Comput. Appl. 37.2 (2023),
165-179.

S. Operto, P. R. Amestoy, H. Aghamiry, S. Beller, A. Buttari, L. Combe, V. Dolean,
M. Gerest, G. Guo, P. Jolivet, J.-Y. I’Excellent, F. Mamfoumbi, T. Mary, C. Puglisi, A.
Ribodetti, and P.-H. Tournier. Is 3D frequency-domain FWI of full-azimuth /long-offset
OBN data feasible? The Gorgon case study. Leading Edge 42.3 (2023), 146-228.

A. Buttari, M. Huber, P. Leleux, T. Mary, U. Ruede, and B. Wohlmuth. Block low rank
single precision coarse grid solvers for extreme scale multigrid methods. Numer. Linear
Algebra Appl. 29.1 (2021).

144

https://doi.org/10.1137/23M1568600
https://doi.org/10.1137/23M1568600
https://doi.org/10.1145/3582493
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/22M1522619
https://doi.org/10.1137/22M1522619
https://doi.org/10.1137/19M1257780
https://doi.org/10.1137/19M1257780
https://doi.org/10.1137/24M1647217
https://doi.org/10.1137/24M1647217
https://doi.org/10.1137/24M1644705
https://doi.org/10.1137/24M1644705
https://inria.hal.science/hal-04115337
https://inria.hal.science/hal-04115337
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/20M1386451
https://doi.org/10.1137/20M1386451
https://doi.org/10.1137/19M1255628
https://doi.org/10.1137/19M1255628
https://doi.org/10.1177/10943420221136848
https://doi.org/10.1177/10943420221136848
https://doi.org/10.1190/tle42030173.1
https://doi.org/10.1190/tle42030173.1
https://doi.org/10.1002/nla.2407
https://doi.org/10.1002/nla.2407

[30]

[31]

[32]

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. Robust and
accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically
semiseparable construction. SIAM J. Sci. Comput. 41.5 (2019), S61-S85.

P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A.
Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel

block low-rank multifrontal direct solver: Application to OBC data from the North Sea.
Geophysics 81.6 (2016), R363-R383.

D. V. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. R. Amestoy, A. Buttari, J.-Y.
L’Excellent, and T. Mary. Large-scale 3D EM modeling with a block low-rank multifrontal
direct solver. Geophys. J. Int. 209.3 (2017), 1558-1571.

Conference articles

[33]

[34]

[35]

[36]

[37]

M. Baboulin, S. Donfack, O. Kaya, T. Mary, and M. Robeyns. Mixed precision random-
ized low-rank approximation with GPU tensor cores. Furo-Par 2024: Parallel Processing.
Cham: Springer Nature Switzerland, 2024, 31-44.

P. R. Amestoy, A. Buttari, F. Faucher, J.-Y. L’Excellent, and T. Mary. Recent work on
sparse direct solvers to exploit numerical and structural properties of HDG discretizations.
14th WCCM and ECCOMAS congress 2020, Paris, France. Jan. 2021.

P. R. Amestoy, A. Buttari, F. Faucher, M. Gerest, J.-Y. L’Excellent, and T. Mary. Mixed
precision sparse direct solver applied to 3D wave propagation. ECCOMAS congress 2022,
Oslo, Norway. June 2022.

S. Graillat, F. Jézéquel, T. Mary, R. Molina, and D. Mukunoki. Reduced-precision and
reduced-exponent formats for accelerating adaptive precision sparse matrix-vector prod-
uct. Furo-Par 2024: Parallel Processing. Cham: Springer Nature Switzerland, 2024, 17—
30.

T. Mary, I. Yamazaki, J. Kurzak, P. Luszczek, S. Tomov, and J. Dongarra. Performance
of random sampling for computing low-rank approximations of a dense matrix on GPUs.
SC’15 - International Conference for High Performance Computing, Networking, Storage
and Analysis. Austin, USA, Nov. 2015.

Preprints

[38]
[39]
[40]

[41]

[42]

F. Jézéquel and T. Mary. Probabilistic estimation of the accuracy of inner products and
application to stochastic validation. HAL EPrint hal-04554459.

M. Baboulin, O. Kaya, T. Mary, and M. Robeyns. Numerical stability of tree tensor
network operations, and a stable rounding algorithm. HAL EPrint hal-04996127.

A. Buttari, X. Liu, T. Mary, and B. Vieublé. Mixed precision strategies for preconditioned
GMRES: a comprehensive analysis. HAL EPrint hal-05071696.

P. R. Amestoy, A. Jego, J.-Y. L’Excellent, T. Mary, and G. Pichon. BLAS-based block
memory accessor with applications to mixed precision sparse direct solvers. HAL EPrint
hal-05019106.

R. Gribonval, T. Mary, and E. Riccietti. Optimal quantization of rank-one matrices in
floating-point arithmetic—with applications to butterfly factorizations. HAL EPrint hal-
04125381.

145

https://doi.org/10.1137/18M1194961
https://doi.org/10.1137/18M1194961
https://doi.org/10.1137/18M1194961
https://doi.org/10.1190/geo2016-0052.1
https://doi.org/10.1190/geo2016-0052.1
https://doi.org/10.1093/gji/ggx106
https://doi.org/10.1093/gji/ggx106
https://doi.org/10.1007/978-3-031-69583-4_3
https://doi.org/10.1007/978-3-031-69583-4_3
https://doi.org/10.1007/978-3-031-69583-4_2
https://doi.org/10.1007/978-3-031-69583-4_2
https://doi.org/10.1007/978-3-031-69583-4_2
https://doi.org/10.1145/2807591.2807613
https://doi.org/10.1145/2807591.2807613
https://hal.science/hal-04554459
https://hal.science/hal-04554459
https://hal.science/hal-04996127
https://hal.science/hal-04996127
https://hal.science/hal-05071696
https://hal.science/hal-05071696
https://hal.science/hal-05019106
https://hal.science/hal-05019106
https://inria.hal.science/hal-04125381
https://inria.hal.science/hal-04125381

[43]

[44]

[45]

[46]

E.-M. E. Arar, S. Filip, T. Mary, and E. Riccietti. Mixed precision accumulation for
neural network inference guided by componentwise forward error analysis. HAL EPrint
hal-04995708.

T. Beuzeville, A. Buttari, S. Gratton, and T. Mary. Deterministic and probabilistic back-
ward error analysis of neural networks in floating-point arithmetic. HAL EPrint hal-
04663142.

J. Berthomieu, S. Graillat, D. Lesnoff, and T. Mary. Multiword matrix multiplication
over large finite fields in floating-point arithmetic. HAL EPrint hal-04917201.

Y. Jang, P. Jolivet, and T. Mary. Mixed precision augmented GMRES. HAL EPrint
hal-05163845.

In preparation

[47]

(48]

A. Anciaux-Sedrakian, H. Dorfsman, T. Guignon, F. Jézéquel, and T. Mary. Mixed pre-
cision strategies for solving sparse linear systems with BiCGStab. In preparation.

T. Caruso, P. Jolivet, T. Mary, F. Nataf, and P.-H. Tournier. Perturbation analysis of the
mixed precision additive Schwarz preconditioner with GenEQ coarse space. In preparation.

PhD thesis

[49] T. Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scalability.

PhD Thesis. Université de Toulouse, Nov. 2017.
Unpublished

[50] P. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary, and G. Moreau. Asymptotic com-
plexity of low-rank sparse direct solvers with sparse right-hand sides. STAM Conference
on Combinatorial Scientific Computing (SIAM CSC’20), Seattle, USA. Feb. 2020.

[61] T. Beuzeville, A. Buttari, S. Gratton, T. Mary, and S. Pralet. Adversarial attacks via
backward error analysis. HAL EPrint hal-03296180. 2021.

