

Approximate computing in numerical linear algebra: algorithms, analysis, and applications

Theo Mary

Sorbonne Université, CNRS, LIP6

Habilitation defense

7 October 2025

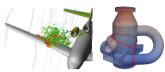
Challenges of computing at exascale

Exascale applications:

- Computationally demanding (speed, storage, and energy constraints)
- Numerically demanding (high accuracy target)

Exascale computers:

- Huge amounts of parallelism/concurrency
- Heterogeneity of the computing units: CPUs, GPUs, other accelerators
- Large gap between speed of computations and communications



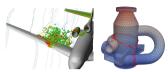
Challenges of computing at exascale

Exascale applications:

- Computationally demanding (speed, storage, and energy constraints)
- Numerically demanding (high accuracy target)

Exascale computers:

- Huge amounts of parallelism/concurrency
- Heterogeneity of the computing units: CPUs, GPUs, other accelerators
- Large gap between speed of computations and communications



Exascale methods and software??

Approximate computing

Approximate computing: introduce *controlled* inexactness to reduce the computational costs and to exploit more efficiently the computer

Given a target accuracy ε , how do we decide where (and how much) inexactness can be introduced?

Floating-point arithmetic

	Signif. bits	Exp. bits	Range $(f_{ m max}/f_{ m min})$	Unit roundoff <i>u</i>
fp128	113	15	$2^{32766}\approx 10^{9863}$	$2^{-114} \approx 1 \times 10^{-34}$
fp64	52	11	$2^{2046} pprox 10^{616}$	$2^{-53}\approx1\times10^{-16}$
fp32	23	8	$2^{254} pprox 10^{76}$	$2^{-24}\approx 6\times 10^{-8}$
tfloat32	10	8	$2^{254} pprox 10^{76}$	$2^{-11}\approx5\times10^{-4}$
fp16	10	5	$2^{30}pprox 10^9$	$2^{-11}\approx5\times10^{-4}$
bfloat16	7	8	$2^{254} pprox 10^{76}$	$2^{-8}\approx 4\times 10^{-3}$
fp8 (E4M3)	3	4	$2^{15} pprox 3 imes 10^4$	$2^{-4}\approx 6\times 10^{-2}$
fp8 (E5M2)	2	5	$2^{30}pprox 10^9$	$2^{-3}\approx 1\times 10^{-1}$
fp6 (E2M3)	3	2	$2^3 \approx 8$	$2^{-4}\approx 6\times 10^{-2}$
fp6 (E3M2)	2	3	$2^7 \approx 128$	$2^{-3} \approx 0.125$
fp4 (E2M1)	1	2	$2^3 \approx 8$	$2^{-2} \approx 0.25$

Lower precisions:

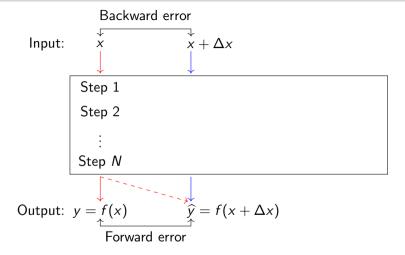
Faster, consume less memory and energy

Dower accuracy and narrower range

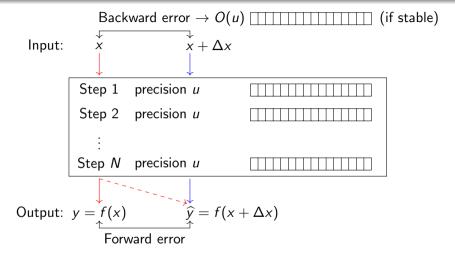
Standard model:

For any x such that $|x| \in [f_{\min}, f_{\max}]$, $f(x) = x(1+\delta), \quad |\delta| \le u$

Backward and forward error, uniform and mixed precision

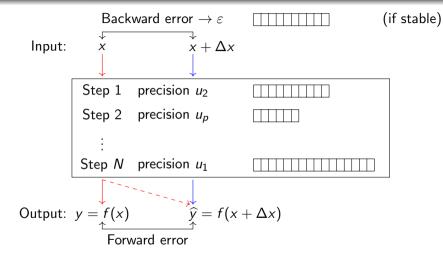


Backward and forward error, uniform and mixed precision



ullet Uniform precision: use one precision such that $u \leq arepsilon$

Backward and forward error, uniform and mixed precision



- Uniform precision: use one precision such that $u \le \varepsilon$
- Mixed precision: use multiple precisions u_1, \ldots, u_p such that their combined strategic use leads to an accuracy of ε

Part I

Matrix multiplication

Inner products

Consider the computation

$$s = x^T y = \sum_{k=1}^n x_k y_k$$

The backward error is bounded by γ_n :

$$\widehat{s} = \sum_{k=1}^{n} x_k y_k (1 + \theta_k), \qquad 1 + \theta_k = \prod_{i=1}^{n_k \le n} (1 + \delta_i), \qquad |\theta_k| \le \gamma_n = \frac{nu}{1 - nu} = \frac{nu}{1 - nu} + O(u^2)$$

The forward error is bounded by:

$$\frac{|\widehat{s} - s|}{|s|} \le \gamma_n \kappa \approx \frac{n \kappa u}{\kappa}, \qquad \kappa = \frac{|x|^T |y|}{|x^T y|} = \frac{\sum_{k=1}^n |x_k y_k|}{|\sum_{k=1}^n x_k y_k|}$$

This error can be large when

- The dimension *n* is large (accumulation)
- The condition number κ is large (cancellation)
- The unit roundoff u is large (low precision)

Part I

Matrix multiplication

Dealing with rounding error accumulation $n\kappa u$

Probabilistic rounding error analysis

Worst-case nu bound only attained when all δ_i are in the same direction (+u or -u)

Wilkinson's conjecture (1961)

$$n \rightarrow \sqrt{n}$$

Probabilistic rounding error analysis

Worst-case nu bound only attained when all δ_i are in the same direction (+u or -u)

Wilkinson's conjecture (1961)

$$n \rightarrow \sqrt{n}$$

Probabilistic model of rounding errors (Model M)

In the computation of interest, the rounding errors δ_i are mean independent random variables of mean zero: $\mathbb{E}(\delta_i \mid \delta_1, \dots, \delta_{i-1}) = \mathbb{E}(\delta_i) = 0$.

