Sxva: @  ip

Approximate computing in numerical linear algebra:
algorithms, analysis, and applications

Theo Mary
Sorbonne Université, CNRS, LIP6

Habilitation defense
7 October 2025

1/42



Challenges of computing at exascale

Exascale applications:
o Computationally demanding (speed, storage, and
energy constraints)
o Numerically demanding (high accuracy target)

Exascale computers:
e Huge amounts of parallelism/concurrency
o Heterogeneity of the computing units: CPUs, GPUs,
other accelerators
o Large gap between speed of computations and
communications
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Challenges of computing at exascale

Exascale applications:
o Computationally demanding (speed, storage, and
energy constraints)
o Numerically demanding (high accuracy target)

Exascale methods
Exascale computers: and software??
e Huge amounts of parallelism/concurrency
o Heterogeneity of the computing units: CPUs, GPUs,
other accelerators
o Large gap between speed of computations and
communications
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Approximate computing

Approximate computing: introduce controlled inexactness to reduce the
computational costs and to exploit more efficiently the computer

Given a target accuracy ¢, how do we decide
where (and how much) inexactness can be introduced?
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Floating-point arithmetic

Signif. Exp. Range (fmax/fmin) Unit roundoff u

bits bits
fp128 113 15 232766 109863 271 ~ 1 x 1073
fp64 52 11 22046 10016 278 ~1x1071°
fp32 23 8 2®x~10 27 ~6x107°
tfloat32 10 8 2% ~10" 271 x5 x107*
fpl6 10 5 2% x10° 271l x5 x 107
bfloat16 7 8 2®x~ 10 28 ~4x103
fp8 (E4M3) 3 4 2B ~3x10* 2%~ 6x 102
fp8 (E5M2) 2 5 2%x~10° 23 ~1x107!
fp6 (E2M3) 3 2 2 274~ 6x1072
fp6 (E3M2) 2 3 27~128 272 ~0.125
fp4 (E2M1) 1 2 2*~38 272 % 0.25
Lower precisions: Standard model:
Faster, consume less memory and energy For any x such that |x| € [fnin, fmax].
® Lower accuracy and narrower range fi(x) =x(14+9), |0|<u
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Backward and forward error, uniform and mixed precision

Backward error

3
Input: X I + Ax
Step 1
Step 2
Step N

Output: y = f(x)

Forward error
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Backward and forward error, uniform and mixed precision

Backward error — O(u) [TTTITTTTITTTTTT] (if stable)

3
Input: X x4+ Ax

| |

Step 1 precision u ENNNARNNNARRENER

Step 2 precision u NNRRNNNRRRRRENNY

StepN precision u ENNNARNNNARRENER

.

Output: y—f() j/\ f(x + Ax)

Forward error

@ Uniform precision: use one precision such that v < ¢
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Backward and forward error, uniform and mixed precision

Backward error — ¢ (TTTITIIIT] (if stable)

3
Input: X x4+ Ax

Step 1  precision up (TTTTTTTIT]
Step 2 precision u, T1111

StepN precision uy ENNNARNNNARRENER

.

Output: y—f() j/\ f(x + Ax)

Forward error

@ Uniform precision: use one precision such that v < ¢
e Mixed precision: use multiple precisions uy, ..., up such that their combined
strategic use leads to an accuracy of ¢ 5 /42
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Inner products

Consider the computation
n
-
S=Xy= ZXk)/k
k=1

The backward error is bounded by ,:

n ng<n
~ nu
=) (146, 146 = H(1+5i), 0k| < vn = 1_nu=”U+O(U2)
k=1 i=1
The forward error is bounded by:
/\_ T n
55l e, e DU S bl
s IXTyl 12k Xyl

This error can be large when
@ The dimension n is large (accumulation)
@ The condition number « is large (cancellation)

@ The unit roundoff v is large (low precision)
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Part |

Matrix multiplication

Dealing with rounding error accumulation
nKku



Probabilistic rounding error analysis

Worst-case nu bound only attained when Wilkinson's conjecture (1961)
all 0; are in the same direction (4-u or —u)
n—+/n
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Probabilistic rounding error analysis

Worst-case nu bound only attained when Wilkinson's conjecture (1961)
all 0; are in the same direction (4-u or —u)
n—+/n

Probabilistic model of rounding errors (Model M)

In the computation of interest, the rounding errors §; are mean independent random
variables of mean zero: E(0; | 01,...,0;—1) = E(d;) = 0.