[52] T. Beugzeville, A. Buttari, S. Gratton, T. Mary, and E. Ulker. Adversarial attacks via

sequential quadratic programming. HAL EPrint hal-03752184. 2022.

146

https://hal.science/hal-04995708
https://hal.science/hal-04995708
https://hal.science/hal-04663142/
https://hal.science/hal-04663142/
https://hal.science/hal-04917201
https://hal.science/hal-04917201
https://hal.science/hal-05163845
https://theses.hal.science/tel-01929478
https://www-pequan.lip6.fr/~tmary/doc/CSC20.pdf
https://www-pequan.lip6.fr/~tmary/doc/CSC20.pdf
https://hal.science/hal-03296180
https://hal.science/hal-03296180
https://hal.archives-ouvertes.fr/hal-03752184/
https://hal.archives-ouvertes.fr/hal-03752184/

Other references

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

S. Abdulah, Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. G. Genton, D. E. Keyes, H. Ltaief,
and Y. Sun. Accelerating geostatistical modeling and prediction with mixed-precision
computations: a high-productivity approach with PAaRSEC. IEEE Trans. Parallel Distrib.
Syst. 33.4 (2022), 964-976.

S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. Geostatistical modeling and
prediction using mixed precision tile Cholesky factorization. 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE, Dec.
2019.

E. Agullo, M. Felsoci, and G. Sylvand. Direct solution of larger coupled sparse/dense
linear systems using low-rank compression on single-node multi-core machines in an in-
dustrial context. 2022 IEEFE International Parallel and Distributed Processing Symposium
(IPDPS). 2022, 25-35.

S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki, A. H. Phan, T.

Tanaka, and I. Oseledets. Randomized algorithms for computation of Tucker decomposi-
tion and higher order SVD (HOSVD). IEEE Access 9 (2021), 28684-28706.

H. Al Daas, G. Ballard, P. Cazeaux, E. Hallman, A. Miedlar, M. Pasha, T. W. Reid, and
A. K. Saibaba. Randomized algorithms for rounding in the tensor-train format. SIAM J.
Sci. Comput. 45.1 (2023), A74-A95.

H. Al Daas, G. Ballard, and L. Manning. Parallel tensor train rounding using Gram SVD.
2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
2022, 930-940.

J. I. Aliaga, H. Anzt, T. Griitzmacher, E. S. Quintana-Orti, and A. E. Tomas. Compressed
basis GMRES on high-performance graphics processing units. Int. J. High Perform. Com-
put. Appl. 37.2 (2023), 82-100.

P. R. Amestoy, 1. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. STAM J. Matriz Anal. Appl. 23.1
(2001), 15-41.

P. R. Amestoy, S. de la Kethulle de Ryhove, J.-Y. L’Excellent, G. Moreau, and D. V.
Shantsev. Efficient use of sparsity by direct solvers applied to 3D controlled-source EM
problems. Comput. Geosci. 23 (Sept. 2019), 1237-1258.

P. R. Amestoy, J.-Y. L’Excellent, and G. Moreau. On exploiting sparsity of multiple
right-hand sides in sparse direct solvers. STAM J. Sci. Comput. 41.1 (2019), A269-A291.

A. Aminfar, S. Ambikasaran, and E. Darve. A fast block low-rank dense solver with
applications to finite-element matrices. J. Comput. Phys. 304 (2016), 170-188.

147

https://doi.org/10.1109/TPDS.2021.3084071
https://doi.org/10.1109/TPDS.2021.3084071
https://doi.org/10.1109/hipc.2019.00028
https://doi.org/10.1109/hipc.2019.00028
https://doi.org/10.1109/IPDPS53621.2022.00012
https://doi.org/10.1109/IPDPS53621.2022.00012
https://doi.org/10.1109/IPDPS53621.2022.00012
https://doi.org/10.1109/ACCESS.2021.3058103
https://doi.org/10.1109/ACCESS.2021.3058103
https://doi.org/10.1137/21M1451191
https://doi.org/10.1109/IPDPS53621.2022.00095
https://doi.org/10.1177/10943420221115140
https://doi.org/10.1177/10943420221115140
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1007/s10596-019-09883-y
https://doi.org/10.1007/s10596-019-09883-y
https://doi.org/10.1137/17M1151882
https://doi.org/10.1137/17M1151882
https://doi.org/10.1016/j.jcp.2015.10.012
https://doi.org/10.1016/j.jcp.2015.10.012

[64] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak, S. Tomov, Y. M.
Tsai, and W. Wang. Load-balancing sparse matrix vector product kernels on GPUs. ACM
Trans. Parallel Comput. 7 (Mar. 2020).

[65] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti. Adaptive pre-
cision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurr.
Comput. Pract. Exp. 31.6 (2019), e4460.

[66] H. Anzt, G. Flegar, T. Griitzmacher, and E. S. Quintana-Orti. Toward a modular precision
ecosystem for high-performance computing. Int. J. High Perform. Comput. Appl. 33.6
(2019), 1069-1078.

[67] E.-M. E. Arar, D. Sohier, P. de Oliveira Castro, and E. Petit. Stochastic rounding variance
and probabilistic bounds: a new approach. SIAM J. Sci. Comput. 45.5 (2023), C255—C275.

[68] M. Arioli and I. S. Duff. Using FGMRES to obtain backward stability in mixed precision.
Electron. Trans. Numer. Anal. 33 (2009), 31-44.

[69] M. Arioli, I. S. Duff, S. Gratton, and S. Pralet. A note on GMRES preconditioned by a
perturbed LDLT decomposition with static pivoting. SIAM J. Sci. Comput. 29.5 (2007),
2024-2044.

[70] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and
S. Tomov. Accelerating scientific computations with mixed precision algorithms. Comput.
Phys. Comm. 180.12 (2009), 2526-2533.

[71] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. Accelerating linear system solu-
tions using randomization techniques. ACM Trans. Math. Software 39.2 (Feb. 2013).

[72] M. Baboulin, X. S. Li, and F.-H. Rouet. Using random butterfly transformations to avoid
pivoting in sparse direct methods. High Performance Computing for Computational Sci-
ence — VECPAR 201/. Ed. by M. Daydé, O. Marques, and K. Nakajima. Cham: Springer
International Publishing, 2015, 135-144.

[73] O. Balabanov and L. Grigori. Randomized Gram—Schmidt process with application to
GMRES. SIAM J. Sci. Comput. 44.3 (2022), A1450-A1474.

[74] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems. Vol. 63. Lecture Notes in Computational Science and Engineering (LNCSE).
Springer-Verlag, 2008.

[75] M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L*-coefficients. Numer. Math. 95.1 (2003), 1-28.

[76] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. 2008.

[77] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural
network pruning? Proceedings of Machine Learning and Systems. Ed. by 1. Dhillon, D.
Papailiopoulos, and V. Sze. Vol. 2. 2020, 129-146.

[78] S. Borm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with
applications. Eng. Anal. Bound. Elem. 27.5 (2003), 405-422.

[79] A. Bouras and V. Frayssé. Inexact matrix-vector products in Krylov methods for solving
linear systems: a relaxation strategy. SIAM J. Matriz Anal. Appl. 26.3 (2005), 660-678.

[80] S. Budzinskiy, W. Fang, L. Zeng, and P. Petersen. Numerical error analysis of large
language models. arXiv:2503.10251. 2025.

[81] L. Burke, E. Carson, and Y. Ma. On the numerical stability of sketched GMRES. arXiv:2503.19086.
2025.