Probabilistic backward error bound (Higham and M., SISC 2019, SISC 2020)

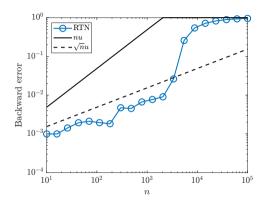
Let δ_i , i=1: n, satisfy Model M. Then, for any $\lambda>0$, the relation

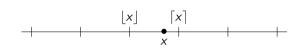
$$\prod_{i=1}^{n} (1+\delta_i) = 1+\theta_n, \quad |\theta_n| \leq \widetilde{\gamma}_n(\lambda) := \exp\left(\lambda \sqrt{n}u + \frac{nu^2}{1-u}\right) - 1$$

$$\leq \lambda \sqrt{nu} + O(u^2)$$

holds with probability at least $P(\lambda) = 1 - 2 \exp(-\lambda^2/2)$.

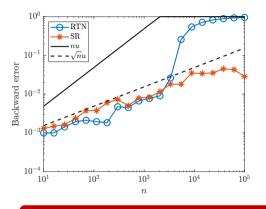
Stochastic rounding

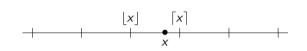




$$SR(x) = \begin{cases} \lceil x \rceil \text{ with probability } p = \frac{x - \lfloor x \rfloor}{\lceil x \rceil - \lfloor x \rfloor} \\ \lfloor x \rfloor \text{ with probability } 1 - p \end{cases}$$

Stochastic rounding





$$SR(x) = \begin{cases} \lceil x \rceil \text{ with probability } p = \frac{x - \lfloor x \rfloor}{\lceil x \rceil - \lfloor x \rfloor} \\ \lfloor x \rfloor \text{ with probability } 1 - p \end{cases}$$

Backward error bound with SR (Connolly, Higham and M., SISC 2021)

SR enforces Model M. Therefore, the $\lambda \sqrt{nu}$ bound holds unconditionally with SR.

Blocked summation

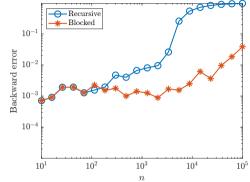
Blocked summation

1: **for**
$$i = 1$$
: n/b **do**

2:
$$s_i = \sum_{k=(i-1)b+1}^{ib} x_k y_k$$

3: end for

4:
$$s = \sum_{i=1}^{n/b} s_i$$



- Smaller bounds can be obtained by reducing the number of additions any given summand is involved in
- Blocked summation nu o (b+n/b-1)u

Blocked summation

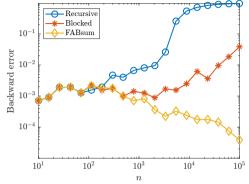
Fast and Accurate Blocked summation (FABsum)

1: **for**
$$i = 1$$
: n/b **do**

2:
$$s_i = \sum_{k=(i-1)b+1}^{ib} x_k y_k$$
 in precision u

3: end for

4:
$$s = \sum_{i=1}^{n/b} s_i$$
 in precision u^2



- Smaller bounds can be obtained by reducing the number of additions any given summand is involved in
- Blocked summation nu o (b+n/b-1)u
- ullet FABsum [Blanchard, Higham, M., SISC 2020] : $bu+O(u^2) o {
 m independent}$ of n to first order

High precision accumulation: matrix multiply-accumulate

- Some hardware (e.g., GPU tensor cores) provide **matrix multiply–accumulate** (MMA) operations $C \leftarrow C + A \times B$ where A and B are stored in precision u_{low} (e.g., fp16) but accumulated into C in precision u_{high} (e.g., fp32)
- Can be leveraged to reduce the error bound from $nu_{\rm low}$ to $2u_{\rm low} + nu_{\rm high}$ [Blanchard, Higham, Lopez, M., Pranesh, SISC 2020]

	fp16	fp16/fp32 tensor cores fp32 storage fp16 storage
Accuracy Speed (TFLOPS)	1 × 10 ⁻³	$\begin{array}{c} 1\times10^{-5}\\ 50\end{array}$

- In LU factorization, accumulating the updates $A_{ij} \leftarrow A_{ij} L_{ik} U_{kj}$ in fp32 significantly boosts the accuracy [Haidar et al., 2018]
 - ... but performance limited by data transfers

High precision accumulation: matrix multiply-accumulate

- Some hardware (e.g., GPU tensor cores) provide **matrix multiply–accumulate** (MMA) operations $C \leftarrow C + A \times B$ where A and B are stored in precision u_{low} (e.g., fp16) but accumulated into C in precision u_{high} (e.g., fp32)
- Can be leveraged to reduce the error bound from nu_{low} to $2u_{\text{low}} + nu_{\text{high}}$ [Blanchard, Higham, Lopez, M., Pranesh, SISC 2020]