Probabilistic backward error bound (Higham and M., SISC 2019, SISC 2020)

Let 0;, i = 1: n, satisfy Model M. Then, for any A > 0, the relation
2

[T +06)=1+0n  16a] <7,(0) = exp (AW + 1) -1
i=1

< A\nu+ O()
holds with probability at least P(\) = 1 — 2exp(—\2/2).
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Stochastic rounding

10°

1071

Backward error
-
(==}
&

107%¢

10

10! 10? 10° 10* 10°

SR(x) = {

[x] with probability p = [ﬁ]‘}ﬁ J

| x] with probability 1 — p
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Stochastic rounding

Backward error

10°

1071

10721

10750

10

10! 10? 10° 10* 10°

SR(x) = {

[x] with probability p = [ﬁ]‘}ﬁ J

| x] with probability 1 — p

Backward error bound with SR (Connolly, Higham and M., SISC 2021)

SR enforces Model M. Therefore, the Ay/nu bound holds unconditionally with SR.
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Blocked summation

—o— Recurs‘ive 3
—sk— Blocked
10! 1
iy k
. o
Blocked summation £ 102
=
1 fori=1: n/bdo g
41073
22 5= Zk (i—1)b+1 Xk Yk &
3: end for -l
_ \~n/b
4: s = Zi:l Si

10! 10? 10° 10* 10°
n

@ Smaller bounds can be obtained by reducing the number of additions any given
summand is involved in

@ Blocked summation nu — (b+ n/b—1)u
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Blocked summation

—O6— Recursive

—¥— Blocked
10t FABsum q
Fast and Accurate , S
Blocked summation (FABsum) £ 10
=
1. for i =1: n/b do g &, 5ele
- '_E 10—3,*} & & - B
2 5= Zk (i—1)b+1 XkYk in precision u 4
3: end for 10-4]
) . n/b . .. 2
4: s =73 .7 s in precision u
10 162 163 16'1 10°

@ Smaller bounds can be obtained by reducing the number of additions any given
summand is involved in

@ Blocked summation nu — (b+ n/b—1)u
@ FABsum [Blanchard, Higham, M., SISC 2020] : bu + O(u?) — independent of n to first
order
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High precision accumulation: matrix multiply—accumulate

@ Some hardware (e.g., GPU tensor cores) provide matrix multiply-accumulate
(MMA) operations C + C + A x B where A and B are stored in precision )y,
(e.g., fpl6) but accumulated into C in precision upigp (e.g., fp32)

@ Can be leveraged to reduce the error bound from nuyy to 2ui6y + nupign
[Blanchard, Higham, Lopez, M., Pranesh, SISC 2020]

fpl6 fpl6/fp32 tensor cores
fp32 storage  fpl6 storage
Accuracy 1x1073 1x107°
Speed (TFLOPS) — 50

@ In LU factorization, accumulating the updates Aj; <= Ajj — Ly Uy in fp32
significantly boosts the accuracy [Haidar et al., 2018]
... but performance limited by data transfers
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High precision accumulation: matrix multiply—accumulate

@ Some hardware (e.g., GPU tensor cores) provide matrix multiply-accumulate
(MMA) operations C + C + A x B where A and B are stored in precision )y,
(e.g., fpl6) but accumulated into C in precision upigp (e.g., fp32)

@ Can be leveraged to reduce the error bound from nuyy to 2ui6y + nupign
[Blanchard, Higham, Lopez, M., Pranesh, SISC 2020]

fpl6 fpl6/fp32 tensor cores
fp32 storage fpl6 storage
Accuracy 1x1073 1x107° 3x107°
Speed (TFLOPS) — 50 140

@ In LU factorization, accumulating the updates Aj; <= Ajj — Ljx Uy in fp32
significantly boosts the accuracy [Haidar et al., 2018]
... but performance limited by data transfers = store matrix in fp16 and
accumulate in fp32 buffers [Lopez and M., IJHPCA 2023]

B,‘j = ZL,‘k Ukj7 AU — AU — B,J
k
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High precision accumulation: memory accessors

@ Implementing high precision accumulation in software: decouple storage (low) and
compute (high) precisions [Anzt et al., 2019]

@ Memory accessor to efficiently load and convert data to high precision

@ Blockwise accessor achieves efficient compromise between BLAS usage and data
transfer reduction [Amestoy, Jego, L'Excellent, M., Pichon, preprint 2025]

e storage precision

% 120 + compute precision
8 100 p32+fp64

c

E 80 — B4

S fp32

geo

jo

o 40

0 100 200 300 400 500
Block size b
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High precision accumulation: memory accessors