148

https://doi.org/10.1145/3380930
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1177/1094342019846547
https://doi.org/10.1177/1094342019846547
https://doi.org/10.1137/22M1510819
https://doi.org/10.1137/22M1510819
https://eudml.org/doc/130614
https://doi.org/10.1137/060661545
https://doi.org/10.1137/060661545
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1145/2427023.2427025
https://doi.org/10.1145/2427023.2427025
https://doi.org/10.1007/978-3-319-17353-5_12
https://doi.org/10.1007/978-3-319-17353-5_12
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/20M138870X
https://doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1007/s00211-002-0445-6
https://doi.org/10.1007/s00211-002-0445-6
https://research.nvidia.com/publication/2008-12_efficient-sparse-matrix-vector-multiplication-cuda
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1137/S0895479801384743
https://doi.org/10.1137/S0895479801384743
https://arxiv.org/abs/2503.10251
https://arxiv.org/abs/2503.10251
https://arxiv.org/abs/2503.19086

[82]

[83]

[84]

[85]
[36]

[87]

[83]
[89]
[90]
[91]
[92]

193]

[94]

[95]

[96]

[97]

98]

[99]

P. Businger and G. H. Golub. Linear least squares solutions by Householder transforma-
tions. Numer. Math. 7.3 (June 1965), 269-276.

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov. Using mixed precision for
sparse matrix computations to enhance the performance while achieving 64-bit accuracy.
ACM Trans. Math. Software 34.4 (July 2008), 17:1-17:22.

A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak. Mixed preci-
sion iterative refinement techniques for the solution of dense linear systems. Int. J. High
Perform. Comput. Appl. 21 (Nov. 2007).

E. Carson and I. Dauzickaité. Mixed precision sketching for least-squares problems and
its application in GMRES-based iterative refinement. arXiv:2410.06319. 2024.

E. Carson and I. Dauzickaité. The stability of split-preconditioned FGMRES in four pre-
cisions. Electron. Trans. Numer. Anal. 60 (2024), 40-58.

E. Carson and N. J. Higham. A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput. 39.6
(2017), A2834-A2856.

E. Carson and N. J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. STAM J. Sci. Comput. 40.2 (2018), A817—A847.

E. Carson, N. J. Higham, and S. Pranesh. Three-precision GMRES-based iterative refine-
ment for least squares problems. SIAM J. Sci. Comput. 42.6 (2020), A4063-A4083.

E. Carson and N. Khan. Mixed precision iterative refinement with sparse approximate
inverse preconditioning. SIAM J. Sci. Comput. 45.3 (June 2023), C131-C153.

E. Carson, K. Lund, M. Rozloznik, and S. Thomas. Block Gram—Schmidt algorithms and
their stability properties. Linear Algebra Appl. 638 (Apr. 2022), 150-195.

E. Carson and Y. Ma. On the backward stability of s-step GMRES. arXiv:2409.03079.
2024.

A. M. Castaldo, R. C. Whaley, and A. T. Chronopoulos. Reducing floating point error in
dot product using the superblock family of algorithms. SIAM J. Sci. Comput. 31.2 (2009),
1156-1174.

S. Chandrasekaran, M. Gu, and T. Pals. A fast ULV decomposition solver for hierarchi-
cally semiseparable representations. SIAM J. Matrixz Anal. Appl. 28.3 (2006), 603—-622.

A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Numer.
Linear Algebra Appl. 4.1 (1997), 43-66.

B. Chen, T. Dao, E. Winsor, Z. Song, A. Rudra, and C. Ré. Scatterbrain: unifying sparse
and low-rank attention. Advances in Neural Information Processing Systems. Ed. by M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran
Associates, Inc., 2021, 17413-17426.

L. Claus, P. Ghysels, W. H. Boukaram, and X. S. Li. A graphics processing unit accelerated
sparse direct solver and preconditioner with block low rank compression. Int. J. High
Perform. Comput. Appl. 39.1 (2025), 18-31.

L. Claus, P. Ghysels, Y. Liu, T. A. Nhan, R. Thirumalaisamy, A. P. S. Bhalla, and S.

Li. Sparse approximate multifrontal factorization with composite compression methods.
ACM Trans. Math. Software 49.3 (Sept. 2023).

M. P. Connolly and N. J. Higham. Probabilistic rounding error analysis of Householder
QR factorization. STAM J. Matriz Anal. Appl. 44.3 (2023), 1146-1163.

149

https://doi.org/10.1007/BF01436084
https://doi.org/10.1007/BF01436084
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1177/1094342007084026
https://arxiv.org/abs/2410.06319
https://arxiv.org/abs/2410.06319
https://doi.org/10.1553/etna_vol60s40
https://doi.org/10.1553/etna_vol60s40
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1316822
https://doi.org/10.1137/20m1316822
https://doi.org/10.1137/22m1487709
https://doi.org/10.1137/22m1487709
https://doi.org/10.1016/j.laa.2021.12.017
https://doi.org/10.1016/j.laa.2021.12.017
https://arxiv.org/abs/2409.03079
https://doi.org/10.1137/070679946
https://doi.org/10.1137/070679946
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.0.CO;2-Z
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://doi.org/10.1177/10943420241288567
https://doi.org/10.1177/10943420241288567
https://doi.org/10.1145/3611662
https://doi.org/10.1137/22M1514817
https://doi.org/10.1137/22M1514817

[100]

[101]
[102]
[103]

[104]

[105]

[106]

[107]
108

[109]

[110]
[111]

[112]

[113]
[114]

[115]

M. P. Connolly, N. J. Higham, and S. Pranesh. Randomized low rank matrix approxima-
tion: Rounding error analysis and a mixed precision algorithm. MIMS EPrint 2022.5. UK,
July 2022.

J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of the complex
Fourier series. Math. Comput. 19 (1965), 297-301.

0. Coulaud, L. Giraud, P. Ramet, and X. Vasseur. Deflation and augmentation techniques
in Krylov subspace methods for the solution of linear systems. arXiv:1303.5692. 2013.

T. Dao, B. Chen, K. Liang, J. Yang, Z. Song, A. Rudra, and C. Ré. Pixelated butterfly:
simple and efficient sparse training for neural network models. arXiv:2112.00029. 2022.

T. Dao, B. Chen, N. S. Sohoni, A. Desai, M. Poli, J. Grogan, A. Liu, A. Rao, A. Rudra,
and C. Re. Monarch: expressive structured matrices for efficient and accurate training.
Proceedings of the 89th International Conference on Machine Learning. Ed. by K. Chaud-
huri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162. Proceedings of
Machine Learning Research. PMLR, July 2022, 4690-4721.

T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Re. Learning fast algorithms for linear
transforms using butterfly factorizations. Proceedings of the 36th International Conference
on Machine Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, June 2019, 1517-1527.

T. Dao, N. S. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski, A. Rudra, and
C. Ré. Kaleidoscope: an efficient, learnable representation for all structured linear maps.
arXiv:2012.14966. 2021.

L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decompo-
sition. SIAM J. Matriz Anal. Appl. 21.4 (2000), 1253-1278.

J. Demmel and Y. Hida. Accurate and efficient floating point summation. SIAM J. Sci.
Comput. 25.4 (2004), 1214-1248.

J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy. Error bounds
from extra-precise iterative refinement. ACM Trans. Math. Software 32.2 (June 2006),
325-351.

J. W. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication avoiding rank revealing
QR factorization with column pivoting. SIAM J. Matriz Anal. Appl. 36.1 (2015), 55-89.

M. Dessole and F. Marcuzzi. Deviation maximization for rank-revealing QR factorizations.
Numer. Algorithms 91.3 (Nov. 2022), 1047-1079.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. QLoRA: efficient finetuning
of quantized LLMs. Advances in Neural Information Processing Systems. Ed. by A. Oh, T.
Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran Associates,
Inc., 2023, 10088-10115.

V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition Methods.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2015.

J. Doliskani, P. Giorgi, R. Lebreton, and E. Schost. Simultaneous conversions with the
residue number system using linear algebra. ACM Trans. Math. Software 44.3 (Jan. 2018).