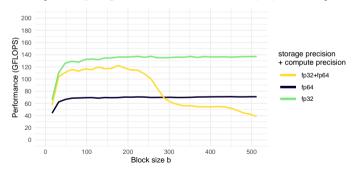
	fp16	fp16/fp32 tensor cores	
		fp32 storage	fp16 storage
Accuracy	1×10^{-3}	1×10^{-5}	$3 imes 10^{-5}$
Speed (TFLOPS)	_	50	140

- In LU factorization, accumulating the updates $A_{ij} \leftarrow A_{ij} L_{ik} U_{kj}$ in fp32 significantly boosts the accuracy [Haidar et al., 2018]
 - ... but performance limited by data transfers ⇒ store matrix in fp16 and accumulate in fp32 buffers [Lopez and M., IJHPCA 2023]

$$B_{ij} = \sum_{k} L_{ik} U_{kj}, \quad A_{ij} \leftarrow A_{ij} - B_{ij}$$

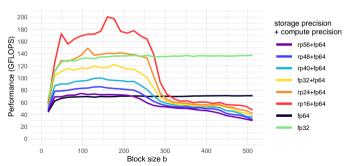
High precision accumulation: memory accessors

- Implementing high precision accumulation in software: decouple storage (low) and compute (high) precisions [Anzt et al., 2019]
- Memory accessor to efficiently load and convert data to high precision
- Blockwise accessor achieves efficient compromise between BLAS usage and data transfer reduction [Amestoy, Jego, L'Excellent, M., Pichon, preprint 2025]



High precision accumulation: memory accessors

- Implementing high precision accumulation in software: decouple storage (low) and compute (high) precisions [Anzt et al., 2019]
- Memory accessor to efficiently load and convert data to high precision
- Blockwise accessor achieves efficient compromise between BLAS usage and data transfer reduction [Amestoy, Jego, L'Excellent, M., Pichon, preprint 2025]



• Storage precision needs not be hardware supported, can use custom formats

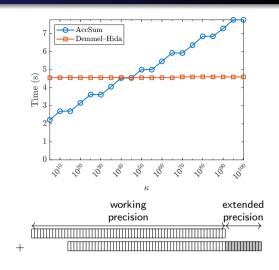
Part I

Matrix multiplication

Dealing with cancellation nĸu

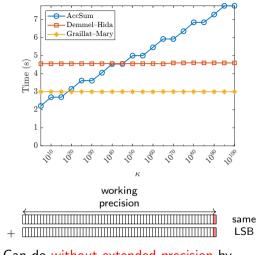
Condense & Distill

- Distillation methods employ compensated operations to reinject errors back into the sum until it becomes well-conditioned (ex: AccSum [Rump et al., 2008])
 - Only uses standard operations
 - © Entirely in the working precision
 - \bigcirc Cost strongly depends on κ
- Condensation methods add numbers of similar exponent together in extended precision (ex: [Demmel and Hida, 2004])
 - Requires access to the exponent
 - © Requires extended precision
 - \bigcirc Cost independent of κ



Condense & Distill

- Distillation methods employ compensated operations to reinject errors back into the sum until it becomes well-conditioned (ex: AccSum [Rump et al., 2008])
 - © Only uses standard operations
 - © Entirely in the working precision
 - \bigcirc Cost strongly depends on κ
- Condensation methods add numbers of similar exponent together in extended precision (ex: [Demmel and Hida, 2004])
 - Requires access to the exponent and LSB
 - © Requires extended precision
 - \odot Cost independent of κ



Can do without extended precision by enforcing same exponent and same LSB

[Graillat and M., SISC 2025]

Part I

Matrix multiplication

Emulating high precision with low precision $n\kappa \mathbf{u}$

Multiword arithmetic on mixed precision MMA units

• Step 1: compute the multiword decompositions

$$A pprox \sum_{i=0}^{s-1} u_{\mathrm{low}}^i A_i$$
 and $B pprox \sum_{j=0}^{s-1} u_{\mathrm{low}}^j B_j$

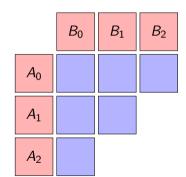
with A_i and B_j stored in precision u_{low}

• Step 2: compute the s(s+1)/2 leading products

$$C = \sum_{i+j < s} u_{\text{low}}^{i+j} A_i B_j$$

with a mixed precision MMA with accumulation precision u_{high}

Example: **fp32 emulation** with bfloat16 tensor cores ($50 \times$ speed ratio on Blackwell) $u_{\rm low} \equiv$ fp16, $u_{\rm high} \equiv$ fp32, s=3



Multiword MMA error bound (Fasi, Higham, Lopez, M., Mikaitis, SISC 2023)

The computed \widehat{C} satisfies $|\widehat{C} - AB| \le ((p+1)u_{\text{low}}^s + c(n,s)u_{\text{high}})|A||B|$.