@ Implementing high precision accumulation in software: decouple storage (low) and

compute (high) precisions [Anzt et al., 2019]

@ Memory accessor to efficiently load and convert data to high precision

@ Blockwise accessor achieves efficient compromise between BLAS usage and data
transfer reduction [Amestoy, Jego, L'Excellent, M., Pichon, preprint 2025]

200

@ 120

Performance (

100

200 300
Block size b

400

500

storage precision
+ compute precision

m— p56+fp64
m—— p48+fp64
= 1p40+fp64
p32+fp64
rp24+fp64
m— p16+fp64
— {064
p32

@ Storage precision needs not be hardware supported, can use custom formats
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Matrix multiplication

Dealing with cancellation
nrku



Condense & Distill
@ Distillation methods employ compensated 7’

operations to reinject errors back into the
sum until it becomes well-conditioned
(ex: AccSum [Rump et al., 2008] )
Only uses standard operations
Entirely in the working precision
® Cost strongly depends on 1r

9, |

. xQ\Q S \S\\ NN x“\\\ » \60 N @N@
@ Condensation methods add numbers of .
S|m||_a_r exponent together in extended working extended
precision (ex: [Demmel and Hida, 2004] ) precision precision

® Requires access to the exponent
Requires extended precision
Cost independent of k
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Condense & Distill

7L —6— AccSum

@ Distillation methods employ compensated —&— Demmel-Hida
. . . L Graillat-Mary
operations to reinject errors back into the 0
sum until it becomes well-conditioned .o SR

(ex: AccSum [Rump et al., 2008] ) g1 M
3

Only uses standard operations
Entirely in the working precision
® Cost strongly depends on 1r

xQ\Q N \S\\ N x“\\\ S \60 \S\\ @N@
@ Condensation methods add numbers of .
similar exponent together in extended working
precision (ex: [Demmel and Hida, 2004] ) precision
® Requires access to the exponent and LSB 55;";

® Regquires-extended-preeision
Cost independent of & Can do without extended precision by
enforcing same exponent and same LSB

[Graillat and M., SISC 2025] 15/42
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Matrix multiplication

Emulating high precision with low precision
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Multiword arithmetic on mixed precision MMA units

o Step 1: compute the multiword Example: fp32 emulation with bfloat16
decompositions tensor cores (50x speed ratio on Blackwell)

s—1 s=1 Ulow = fpl6, upien = fp32, s =3
Ax> u, A and Bx> u B
i=0 j=0

By B B>

with A; and B; stored in precision gy

@ Step 2: compute the s(s+1)/2 Ao
leading products
C= > UoAB; Ay
i+j<s
with a mixed precision MMA with As
accumulation precision upjgh

Multiword MMA error bound (Fasi, Higham, Lopez, M., Mikaitis, SISC 2023)

The computed C satisfies |C — AB| < ((p+ L)uf, + c(n, s)unign)|A||B.
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Multiword arithmetic for large integer matrix products

Goal: compute C = AB, A€ Z™*", B € Z"*9, coefficients bounded by p
e modular matrix product C = AB mod p in computer algebra
e approximating floating-point product as scaled integer product [Ozaki et al ]

@ Step 1: compute the decompositions
sp—1 sg—1

A= > oA and Bx > B =
i=0 j=0

with coefficients A; and B; bounded by
o = (pl/s/q and 5 = [pl/sB] /1 | —

@ Step 2: compute the spsg products
C = Z OziﬁjA,'Bj
iJ
by blocks of size b = 2¢

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)

The product is computed exactly in t-bit arithmetic if p/sat1/ss < 2t—¢,
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Multiword arithmetic for large integer matrix products

Goal: compute C = AB, A€ Z™*", B € Z"*9, coefficients bounded by p
e modular matrix product C = AB mod p in computer algebra
e approximating floating-point product as scaled integer product [Ozaki et al ]

@ Step 1: compute the decompositions
sp—1 sg—1

A= > oA and Bx > B || oo || o
i—0 j=0

with coefficients A; and B; bounded by
a = [pY/**] and B = [p!/*] 0 || = || = || ==

@ Step 2: compute the spsg products
C = Z OziﬁjA,'Bj
iJ
by blocks of size b = 2¢

Bound on p (Berthomieu, Graillat, Lesnoff, M., preprint 2025)

The product is computed exactly in t-bit arithmetic if p/sat1/ss < 2t—¢,
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Linear system solution methods