N. Doucet, H. Ltaief, D. Gratadour, and D. Keyes. Mixed-precision tomographic recon-
structor computations on hardware accelerators. 2019 IEEE/ACM 9th Workshop on Ir-
reqular Applications: Architectures and Algorithms (IA3). Nov. 2019, 31-38.

150

http://eprints.maths.manchester.ac.uk/2884/
http://eprints.maths.manchester.ac.uk/2884/
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://arxiv.org/abs/1303.5692
https://arxiv.org/abs/1303.5692
https://arxiv.org/abs/2112.00029
https://arxiv.org/abs/2112.00029
https://proceedings.mlr.press/v162/dao22a.html
https://proceedings.mlr.press/v97/dao19a.html
https://proceedings.mlr.press/v97/dao19a.html
https://arxiv.org/abs/2012.14966
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1137/S1064827502407627
https://doi.org/10.1145/1141885.1141894
https://doi.org/10.1145/1141885.1141894
https://doi.org/10.1137/13092157X
https://doi.org/10.1137/13092157X
https://doi.org/10.1007/s11075-022-01291-1
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1145/3145573
https://doi.org/10.1145/3145573
https://doi.org/10.1109/IA349570.2019.00011
https://doi.org/10.1109/IA349570.2019.00011

[116]
[117]
[118]

[119]

[120]
[121]

[122]

[123]

[124]
[125]

[126]

[127]
[128]

[129]

[130]

[131]

[132]

[133]

J. DrkoSovéa, A. Greenbaum, M. RozloZnik, and Z. Strakos. Numerical stability of GMRES.
BIT Numer. Math. 35.3 (1995), 309-330.

J. A. Duersch and M. Gu. Randomized QR with column pivoting. STAM J. Sci. Comput.
39.4 (2017), C263-C291.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Second.
Oxford University Press, 2017, xiii-+429.

I. S. Duff and S. Pralet. Towards stable mixed pivoting strategies for the sequential and
parallel solution of sparse symmetric indefinite systems. SIAM J. Matriz Anal. Appl. 29.3
(2007), 1007-1024.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Trans. Math. Software 9 (1983), 302-325.

J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields:
the FFLAS and FFPACK packages. ACM Trans. Math. Software 35.3 (2008), 1-42.

J.-G. Dumas, C. Pernet, and A. Sedoglavic. Strassen’s algorithm is not optimally accurate.
Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation.
ISSAC ’24. Raleigh, NC, USA: Association for Computing Machinery, 2024, 254-263.

J.-G. Dumas, C. Pernet, and A. Sedoglavic. Towards automated generation of fast and
accurate algorithms for recursive matrix multiplication. HAL EPrint hal-04995684. Mar.
2025.

C. Eckard and G. Young. The approximation of one matrix by another of lower rank.
Psychometrica 1 (1936), 211-218.

E.-M. El Arar, M. Fasi, S.-I. Filip, and M. Mikaitis. Probabilistic error analysis of limited-
precision stochastic rounding. arXiv:2408.03069. 2025.

E.-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit. Bounds on nonlinear errors
for variance computation with stochastic rounding. SIAM J. Sci. Comput. 46.5 (2024),
B579-B599.

J. van den Eshof and G. L. G. Sleijpen. Inexact Krylov subspace methods for linear
systems. SIAM J. Matriz Anal. Appl. 26.1 (2004), 125-153.

M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh. Numerical behavior of NVIDIA
tensor cores. PeerJ Comput. Sci. 7 (Feb. 2021), e330(1-19).

G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Orti. Adaptive precision block-Jacobi
for high performance preconditioning in the Ginkgo linear algebra software. ACM Trans.
Math. Software 47.2 (Apr. 2021), 1-28.

L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of algebraic linear
simultaneous equations. Quart. J. Mech. Appl. Math. 1 (1948), 149-173.

T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, and Y. Yanagisawa. Shifted
Cholesky QR for computing the QR factorization of ill-conditioned matrices. STAM J.
Sci. Comput. 42.1 (2020), A477-A503.

T. Fukaya, Y. Nakatsukasa, and Y. Yamamoto. A Cholesky QR type algorithm for comput-
ing tall-skinny QR factorization with column pivoting. 2024 IEEFE International Parallel
and Distributed Processing Symposium (IPDPS). 2024, 63-75.

T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, and Y. Yamamoto. CholeskyQR2: a simple
and communication-avoiding algorithm for computing a tall-skinny QR factorization on a
large-scale parallel system. 2014 5th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems. 2014, 31-38.

151

https://doi.org/10.1007/BF01732607
https://doi.org/10.1137/15M1044680
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1137/050629598
https://doi.org/10.1137/050629598
https://doi.org/10.1145/356044.356047
https://doi.org/10.1145/356044.356047
https://doi.org/10/dj6zp4
https://doi.org/10/dj6zp4
https://doi.org/10.1145/3666000.3669697
https://hal.science/hal-04995684
https://hal.science/hal-04995684
https://doi.org/10.1007/BF02288367
https://arxiv.org/abs/2408.03069
https://arxiv.org/abs/2408.03069
https://doi.org/10.1137/23M1563001
https://doi.org/10.1137/23M1563001
https://doi.org/10.1137/S0895479802403459
https://doi.org/10.1137/S0895479802403459
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.1145/3441850
https://doi.org/10.1145/3441850
https://doi.org/10.1093/qjmam/1.1.149
https://doi.org/10.1093/qjmam/1.1.149
https://doi.org/10.1137/18M1218212
https://doi.org/10.1137/18M1218212
https://doi.org/10.1109/IPDPS57955.2024.00015
https://doi.org/10.1109/IPDPS57955.2024.00015
https://doi.org/10.1109/ScalA.2014.11
https://doi.org/10.1109/ScalA.2014.11
https://doi.org/10.1109/ScalA.2014.11

[134]
[135]

[136]

[137]
[138]
[139]

[140]

[141]
[142]
[143]
[144]
[145]

[146]

[147]

[148]
[149]
[150]
[151]

[152]

J. E. Garrison and I. C. F. Ipsen. A randomized preconditioned Cholesky-QR algorithm.
arXiv:2406.11751. 2024.

J. A. George. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal.
10.2 (1973), 345-363.

P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov. An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling.
SIAM J. Sci. Comput. 38.5 (2016), S358-S384.

P. E. Gill, M. A. Saunders, and J. R. Shinnerl. On the stability of Cholesky factorization
for symmetric quasidefinite systems. STAM J. Matriz Anal. Appl. 17.1 (1996), 35-46.

A. Gillman, P. Young, and P.-G. Martinsson. A direct solver with O(N) complexity for
integral equations on one-dimensional domains. Front. Math. China 7 (2 2012), 217-247.

L. Giraud, S. Gratton, and J. Langou. Convergence in backward error of relaxed GMRES.
SIAM J. Sci. Comput. 29.2 (2007), 710-728.

L. Giraud, J. Langou, M. Rozloznik, and J. van den Eshof. Rounding error analysis of
the classical Gram—Schmidt orthogonalization process. Numer. Math. 101.1 (May 2005),
87-100.

L. Grasedyck. Hierarchical singular value decomposition of tensors. STAM J. Matriz Anal.
Appl. 31.4 (2010), 2029-2054.

L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approx-
imation techniques. GAMM Mitt. 36.1 (2013), 53-78.

S. Gratton, E. Simon, D. Titley-Peloquin, and P. Toint. Exploiting variable precision in
GMRES. arXiv:1907.10550. July 2019.

S. Gratton, E. Simon, D. Titley-Peloquin, and P. L. Toint. A note on inexact inner prod-
ucts in GMRES. STAM J. Matriz Anal. Appl. 43.3 (2022), 1406-1422.

A. Greenbaum, V. Ptak, and Z. Strakos. Any nonincreasing convergence curve is possible
for GMRES. SIAM J. Matrixz Anal. Appl. 17.3 (1996), 465-469.