Goal: compute C = AB, $A \in \mathbb{Z}^{m \times n}$, $B \in \mathbb{Z}^{n \times q}$, coefficients bounded by p

- modular matrix product $C = AB \mod p$ in computer algebra
- approximating floating-point product as scaled integer product [Ozaki et al.]
- Step 1: compute the decompositions

$$A pprox \sum_{i=0}^{s_A-1} lpha^i A_i$$
 and $B pprox \sum_{j=0}^{s_B-1} eta^j B_j$

with coefficients A_i and B_j bounded by

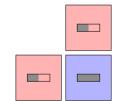
$$lpha = \lceil p^{1/s_A}
ceil$$
 and $eta = \lceil p^{1/s_B}
ceil$

• Step 2: compute the $s_A s_B$ products

$$C = \sum_{i,j} \alpha^i \beta^j A_i B_j$$

by blocks of size $b = 2^{\ell}$

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)



Goal: compute C = AB, $A \in \mathbb{Z}^{m \times n}$, $B \in \mathbb{Z}^{n \times q}$, coefficients bounded by p

- modular matrix product $C = AB \mod p$ in computer algebra
- approximating floating-point product as scaled integer product [Ozaki et al.]
- Step 1: compute the decompositions

$$A pprox \sum_{i=0}^{s_A-1} lpha^i A_i$$
 and $B pprox \sum_{j=0}^{s_B-1} eta^j B_j$

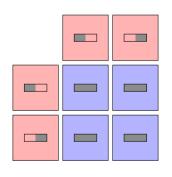
with coefficients A_i and B_j bounded by

$$lpha = \lceil p^{1/s_A} \rceil$$
 and $eta = \lceil p^{1/s_B} \rceil$

• Step 2: compute the $s_A s_B$ products

$$C = \sum_{i,j} \alpha^i \beta^j A_i B_j$$

by blocks of size $b = 2^{\ell}$



Goal: compute C = AB, $A \in \mathbb{Z}^{m \times n}$, $B \in \mathbb{Z}^{n \times q}$, coefficients bounded by p

- modular matrix product $C = AB \mod p$ in computer algebra
- approximating floating-point product as scaled integer product [Ozaki et al.]
- Step 1: compute the decompositions

$$A pprox \sum_{i=0}^{s_A-1} lpha^i A_i$$
 and $B pprox \sum_{j=0}^{s_B-1} eta^j B_j$

with coefficients A_i and B_j bounded by

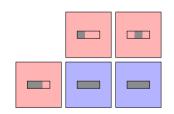
$$lpha = \lceil p^{1/s_A}
ceil$$
 and $eta = \lceil p^{1/s_B}
ceil$

• Step 2: compute the $s_A s_B$ products

$$C = \sum_{i,j} \alpha^i \beta^j A_i B_j$$

by blocks of size $b = 2^{\ell}$

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)



Goal: compute C = AB, $A \in \mathbb{Z}^{m \times n}$, $B \in \mathbb{Z}^{n \times q}$, coefficients bounded by p

- modular matrix product $C = AB \mod p$ in computer algebra
- approximating floating-point product as scaled integer product [Ozaki et al.]
- Step 1: compute the decompositions

$$A pprox \sum_{i=0}^{s_A-1} lpha^i A_i$$
 and $B pprox \sum_{j=0}^{s_B-1} eta^j B_j$

with coefficients A_i and B_j bounded by

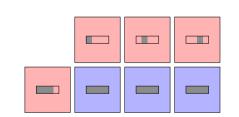
$$lpha = \lceil p^{1/s_A}
ceil$$
 and $eta = \lceil p^{1/s_B}
ceil$

• Step 2: compute the $s_A s_B$ products

$$C = \sum_{i,j} \alpha^i \beta^j A_i B_j$$

by blocks of size $b = 2^{\ell}$

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)



Part II

Linear systems

Linear system solution methods

Goal: solve Ax = b, where A is large and often sparse

- Direct methods
 - Robust, black box solvers
 - High time and memory cost for factorization of A
- Iterative methods
 - Low time and memory per-iteration cost
 - Convergence is application dependent

Linear system solution methods

Goal: solve Ax = b, where A is large and often sparse

- Direct methods
 - Robust, black box solvers
 - High time and memory cost for factorization of A
- Iterative methods
 - Low time and memory per-iteration cost
 - Convergence is application dependent
- ⇒ Approximate factorizations...
 - as fast direct methods
 - as high quality preconditioners

Part II

Linear systems

Iterative refinement

Iterative refinement

Iterative refinement

- 1: Compute an initial approximation \boldsymbol{x}
- 2:
- 3: repeat
- 4: r = b Ax in precision u_r
- 5: Solve Ac = r in "precision" ε
- 6: x = x + c in precision u
- 7: **until** convergence

Convergence of IR

- Attainable accuracy $u + u_r \kappa(A)$ (independent of ε !)
- Convergence rate $\propto \kappa(A)\varepsilon$
- Can use direct, iterative, or any kind of approximate solvers

LU-based iterative refinement

LU-IR [Langou et al., 2006]

- 1: Compute A = LU in precision u_f
- 2: Solve LUx = b in precision u_f
- 3: repeat
- 4: r = b Ax in precision u_r
- 5: Solve LUc = r in precision u_f
- 6: x = x + c in precision u
- 7: until convergence

Convergence of LU-IR

- Attainable accuracy $u + u_r \kappa(A)$ (independent of u_f !)
- Convergence rate $\propto \kappa(A)u_f$
- Can use direct, iterative, or any kind of approximate solvers
- LU-IR: use low precision LU factorization and solve $LUc \approx r$

GMRES-based iterative refinement

GMRES-IR [Carson and Higham, 2017]

- 1: Compute A = LU in precision u_f
- 2: Solve LUx = b in precision u_f
- 3: repeat
- 4: r = b Ax in precision u_r
- 5: Solve Ac = r via LU-preconditioned GMRES
- 6: x = x + c in precision u
- 7: until convergence

Convergence of GMRES-IR

- Attainable accuracy $u + u_r \kappa(A)$
- Convergence rate of GMRES-IR
 - \propto attainable accuracy of GMRES
- What precisions for GMRES?
- What preconditioning style (left, right, flexible)?