T. Griitzmacher, H. Anzt, and E. S. Quintana-Orti. Using Ginkgo’s memory accessor for
improving the accuracy of memory-bound low precision BLAS. Software—Practice and
Ezperience (Oct. 2021).

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited
numerical precision. Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015,
1737-1746.

S. Giittel and I. Simunec. A sketch-and-select Arnoldi process. SIAM J. Sci. Comput.
46.4 (2024), A2774-A2797.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
‘H-matrices. Computing 62.2 (1999), 89-108.

W. Hackbusch. Hierarchical Matrices : Algorithms and Analysis. Vol. 49. Springer Series
in Computational Mathematics. Berlin: Springer, 2015, xxv, 511.

W. Hackbusch and S. Kiihn. A new scheme for the tensor representation. J. Fourier Anal.
Appl. 15.5 (2009), 706-722.

A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham. Mixed-precision
iterative refinement using tensor cores on GPUs to accelerate solution of linear systems.
Proc. Roy. Soc. London A 476.2243 (2020), 20200110.

152

https://arxiv.org/abs/2406.11751
https://doi.org/10.1137/0710032
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/S0895479893252623
https://doi.org/10.1137/S0895479893252623
https://doi.org/10.1007/s11464-012-0188-3
https://doi.org/10.1007/s11464-012-0188-3
https://doi.org/10.1137/040608416
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1137/090764189
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://arxiv.org/abs/1907.10550
https://arxiv.org/abs/1907.10550
https://doi.org/10.1137/20M1320018
https://doi.org/10.1137/20M1320018
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1002/spe.3041
https://doi.org/10.1002/spe.3041
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
https://doi.org/10.1137/23M1588007
https://doi.org/http://dx.doi.org/10.1007/s006070050015
https://doi.org/http://dx.doi.org/10.1007/s006070050015
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1098/rspa.2020.0110

[153]

[154]
[155]
[156]

[157]

[158]

[159]
[160]
[161]
[162]

[163]

[164]
[165]
[166]
[167]
[168]
[169]

[170]

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor cores for
fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis. SC’18. Dallas, Texas: IEEE Press, 2018, 47:1-47:11.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53.2
(2011), 217-288.

E. Hallman. A refined probabilistic error bound for sums. arXiv:2104.06531. 2021.

E. Hallman and I. C. F. Ipsen. Precision-aware deterministic and probabilistic error
bounds for floating point summation. Numer. Math. 155.1-2 (Aug. 2023), 83-119.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. Advances in Neural Information Processing Systems. Ed. by C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,
2015.

G. Henry, P. T. P. Tang, and A. Heinecke. Leveraging the bfloat16 artificial intelligence
datatype for higher-precision computations. 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH). 2019, 69-76.

N. J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans.
Math. Software 16.4 (Dec. 1990), 352-368.

N. J. Higham. Iterative refinement enhances the stability of QR factorization methods for
solving linear equations. BIT 31 (1991), 447-468.

N. J. Higham. Iterative refinement for linear systems and LAPACK. IMA J. Numer. Anal.
17.4 (1997), 495-509.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2002, xxx-+680.

N. J. Higham and S. Pranesh. Exploiting lower precision arithmetic in solving symmetric
positive definite linear systems and least squares problems. STAM J. Sci. Comput. 43.1
(2021), A258-A277.

N. J. Higham, S. Pranesh, and M. Zounon. Squeezing a matrix into half precision, with an
application to solving linear systems. STAM J. Sci. Comput. 41.4 (2019), A2536-A2551.

M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis. University
of California, Berkeley, 2010.

J. D. Hogg and J. A. Scott. A fast and robust mixed-precision solver for the solution of
sparse symmetric linear systems. ACM Trans. Math. Software 37.2 (Apr. 2010), 1-24.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
low-rank adaptation of large language models. ICLR. OpenReview.net, 2022.

Intel. Intel 64 and TA-32 Architectures Software Developer’s Manual. Available at https:
//cdrdv2.intel.com/v1/d1l/getContent/671200. Intel. June 2024.

I. C. F. Ipsen and H. Zhou. Probabilistic error analysis for inner products. SIAM J. Matrix
Anal. Appl. 41.4 (Jan. 2020), 1726-1741.

T. Iwashita, K. Suzuki, and T. Fukaya. An integer arithmetic-based sparse linear solver
using a GMRES method and iterative refinement. 2020 IEEE/ACM 11th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA). 2020, 1-8.

153

http://dl.acm.org/citation.cfm?id=3291656.3291719
http://dl.acm.org/citation.cfm?id=3291656.3291719
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://arxiv.org/abs/2104.06531
https://doi.org/10.1007/s00211-023-01370-y
https://doi.org/10.1007/s00211-023-01370-y
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1145/98267.98290
https://doi.org/10.1007/BF01933262
https://doi.org/10.1007/BF01933262
https://doi.org/10.1093/imanum/17.4.495
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
https://doi.org/10.1145/1731022.1731027
https://doi.org/10.1145/1731022.1731027
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#HuSWALWWC22
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#HuSWALWWC22
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1137/19m1270434
https://doi.org/10.1109/ScalA51936.2020.00006
https://doi.org/10.1109/ScalA51936.2020.00006

[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]

[181]

[182]

[183)

[184]
[185]

[186]

[187]

[188)

M. Jankowski and H. Wozniakowski. Iterative refinement implies numerical stability. BIT
Numer. Math. (1977), 303-311.

C.-P. Jeannerod and S. M. Rump. Improved error bounds for inner products in floating-
point arithmetic. SIAM J. Matriz Anal. Appl. 34.2 (2013), 338-344.

F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimating round-off error prop-
agation. Comput. Phys. Comm. 178.12 (2008), 933-955.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev. 51.3
(2009), 455-500.

D. Kressner and C. Tobler. Algorithm 941: htucker—A MATLAB toolbox for tensors in
hierarchical Tucker format. ACM Trans. Math. Software 40.3 (2014), 1-22.

R. Kriemann. Hierarchical lowrank arithmetic with binary compression. arXiv:2308.10960.
2023.

R. Kriemann. Performance of H-matrix-vector multiplication with floating point compres-
sion. arXiv:2405.03456. 2024.

U. W. Kulisch and W. L. Miranker. The arithmetic of the digital computer: a new ap-
proach. STAM Rev. 28.1 (1986), 1-40.

J. Kurzak and J. Dongarra. Implementation of mixed precision in solving systems of linear
equations on the Cell processor. Concurr. Comput. Pract. Exzp. 19.10 (2007), 1371-1385.

J.-Y. L’Excellent. Multifrontal methods: parallelism, memory usage and numerical as-
pects. PhD thesis. Ecole normale supérieure de Lyon, 2012.

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. Exploiting
the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisit-
ing iterative refinement for linear systems). SC’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing. 2006, 50-50.

Q.-T. Le, E. Riccietti, and R. Gribonval. Spurious valleys, NP-hardness, and tractability
of sparse matrix factorization with fixed support. SIAM J. Matriz Anal. Appl. 44.2 (2023),
503-529.

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval. Fast learning of fast transforms, with
guarantees. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2022, 3348-3352.

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval. Butterfly factorization with error
guarantees. arXiv:2411.04506. 2025.

X.S. Liand J. W. Demmel. SuperLU DIST: a scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Math. Software 29.2 (2003), 110-140.

X. S. Li and J. W. Demmel. Making sparse Gaussian elimination scalable by static pivot-
ing. Proceedings of the 1998 ACM/IEEE Conference on Supercomputing. IEEE Computer
Society, Washington, DC, USA, 1998, 1-17.

E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algo-
rithms for the low-rank approximation of matrices. Proc. Nat. Acad. Sci. 104.51 (2007),
20167-20172.

N. Lindquist, P. Luszczek, and J. Dongarra. Improving the performance of the GMRES
method using mixed-precision techniques. Communications in Computer and Information
Science. Ed. by J. Nichols, B. Verastegui, A. ‘B. Maccabe, O. Hernandez, S. Parete-Koon,
and T. Ahearn. Springer, Cham, Switzerland, 2020, 51-66.

154

https://doi.org/10.1007/BF01932150
https://doi.org/10.1016/j.cpc.2008.02.003
https://doi.org/10.1016/j.cpc.2008.02.003
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/2538688
https://doi.org/10.1145/2538688
https://arxiv.org/abs/2308.10960
https://arxiv.org/abs/2405.03456
https://arxiv.org/abs/2405.03456
https://doi.org/10.1137/1028001
https://doi.org/10.1137/1028001
https://doi.org/10.1002/cpe.1164
https://doi.org/10.1002/cpe.1164
https://theses.hal.science/tel-00737751/
https://theses.hal.science/tel-00737751/
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1137/22M1496657
https://doi.org/10.1137/22M1496657
https://doi.org/10.1109/ICASSP43922.2022.9747791
https://doi.org/10.1109/ICASSP43922.2022.9747791
https://arxiv.org/abs/2411.04506
https://arxiv.org/abs/2411.04506
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.5555/509058.509092
https://doi.org/10.5555/509058.509092
https://doi.org/10.1073/pnas.0709640104
https://doi.org/10.1073/pnas.0709640104
https://doi.org/10.1007/978-3-030-63393-6_4
https://doi.org/10.1007/978-3-030-63393-6_4

[189] N. Lindquist, P. Luszczek, and J. Dongarra. Replacing pivoting in distributed Gaussian
elimination with randomized techniques. 2020 IEEE/ACM 11th Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems (ScalA). 2020, 35-43.

[190] N. Lindquist, P. Luszczek, and J. Dongarra. Accelerating restarted GMRES with mixed
precision arithmetic. IEEE Trans. Parallel Distrib. Syst. 33.4 (2022), 1027-1037.

[191] N. Lindquist, P. Luszczek, and J. Dongarra. Generalizing random butterfly transforms to
arbitrary matrix sizes. ACM Trans. Math. Software 50.4 (Dec. 2024).

[192] Y. Liu, P. Ghysels, L. Claus, and X. S. Li. Sparse approximate multifrontal factorization
with butterfly compression for high-frequency wave equations. SIAM J. Sci. Comput. 43.5
(2021), S367-S391.

[193] J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajamanickam. Experimental
evaluation of multiprecision strategies for GMRES on GPUs. 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2021, 469-478.

[194] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter. NVIDIA tensor
core programmability, performance & precision. 2018 IEEFE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2018, 522-531.

[195] P.-G. Martinsson, G. Quintana Orti, N. Heavner, and R. van de Geijn. Householder QR
factorization with randomization for column pivoting (HQRRP). SIAM J. Sci. Comput.
39.2 (2017), C96-C115.

[196] P.-G. Martinsson and S. Voronin. A randomized blocked algorithm for efficiently comput-
ing rank-revealing factorizations of matrices. SIAM J. Sci. Comput. 38.5 (2016), S485—
S507.

[197] M. Melnichenko, O. Balabanov, R. Murray, J. Demmel, M. W. Mahoney, and P. Luszczek.
CholeskyQR with randomization and pivoting for tall matrices (CQRRPT). arXiv:2311.08316.
2025.

[198] P. Micikevicius, S. Oberman, P. Dubey, M. Cornea, A. Rodriguez, I. Bratt, R. Grisen-
thwaite, N. Jouppi, C. Chou, A. Huffman, M. Schulte, R. Wittig, D. Jani, and S. Deng.
OCP 8-bit floating point specification (OFPS8). Version 1.0. June 2023.

[199] R. Minster, A. K. Saibaba, and M. E. Kilmer. Randomized algorithms for low-rank tensor
decompositions in the Tucker format. STAM J. Math. Data Sci. 2.1 (2020), 189-215.

[200] G. Moreau. On the solution phase of direct solvers for sparse linear systems with multiple
sparse right-hand sides. PhD thesis. ENS Lyon ; Université de Lyon, Dec. 2018.

[201] R. B. Morgan. A restarted GMRES method augmented with eigenvectors. STAM J. Matriz
Anal. Appl. 16.4 (1995), 1154-1171.

[202] R. B. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput. 24.1 (2002), 20—
37.

[203] D. Mukunoki, M. Kawai, and T. Imamura. Sparse matrix-vector multiplication with
reduced-precision memory accessor. 2023 IEEE 16th International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE. 2023, 608-615.

[204] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura. DGEMM using tensor cores, and
its accurate and reproducible versions. High Performance Computing. Cham: Springer
International Publishing, 2020, 230-248.

[205] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehlé, S. Torres, et al. Handbook of Floating-Point Arithmetic. Springer,
2018.

155

https://doi.org/10.1109/ScalA51936.2020.00010
https://doi.org/10.1109/ScalA51936.2020.00010
https://doi.org/10.1109/tpds.2021.3090757
https://doi.org/10.1109/tpds.2021.3090757
https://doi.org/10.1145/3699714
https://doi.org/10.1145/3699714
https://doi.org/10.1137/20M1349667
https://doi.org/10.1137/20M1349667
https://doi.org/10.1109/IPDPSW52791.2021.00078
https://doi.org/10.1109/IPDPSW52791.2021.00078
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://arxiv.org/abs/2311.08316
https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1
https://doi.org/10.1137/19M1261043
https://doi.org/10.1137/19M1261043
https://hal.archives-ouvertes.fr/tel-01959367
https://hal.archives-ouvertes.fr/tel-01959367
https://doi.org/10.1137/S0895479893253975
https://doi.org/10.1137/S1064827599364659
https://doi.org/10.1109/MCSoC60832.2023.00094
https://doi.org/10.1109/MCSoC60832.2023.00094
https://doi.org/10.1007%2F978-3-030-50743-5_12
https://doi.org/10.1007%2F978-3-030-50743-5_12
https://doi.org/10.1007/978-3-319-76526-6

[206]
207]

[208]
[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]
[221]
[222]

[223)]

Y. Nagasaka, A. Nukada, and S. Matsuoka. Adaptive multi-level blocking optimization for
sparse matrix vector multiplication on GPU. Procedia Comput. Sci. 80 (2016), 131-142.

Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear
systems and eigenvalue problems. STAM J. Matriz Anal. Appl. 45.2 (2024), 1183-1214.

NVIDIA Blackwell Architecture Technical Brief. V1.0. NVIDIA, Mar. 2024.

E. Oktay and E. Carson. Multistage mixed precision iterative refinement. Numer. Linear
Algebra Appl. 29.4 (2022), e2434.

H. Ootomo, K. Ozaki, and R. Yokota. DGEMM on integer matrix multiplication unit.
Int. J. High Perform. Comput. Appl. 38.4 (2024), 297-313.

H. Ootomo and R. Yokota. Recovering single precision accuracy from tensor cores while
surpassing the fp32 theoretical peak performance. Int. J. High Perform. Comput. Appl.
36.4 (2022), 475-491.

H. Ootomo and R. Yokota. Mixed-precision random projection for RandNLA on tensor
cores. Proceedings of the Platform for Advanced Scientific Computing Conference. Davos,
Switzerland: Association for Computing Machinery, 2023.

S. Operto, A. Miniussi, R. Brossier, L. Combe, L. Métivier, V. Monteiller, A. Ribodetti,
and J. Virieux. Efficient 3-D frequency-domain mono-parameter full-waveform inversion
of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse
isotropic approximation. Geophys. J. Int. 202.2 (2015), 1362-1391.

R. Orus. A practical introduction to tensor networks: matrix product states and projected
entangled pair states. Ann. Phys. 349 (2014), 117-158.

1. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput. 33.5 (2011), 2295
2317.