GMRES

```
1: r_0 = b - Ax_0

2: s_0 = M^{-1}r_0

3: \beta = ||s_0||, v_1 = s_0/\beta, k = 1

4: repeat

5: z_k = Av_k

6: w_k = M^{-1}z_k

7: for i = 1, ..., k do

8: h_{i,k} = v_i^T w_k

9: w_k = w_k - h_{i,k}v_i

10: end for

11: h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}

12: V_k = [v_1, ..., v_k]
```

14:
$$y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|$$

15: $k = k + 1$

16: until
$$\|\beta e_1 - H_k y_k\| < \varepsilon_{\rm in}$$

10: **until**
$$\|\beta e_1 - H_k y_k\| \le \varepsilon_{\text{in}}$$

$$17: x_k = x_0 + V_k y_k$$

Attainable accuracy of GMRES

Algorithm	Backward	Forward	Reference
Householder GMRES	u_g	$\kappa(A)u_g$	Drkošová et al. (1995)
MGS-GMRES	u_g	$\kappa(A)u_g$	Paige et al. (2006)
Flexible GMRES	$\kappa(Z_k)u_g$	$\kappa(A)\kappa(Z_k)u_g$	Arioli and Duff (2009)

Attainable accuracy of GMRES

Algorithm	Backward	Forward	Reference
Householder GMRES	u_g	$\kappa(A)u_g$	Drkošová et al. (1995)
MGS-GMRES	u_g	$\kappa(A)u_g$	Paige et al. (2006)
Flexible GMRES	$\kappa(Z_k)u_g$	$\kappa(A)\kappa(Z_k)u_g$	Arioli and Duff (2009)
Left-precond. MGS-GMRES products with $M^{-1}A$ in prec. u_p	$u_g + \kappa(A)u_p$	$\kappa(M^{-1}A)(u_g+\kappa(A)u_\rho)$	Amestoy, Buttari, Higham L'Excellent, M., Vieublé (2024)

- Preconditioned GMRES is not stable
- → Motivates mixed precision GMRES with $u_p \ll u_g$
- Attainable accuracy depends on u_f only through $\kappa(M^{-1}A)$

u_g	u_p	$\max \kappa(A)$
LU	J-IR	2×10^3
fp16	fp32	4×10^4
fp16	fp64	9×10^4
fp32	fp64	$8 imes 10^6$
fp64	fp64	3×10^7
fp64	fp128	2×10^{11}
U _f	≡ fp16,	$u \equiv fp64$

$$u_f \equiv \text{fp16}, \ u \equiv \text{fp64}$$

LU-IR vs GMRES-IR with fp32 MUMPS solver

fp32 LU factorization + refinement to fp64 accuracy $(u_f \equiv \text{fp32}, \ u = u_r = u_g = u_p \equiv \text{fp64})$

Matrix	$\kappa(A)$	tir	ne gain	memory gain		
	7.0(1.1)	LU-IR	GMRES-IR	LU-IR	GMRES-IR	
ElectroPhys10M	10^1	1. 7 ×	1.6×	2.0×	1.6×	
Bump_2911	10^{6}	1.6 ×	1.4 imes	$2.0 \times$	$1.7 \times$	
DrivAer6M	10^{6}	$1.4 \times$	$1.2 \times$	$2.0 \times$	1.5 imes	
Queen_4147	10^{6}	1.7 ×	1.5 imes	$2.0 \times$	$1.6 \times$	
tminlet3M	10^{7}	2.2 ×	$1.9 \times$	$2.0 \times$	$1.4 \times$	
perf009ar	10^{8}	$\times 8.0$	0.9 imes	$1.9 \times$	1.5 imes	
elasticity-3d	10^{9}	_	1.3 ×	_	1.5 imes	
lfm_aug5M	10^{12}	2.1 ×	$2.0 \times$	$2.0 \times$	1.7 imes	
Long_Coup_dt0	10^{12}	1.4 ×	1.4 imes	$2.0 \times$	$1.6 \times$	
CarBody25M	10^{13}	_	0.6 imes	_	1.4 imes	
thmgaz	10^{14}	1.5 ×	$1.2 \times$	2.0 ×	$1.4 \times$	

- Up to $2 \times$ time and memory reduction, even for ill-conditioned problems
- GMRES-IR usually more expensive than LU-IR, but more robust [Amestoy, Buttari, Higham, L'Excellent, M., Vieublé, TOMS 2022]

Attainable accuracy of GMRES, continued

Algorithm	Backward	Forward	Reference
Householder GMRES	u_g	$\kappa(A)u_g$	Drkošová et al. (1995)
MGS-GMRES	u_g	$\kappa(A)u_g$	Paige et al. (2006)
Flexible GMRES	$\kappa(Z_k)u_g$	$\kappa(A)\kappa(Z_k)u_g$	Arioli and Duff (2009)
Left-precond. MGS-GMRES products with $M^{-1}A$ in prec. u_p	$u_g + \kappa(A)u_p$	$\kappa(M^{-1}A)(u_g + \kappa(A)u_p)$	Amestoy, Buttari, Higham L'Excellent, M., Vieublé (2024)

Attainable accuracy of GMRES, continued

Algorithm	Backward	Forward	Reference
Householder GMRES	nolder GMRES u_g		Drkošová et al. (1995)
MGS-GMRES	u_g	$\kappa(A)u_g$	Paige et al. (2006)
Flexible GMRES	$\kappa(Z_k)u_g$	$\kappa(A)\kappa(Z_k)u_g$	Arioli and Duff (2009)
Left-precond. MGS-GMRES products with $M^{-1}A$ in prec. u_p	$u_g + \kappa(A)u_p$	$\kappa(M^{-1}A)(u_g+\kappa(A)u_p)$	Amestoy, Buttari, Higham L'Excellent, M., Vieublé (2024)
Modular GMRES	modular	modular	Buttari, Higham, M., Vieublé (2025)

- Modular GMRES framework to:
 - unify all existing results
 - derive new results more easily

Attainable accuracy of GMRES, continued

Algorithm Backwar		Forward	Reference	
Householder GMRES	u_{g}	$\kappa(A)u_g$	Drkošová et al. (1995)	
MGS-GMRES	u_g $\kappa(A)u_g$		Paige et al. (2006)	
Flexible GMRES	$\kappa(Z_k)u_g$	$\kappa(A)\kappa(Z_k)u_g$	Arioli and Duff (2009)	
Left-precond. MGS-GMRES products with $M^{-1}A$ in prec. u_p	$u_g + \kappa(A)u_p$	$\kappa(M^{-1}A)(u_g+\kappa(A)u_p)$	Amestoy, Buttari, Higham L'Excellent, M., Vieublé (2024)	
Modular GMRES ⇒ CGS2-GMRES ⇒ s-step GMRES ⇒ sketched GMRES ⇒ mixed precision GMRES	modular u_g $\kappa(Z_k)u_g$ $\kappa(Z_k)u_g$	$\begin{array}{l} modular \\ \kappa(A) u_g \\ \kappa(A) \kappa(Z_k) u_g \\ \kappa(A) \kappa(Z_k) u_g \\ see \ next \ slide \end{array}$	Buttari, Higham, M., Vieublé (2025) " Carson and Ma (2025) Burke, Carson, Ma (2025) Buttari, Liu, M., Vieublé (2025)	

- Modular GMRES framework to:
 - unify all existing results
 - derive new results more easily

Mixed precision preconditioned GMRES

Attainable forward error (Buttari, Liu, M., Vieublé, preprint 2025)

Left:

$$\kappa(M^{-1}A)u_g + \kappa(M^{-1}A)u_m + \kappa(A)u_a$$

• Right:

$$\kappa(AM^{-1})\kappa(M)u_g + \kappa(M)u_m + \kappa(A)u_a$$

• Flexible:

$$\kappa(AM^{-1})\kappa(M)u_g + \kappa(A)u_a$$

Key observations

- For a given preconditioning style, the term in front of each precision is different
- For a given precision, the term in front of it depends on the preconditioning style

Mixed precision preconditioned GMRES

```
1: r_0 = b - Ax_0
                                                                U<sub>a</sub>
 2: s_0 = M^{-1} r_0
                                                                u_m
 3: \beta = ||s_0||, v_1 = s_0/\beta, k = 1
                                                                u_{g}
 4: repeat
        z_k = Av_k
                                                                U a
       w_{\nu} = M^{-1}z_{\nu}
                                                                u_{m}
        for i = 1, \ldots, k do
       h_{i,k} = v_i^T w_k
                                                                Ug
            w_{\nu} = w_{\nu} - h_{i \nu} v_{i}
                                                                ug
10:
         end for
11:
          h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
                                                                Иg
        V_k = [v_1, \ldots, v_k]
13:
        H_k = \{h_{i,i}\}_{1 \le i \le i+1:1 \le i \le k}
14:
       y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|
                                                                ug
15:
         k = k + 1
16: until \|\beta e_1 - H_k v_k\| < \varepsilon_{\rm in}
17: x_k = x_0 + V_k y_k
                                                                u_g
```

Mixed precision preconditioned GMRES

Attainable forward error (Buttari, Liu, M., Vieublé, preprint 2025)

Left:

$$\kappa(M^{-1}A)u_g + \kappa(M^{-1}A)u_m + \kappa(A)u_a$$

• Right:

$$\kappa(AM^{-1})\kappa(M)u_g + \kappa(M)u_m + \kappa(A)u_a$$

Flexible:

$$\kappa(AM^{-1})\kappa(M)u_{g}+\kappa(A)u_{a}$$

Key observations

- For a given preconditioning style, the term in front of each precision is different
- For a given precision, the term in front of it depends on the preconditioning style

	Left	Right	Flexible
$u_a = u_m \ll u_g$	exists	new	new
$u_a=u_g\ll u_m$	new	new	exists
$u_a \ll u_g = u_m$	new	new	new
$u_a \ll u_g \ll u_m$	new	new	new
$u_a \ll u_m \ll u_g$	new	new	new
$u_g \ll u_a = u_m$	new	new	new
$u_g \ll u_a \ll u_m$	new	new	new
$u_m \ll u_a = u_g$	new	new	new
$u_m \ll u_a \ll u_g$	new	new	new
$u_g = u_m \ll u_a$	new	new	new
$u_g \ll u_m \ll u_a$	new	new	new
$u_m \ll u_g \ll u_a$	new	new	new

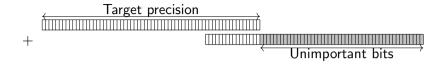
Provably meaningful Not provably meaningful

Part II

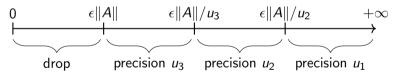
Linear systems

Adaptive precision SpMV

Adaptive precision SpMV: theory and algorithm



- Goal: compute y = Ax, where A is a sparse matrix, with a target accuracy ε
- Given p available precisions $u_1 < \varepsilon < u_2 < \ldots < u_p$, define partition



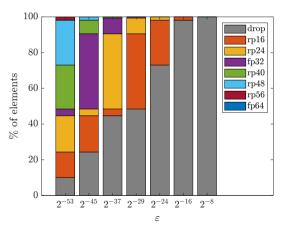
⇒ the precision of each element is chosen inversely proportional to its magnitude

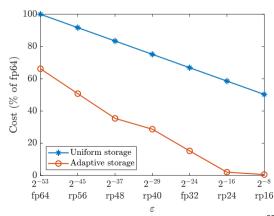
Error bound for adaptive precision SpMV (Graillat, Jézéquel, M., Molina, SISC 2022)

The computed \hat{y} satisfies $\hat{y} = (A + \Delta A)x$, $||\Delta A|| \le c\varepsilon ||A||$.