I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to
use SVD in many dimensions. SIAM J. Sci. Comput. 31.5 (2009), 3744-3759.

K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. Error-free transformations of matrix
multiplication by using fast routines of matrix multiplication and its applications. Numer.
Algorithms 59 (2012), 95-118.

K. Ozaki, Y. Uchino, and T. Imamura. Ozaki scheme II: a GEMM-oriented emulation of
floating-point matrix multiplication using an integer modular technique. arXiv:2504.08009.
2025.

C. C. Paige, M. Rozloznik, and Z. Strakos. Modified Gram—Schmidt (MGS), least squares,
and backward stability of MGS-GMRES. SIAM J. Matriz Anal. Appl. 28.1 (2006), 264—
284.

D. S. Parker. Random butterfly transformations with applications in computational linear
algebra. UCLA Computer Science Department, 1995.

M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti. Recycling Krylov
subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28.5 (2006), 1651-1674.

J. Peca-Medlin and T. Trogdon. Growth factors of random butterfly matrices and the
stability of avoiding pivoting. SIAM J. Matriz Anal. Appl. 44.3 (2023), 945-970.

C. Pernet and A. Storjohann. Time and space efficient generators for quasiseparable ma-
trices. J. Symb. Comput. 85 (2018), 224-246.

156

https://doi.org/10.1016/j.procs.2016.05.304
https://doi.org/10.1016/j.procs.2016.05.304
https://doi.org/10.1137/23M1565413
https://doi.org/10.1137/23M1565413
https://nvdam.widen.net/s/xqt56dflgh/nvidia-blackwell-architecture-technical-brief
https://doi.org/10.1002/nla.2434
https://doi.org/10.1177/10943420241239588
https://doi.org/https://doi.org/10.1177/10943420221090256
https://doi.org/https://doi.org/10.1177/10943420221090256
https://doi.org/10.1145/3592979.3593413
https://doi.org/10.1145/3592979.3593413
https://doi.org/10.1093/gji/ggv226
https://doi.org/10.1093/gji/ggv226
https://doi.org/10.1093/gji/ggv226
https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090748330
https://doi.org/10.1137/090748330
https://doi.org/10.1007/s11075-011-9478-1
https://doi.org/10.1007/s11075-011-9478-1
https://arxiv.org/abs/2504.08009
https://arxiv.org/abs/2504.08009
https://doi.org/10.1137/050630416
https://doi.org/10.1137/050630416
https://books.google.fr/books?id=HnghHAAACAAJ
https://books.google.fr/books?id=HnghHAAACAAJ
https://doi.org/10.1137/040607277
https://doi.org/10.1137/040607277
https://doi.org/10.1137/22M148762X
https://doi.org/10.1137/22M148762X
https://doi.org/10.1016/j.jsc.2017.07.010
https://doi.org/10.1016/j.jsc.2017.07.010

[224]

[225]

[226]

[227]
[228]
[229]
[230]
[231]
[232]

[233]

[234]
[235]
[236]

237]

238

[239]
[240]

[241]

G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman. Sparse supernodal solver
using block low-rank compression: design, performance and analysis. J. Comput. Sci. 27
(2018), 255-270.

F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory package for dense
hierarchically semi-separable matrix computations using randomization. ACM Trans.
Math. Software 42.4 (June 2016), 27:1-27:35.

B. D. Rouhani, N. Garegrat, T. Savell, A. More, K.-N. Han, R. Zhao, M. Hall, J. Klar,
E. Chung, Y. Yu, M. Schulte, R. Wittig, I. Bratt, N. Stephens, J. Milanovic, J. Brothers,
P. Dubey, M. Cornea, A. Heinecke, A. Rodriguez, M. Langhammer, S. Deng, M. Naumov,
P. Micikevicius, M. Siu, and C. Verrilli. OCP microscaling formats (MX) specification.
Version 1.0. Sept. 2023.

S. M. Rump. Ultimately fast accurate summation. SIAM J. Sci. Comput. 31.5 (2009),
3466-3502.

S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful
rounding. SIAM J. Sci. Comput. 31.1 (2008), 189-224.

S. M. Rump, T. Ogita, and S. Oishi. Fast high precision summation. Nonlinear Theory
and Its Applications, IEICE 1.1 (2010), 2-24.

Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. STAM J. Sci. Comput.
14.2 (1993), 461-469.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7.3 (1986), 856—869.

Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Industrial and
Applied Mathematics, 2003.

O. Schenk, K. Géartner, W. Fichtner, and A. Stricker. PARDISO: A high-performance
serial and parallel sparse linear solver in semiconductor device simulation. Future Gener.
Comput. Syst 18.1 (2001), 69-78.

V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applica-
tions to scientific computing. SIAM J. Sci. Comput. 25.2 (2003), 454-477.

R. D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comput. 35.151 (1980), 817-832.

G. L. G. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid Bi-CG
methods. Computing 56.2 (June 1996), 141-163.

A. Sorna, X. Cheng, E. D’Azevedo, K. Won, and S. Tomov. Optimizing the fast Fourier
transform using mixed precision on tensor core hardware. 2018 IEEE 25th International
Conference on High Performance Computing Workshops (HiPCW). 2018, 3-7.

A. Stathopoulos and K. Wu. A block orthogonalization procedure with constant synchro-
nization requirements. STAM J. Sci. Comput. 23.6 (2002), 2165-2182.

V. Strassen. Gaussian elimination is not optimal. Numer. Math. 13.4 (1969), 354-356.

T. Terao, K. Ozaki, and T. Ogita. LU-Cholesky QR algorithms for thin QR decomposition.
Parallel Computing 92 (2020), 102571.

K. Turner and H. F. Walker. Efficient high accuracy solutions with GMRES(m). STAM
J. Sci. Statist. Comput. 12.3 (1992), 815-825.

157

https://doi.org/https://doi.org/10.1016/j.jocs.2018.06.007
https://doi.org/https://doi.org/10.1016/j.jocs.2018.06.007
https://doi.org/10.1145/2930660
https://doi.org/10.1145/2930660
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://doi.org/10.1137/080738490
https://doi.org/10.1137/050645671
https://doi.org/10.1137/050645671
https://doi.org/10.1587/nolta.1.2
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1016/S0167-739X(00)00076-5
https://doi.org/10.1016/S0167-739X(00)00076-5
https://doi.org/10.1137/S1064827502406415
https://doi.org/10.1137/S1064827502406415
https://doi.org/10.1090/S0025-5718-1980-0572859-4
https://doi.org/10.1007/bf02309342
https://doi.org/10.1007/bf02309342
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.1007/BF02165411
https://doi.org/https://doi.org/10.1016/j.parco.2019.102571
https://doi.org/10.1137/0913048

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]
[250]

[251]
[252]

253

[254]

[255]

[256]

[257]

Y. Uchino, K. Ozaki, and T. Imamura. Performance enhancement of the Ozaki scheme
on integer matrix multiplication unit. Int. J. High Perform. Comput. Appl. 39.3 (2025),
462-476.

N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A new truncation strategy for
the higher-order singular value decomposition. STAM J. Sci. Comput. 34.2 (2012), A1027—
A1052.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and 1.
Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems.
Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

B. Vieublé. Mixed precision iterative refinement for the solution of large sparse linear
systems. PhD thesis. INP Toulouse, Nov. 2022.

J. A. Vogel. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems.
Appl. Math. Comput. 188.1 (May 2007), 226-233.

H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13.2 (Mar.
1992), 631-644.

N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan. Training deep neural
networks with 8-bit floating point numbers. Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems. NIPS’18. Montréal, Canada: Curran
Associates Inc., 2018, 7686-7695.

J. H. Wilkinson. Progress report on the automatic computing engine. 1948.

J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. Assoc. Comput.
Mach. 8 (1961), 281-330.

J. H. Wilkinson. Rounding Errors in Algebraic Processes. London: Notes on Applied
Science No. 32, Her Majesty’s Stationery Office, 1963, vi+161.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierarchically semisep-
arable matrices. Numer. Linear Algebra Appl. 17.6 (2010), 953-976.

J. Xiao, M. Gu, and J. Langou. Fast parallel randomized QR with column pivoting algo-
rithms for reliable low-rank matrix approximations. 2017 IEEE 24th International Con-
ference on High Performance Computing (HiPC) (2017), 233-242.

Y. Xu, L. Xie, X. Gu, X. Chen, H. Chang, H. Zhang, Z. Chen, X. Zhang, and Q. Tian. QA-
LoRA: quantization-aware low-rank adaptation of large language models. arXiv:2309.14717.
2023.

1. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra. Improving the perfor-
mance of CA-GMRES on multicores with multiple GPUs. 201 IEEE 28th International
Parallel and Distributed Processing Symposium. 2014, 382-391.

I. Yamazaki, S. Tomov, and J. Dongarra. Mixed-precision Cholesky QR factorization and
its case studies on multicore CPU with multiple GPUs. STAM J. Sci. Comput. 37.3 (2015),
C307-C330.

I. Yamazaki, S. Tomov, and J. Dongarra. Stability and performance of various singular
value QR implementations on multicore CPU with a GPU. ACM Trans. Math. Software
43.2 (Sept. 2016).

158

https://doi.org/10.1177/10943420241313064
https://doi.org/10.1177/10943420241313064
https://doi.org/10.1137/110836067
https://doi.org/10.1137/110836067
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://theses.hal.science/tel-03975935/
https://theses.hal.science/tel-03975935/
https://doi.org/10/d9k867
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://dl.acm.org/doi/10.5555/3327757.3327866
https://dl.acm.org/doi/10.5555/3327757.3327866
http://www.alanturing.net/turing%20archive/archive/l/l10/l10.php
https://doi.org/10.1145/321075.321076
https://doi.org/10.1137/1.9781611977523
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691
https://api.semanticscholar.org/CorpusID:3444436
https://api.semanticscholar.org/CorpusID:3444436
https://arxiv.org/abs/2309.14717
https://arxiv.org/abs/2309.14717
https://doi.org/10.1109/IPDPS.2014.48
https://doi.org/10.1109/IPDPS.2014.48
https://doi.org/10.1137/14M0973773
https://doi.org/10.1137/14M0973773
https://doi.org/10.1145/2898347
https://doi.org/10.1145/2898347

[258]
[259]
[260]
[261]
[262]
[263]

[264]

Y. Zhao, T. Fukaya, and T. Iwashita. Numerical behavior of mixed precision iterative
refinement using the BiCGStab method. J. Inf. Process. 31 (2023), 860-874.

Y. Zhao, T. Fukaya, L. Zhang, and T. Iwashita. Numerical investigation into the mixed
precision GMRES(m) method using FP64 and FP32. J. Inf. Process. 30 (2022), 525-537.

L. Zheng, E. Riccietti, and R. Gribonval. Efficient identification of butterfly sparse matrix
factorizations. SIAM J. Math. Data Sci. 5.1 (2023), 22-49.

Y.-K. Zhu and W. B. Hayes. Algorithm 908: online exact summation of floating-point
streams. ACM Trans. Math. Software 37.3 (2010), 1-13.

Y .-K. Zhu and W. B. Hayes. Correct rounding and hybrid approach to exact floating-point
summation. STAM J. Sci. Comput. 31.4 (2009), 2981-3001.

Z. Zlatev. Use of iterative refinement in the solution of sparse linear systems. STAM J.
Numer. Anal. 19.2 (1982), 381-399.

Q. Zou. Probabilistic rounding error analysis of modified Gram—Schmidt. SIAM J. Matrix
Anal. Appl. 45.2 (2024), 1076-1088.

159

https://doi.org/https://doi.org/10.2197/ipsjjip.31.860
https://doi.org/https://doi.org/10.2197/ipsjjip.31.860
https://doi.org/https://doi.org/10.2197/ipsjjip.30.525
https://doi.org/https://doi.org/10.2197/ipsjjip.30.525
https://doi.org/10.1137/22M1488727
https://doi.org/10.1137/22M1488727
https://doi.org/10.1145/1824801.1824815
https://doi.org/10.1145/1824801.1824815
https://doi.org/10.1137/070710020
https://doi.org/10.1137/070710020
https://doi.org/10.1137/0719024
https://doi.org/10.1137/23M1585817

	Contents
	Introduction
	Approximate computing: context and challenges
	Summary of my contributions
	Chapter organization
	Terminology and notations

	Basics on rounding error analysis
	Floating-point arithmetic
	Some common floating-point arithmetics
	Backward error analysis
	Standard backward error bounds

	Probabilistic analysis and algorithms
	Probabilistic backward error analysis
	Stochastic rounding
	Probabilistic bounds for random data
	Stochastic validation for inner products

	Summation and matrix multiplication
	Mixed precision matrix multiply–accumulate
	Blocked summation
	Distillation of ill-conditioned sums

	Multiword arithmetic
	Basics
	Multiword matrix multiplication with mixed precision hardware
	Multiword matrix multiplication over prime finite fields

	Low-rank approximations
	QR with column pivoting (QRCP)
	Randomized range finder
	Adaptive precision LRA
	Multiword arithmetic for LRA
	Iterative refinement for LRA
	Gram LRA
	Optimal quantization of low-rank matrices

	Direct linear solvers
	Dense systems
	Sparse systems: the multifrontal method
	Stability and pivoting

	Iterative linear solvers
	GMRES
	Stability of GMRES
	Unpreconditioned GMRES
	Preconditioned GMRES
	Flexible GMRES
	Modular framework for the error analysis of GMRES

	Mixed precision GMRES
	Mixed precision preconditioned GMRES
	Mixed precision restarted GMRES
	Mixed precision relaxed GMRES

	BiCGStab

	Block low-rank matrices
	Basics
	Stability
	Communication-avoiding BLR factorization and solve
	Adaptive precision BLR
	Further reducing the complexity
	Hierarchical formats: taxonomy and discussion
	The BLR2 format
	The MBLR format
	Fast matrix multiplication
	Triangular solves with sparse right-hand side or sparse solution

	An illustrative application: full waveform inversion

	Iterative refinement
	LU factorization–based iterative refinement (LU-IR)
	Historical developments
	LU-IR with GPU tensor cores
	LU-IR with sparse direct solvers

	GMRES-based iterative refinement (GMRES-IR)
	GMRES-IR with BLR factorization
	GMRES-IR with cheaper (or no) preconditioner
	GMRES-IR with mixed precision preconditioned GMRES

	BiCGStab-based iterative refinement
	CG-based iterative refinement

	Adaptive precision algorithms
	Adaptive precision sparse matrix–vector product
	Adaptive precision low-rank approximation
	Adaptive precision block Jacobi preconditioner
	Adaptive precision relaxed GMRES

	Memory accessors
	Efficient conversion from custom to standard floating-point formats
	Memory accessor for sparse matrix–vector product
	BLAS-based block memory accessor for dense triangular solve
	Memory accessor for block low-rank triangular solve

	Butterfly factorizations
	Butterfly factorizations via rank-one approximations
	Applications of butterfly factorizations
	Quantization of butterfly factorizations

	Tensor approximations
	Stability of TTN operations
	Approximate tensor computations

	Neural networks
	Backward error analysis
	Forward error analysis and a mixed precision accumulation algorithm

	Conclusion
	Future challenges and research directions
	Some research problems
	Probabilistic error analysis
	Multiword arithmetic
	Low-rank approximations
	Krylov solvers
	BLR solvers
	Adaptive precision algorithms
	Tensors
	Neural networks

	References