Adaptive precision SpMV: implementation and results

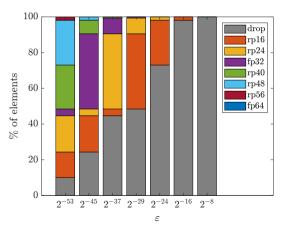
- The more precisions we have, the more we can reduce storage ⇒ exploit custom precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]
- Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and potentially much more for larger ε .

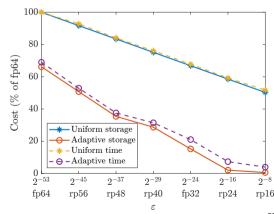




Adaptive precision SpMV: implementation and results

- The more precisions we have, the more we can reduce storage ⇒ exploit custom precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]
- Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and potentially much more for larger ε . Time cost matches storage!



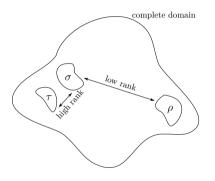


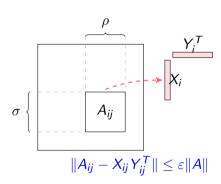
Part II

Linear systems

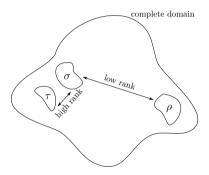
Block low-rank LU

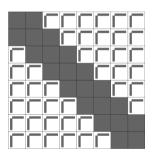
Block low-rank (BLR) matrices





Block low-rank (BLR) matrices





Block low-rank matrix [Amestoy et al., 2015]

BLR LU factorization

BLR LU factorization (CFU variant)

```
1: for k = 1: p do
            Compress:
            for i = k + 1: p do
               \widetilde{A}_{ik} = X_{ik} Y_{ik}^T such that \|\widetilde{A}_{ik} - A_{ik}\| < \varepsilon \|A\|
 5:
              \widetilde{A}_{ki} = X_{ki} Y_{ki}^T such that \|\widetilde{A}_{ki} - A_{ki}\| < \varepsilon \|A\|
 6:
            end for
 7:
            FACTOR:
 8:
            A_{\nu\nu} = L_{\nu\nu}U_{\nu\nu}
 9:
            for i = k + 1: p do
              \widetilde{L}_{ik} = \widetilde{A}_{ik} U_{ik}^{-1} = X_{ik} Y_{ik}^T (Y_{ik} \leftarrow U_{ik}^{-T} Y_{ik})
10:
               \widetilde{U}_{ki} = L_{kk}^{-1} \widetilde{A}_{ki} = X_{ki} Y_{ki}^T \left( X_{ki} \leftarrow L_{kk}^{-1} X_{ki} \right)
11:
12:
            end for
13:
            UPDATE:
14:
            for i = k + 1: p do
15:
               for j = k + 1: p do
                   A_{ii} \leftarrow A_{ii} - \widetilde{L}_{ik}\widetilde{U}_{ki} = A_{ii} - X_{ik}(Y_{ik}^T X_{ki})Y_{ki}^T
16:
17:
                end for
18:
            end for
19: end for
```

Backward stability (Higham and M., IMAJNA 2021)

The computed BLR LU factors satisfy $\widetilde{L}\widetilde{U} = A + \Delta A$, $\|\Delta A\| \le (c_n u + \varepsilon)\|A\|$.

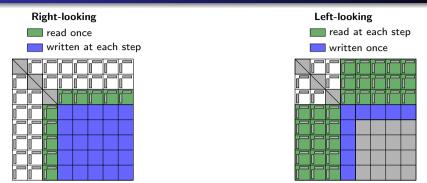
Asymptotic complexity (Amestoy, Buttari, L'Excellent, M., SISC 2017)

Space				
Dense matrices*				
$O(n^2) o O(n^{3/2})$				

Sparse matrices*,†
$$O(n^2) \rightarrow O(n^{4/3}) \quad O(n^{4/3}) \rightarrow O(n \log n)$$

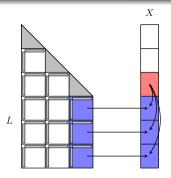
*assuming constant ranks, †regular 3D problem

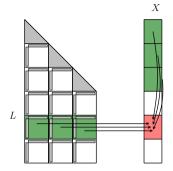
Communication-avoiding BLR factorization and solve



 Left-looking factorization avoids accessing uncompressed blocks [Amestoy, Buttari, L'Excellent, M., TOMS 2019]

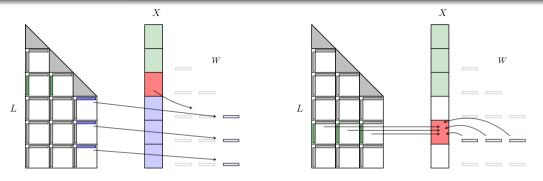
Communication-avoiding BLR factorization and solve





- Left-looking factorization avoids accessing uncompressed blocks [Amestoy, Buttari, L'Excellent, M., TOMS 2019]
- Solve with many RHS suffers from uncompressed RHS accesses (both in right and left looking)

Communication-avoiding BLR factorization and solve



- Left-looking factorization avoids accessing uncompressed blocks [Amestoy, Buttari, L'Excellent, M., TOMS 2019]
- Solve with many RHS suffers from uncompressed RHS accesses (both in right and left looking) ⇒ hybrid algorithm only requires a single pass on RHS [Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M., SIMAX 2024]

Part II

Linear systems

Mixed precision block low-rank LU

BLR + iterative refinement

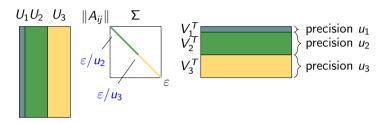
- Error analysis: replace $\mathbf{u_f}$ by $\mathbf{u_f} + \varepsilon$ in the convergence rate [Amestoy, Buttari, Higham, L'Excellent, M., Vieublé, TOMS 2022]
- Illustrative result on tminlet3M matrix ($n = 3 \times 10^6$, $\kappa(A) = 10^7$):

 $fp32+BLR(\varepsilon)$ LU factorization + refinement to fp64 accuracy

	tir	ne gain	men		
	LU-IR GMRES-IR		LU-IR	GMRES-IR	
$arepsilon=10^{-8}$	$2.2 \times$	$2.0 \times$	$2.1 \times$	1.5 imes	
$arepsilon=10^{-6}$	4.2 ×	3.7×	$2.9 \times$	$2.6 \times$	
$arepsilon=10^{-4}$	_	3.3×	_	3.4 ×	

• GMRES-IR allows to push BLR further!

Adaptive precision BLR



Error bound (Amestoy, Boiteau, Buttari, Gerest, Jézéguel, L'Excellent, M., IMAJNA 2022)

Given p precisions $u_1 < \varepsilon < u_2 < \ldots < u_p$, partition each block $A_{ij} = \sum_{k=1}^p U_k \Sigma_k V_k^T$ such that $\|\Sigma_k\| \le \varepsilon \|A\|/u_k$ and let $\widehat{U}_k = \mathrm{fl}_k(U_k)$ and $\widehat{V}_k = \mathrm{fl}_k(V_k)$. Then

$$||A - \sum_{k=1}^{p} \widehat{U}_k \Sigma_k \widehat{V}_k^T|| \leq (2p-1)\varepsilon ||A||.$$

Can also be used in BLR LU factorization while preserving stability

Performance impact illustration

- Adastra MUMPS4FWI project led by WIND team [Operto et al., The Leading Edge 2023]
- Application: Gorgon Model, reservoir 23km x 11km x 6.5km, grid size 15m, Helmholtz equation, 25-Hz
- Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
- FR cost: flops for one LU factorization= 2.6×10^{18} ; Estimated storage for LU factors= 73 TBytes

(25-Hz Gorgon FWI velocity model)

FR (Fu	FR (Full-Rank); BLR with $\varepsilon = 10^{-5}$;			48 000	cores (5	00 MPI $ imes$	(96 threads/MPI)	
FR: fp32; Adaptive precision BLR: 3 pre-					ecisions (32	bits, 24bi	its, 16bits) for storage
LU size (TBytes) Flops			Time BLR + Mixed (sec) Scaled Re			Scaled Resid.		
FR	BLR	+adapt.	FR	BLR+adapt.	Analysis	Facto	Solve	BLR+adapt.
73	34	26	2.6×10^{18}	0.5×10^{18}	446	5500	27	$7 imes 10^{-4}$

Efficiency on 48 000 cores?

- \bullet Theoretical peak: 3686 TFLOPS (48000 \times 2.4GHz \times 2 (fp32) \times 16 flop/cycle)
- Speed w.r.t. BLR flops: 364 TFLOPS (10% of the peak) (0.5 x 10¹⁸ x 4 (complex)/5500/10¹²)

Part III

Conclusion

Other important topics

- Krylov solver variants
 - Augmented/deflated GMRES [Jang, Jolivet, M.]
 - Relaxed/inexact GMRES [Agullo, Giraud, Jolivet, M., Tabouret]
 - BiCGStab [Anciaux-Sedrakian, Dorfsman, Guignon, Jézéquel, M.]
- Domain decomposition
 - Mixed precision [Caruso, Jolivet, M., Nataf, Tournier]
- Hierarchical/multilevel BLR matrix formats
 - MBLR [Amestoy, Buttari, L'Excellent, M., SISC 2019]
 - BLR² [Ashcraft, Buttari, M., SIMAX 2021]
 - Butterfly [Gribonval, M., Riccietti]
- Low-rank approximation algorithms
 - Mixed precision randomized LRA [Buttari, M., Pacteau, SISC 2025]
 - Randomized interpolative decomposition [Buttari, Hoogveld, M.]
 - Iterative refinement/emulation for LRA [Baboulin, Kaya, M., Robeyns, SISC 2025]
- Tensors
 - Error analysis [Baboulin, Kaya, M., Robeyns]
- Neural networks
 - Error analysis [Beuzeville, Buttari, Gratton, M.]
 - Mixed precision [El Arar, Filip, M., Riccietti]

Some perspectives

Many open problems and promising research directions!

- Emulation
 - Towards increasingly specialized hardware and increasingly lower precisions
 ⇒ need hardware-driven algorithms
- Adaptive precision
 - How do we industrialize approximate computing?
 need robust, almost black-box algorithms
- Al & approximate computing
 - Computing for AI and AI for computing

Final take-aways

- Need rigorous error analyses to understand and control accuracy
 - ⇒ need numerical analysts!
- Challenging to efficiently translate approximations into performance
 - ⇒ need HPC researchers!
- Performance and accuracy can only be meaningfully assessed on real-world data
 - ⇒ need application scientists!