Goal: solve Ax = b, where A is large and often sparse

@ Direct methods

e Robust, black box solvers
e High time and memory cost for factorization of A

o lterative methods

o Low time and memory per-iteration cost
o Convergence is application dependent
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Linear system solution methods

Goal: solve Ax = b, where A is large and often sparse

@ Direct methods

e Robust, black box solvers
e High time and memory cost for factorization of A

o lterative methods

o Low time and memory per-iteration cost
o Convergence is application dependent

= Approximate factorizations. . .

e as fast direct methods
e as high quality preconditioners
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Iterative refinement

Convergence of IR

Iterative refinement

@ Attainable accuracy u + u,k(A)

1: Compute an initial approximation x (independent of 1)

. repeat @ Convergence rate o k(A)e

2
3
4:  r = b— Ax in precision u,
5
6
7

o Can use direct, iterative, or any kind

Solve Ac = r in “precision” ¢ :
of approximate solvers

X = X 4 ¢ in precision u
. until convergence
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LU-based iterative refinement

Convergence of LU-IR

LU-IR [Langou et al., 2006]

@ Attainable accuracy u + u,k(A)

1. Compute A = LU in precision ur (independent of uy!)

: Solve LUx = b in precision uf
: repeat

2

3 e Convergence rate x x(A)uf
4:  r=b— Ax in precision u,

5

6

7

o Can use direct, iterative, or any kind

Solve LUc = r in precision ur )
of approximate solvers

X = X 4 ¢ in precision u
. until convergence @ LU-IR: use low precision LU
factorization and solve LUc =~ r
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GMRES-based iterative refinement

GMRES-IR [Carson and Higham, 2017] GMRES
1: Compute A = LU in precision ur 1. = b—lAXo
2: Solve LUx = b in precision u 2 so=M""ro
N . P f 3: 8= soll, vi = /8, k=1
. repea . . 4: repeat
4: r = b — Ax in precision u, 5.z =Av
5. Solve Ac = r via LU-preconditioned GMRES 6:  we=M"lz
6: X =X+ c in precision u g forh' = 1";'7'M’,k do
. . ik = V; k
7: until convergence 9: Wi = wi — hj kv
10: end for
110 higa e = Iwill, vierr = wie/ brsa k
Convergence of GMRES-IR 120 Vi=[v,..., v
: 130 Hy = {h 1ciciinic;
@ Attainable accuracy u + u,k(A k MITSISILLSICk
y u+ urs(A) 14:  yx = argmin, [|Ber — Hyy/|
@ Convergence rate of GMRES-IR 150 k=k+1

0 16: til — H, < in
o attainable accuracy of GMRES 17: ;::':ﬂff: ka:yk” =

@ What precisions for GMRES?

e What preconditioning style (left, right, flexible)?
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Attainable accuracy of GMRES

Algorithm Backward Forward Reference
Householder GMRES Ug k(A)ug Drkogov et al. (1995)
MGS-GMRES Ug k(A)ug Paige et al. (2006)
Flexible GMRES k(Zik) ug k(A)k(Zk)ug Arioli and Duff (2009)
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Attainable accuracy of GMRES

Algorithm Backward Forward Reference
Householder GMRES Ug k(A)ug Drkogov et al. (1995)
MGS-GMRES Ug k(A)ug Paige et al. (2006)
Flexible GMRES k(Zik) ug k(A)k(Zk)ug Arioli and Duff (2009)

Left-precond. MGS-GMRES
products with M~1A in prec. Up

Amestoy, Buttari, Higham

- -1 .
ug +r(A)p  w(MTA) g + K(A)U) e e M Vieublé (2024)

ug up,  max k(A)
@ Preconditioned GMRES is not stable LU-IR 2 % 103
= Motivates mixed precision GMRES fpl6  fp32 4 x 10*
with up, < ug fpl6  fp64 9 x 10°
Attainabl q q fp32  fp64 8 x 10°
o Attainable accuraczl1 epends on ur fob64  fp64 3 x 107
only through k(M~*A) fo64  fpl28 2 x 10

ur = fpl6, u = fpbd
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LU-IR vs GMRES-IR with fp32 MUMPS solver

fp32 LU factorization + refinement to fp64 accuracy
(ur = p32, u = uy = ug = up = fp64)

Matrix k(A) time gain memory gain
LU-IR GMRES-IR LU-IR GMRES-IR
ElectroPhys10M  10° 1.7x 1.6x 2.0x 1.6x
Bump_2911 10° 1.6x 1.4x 2.0x 1.7x
DrivAer6M 10° 1.4x 1.2x 2.0x 1.5%
Queen_4147 10° 1.7x 1.5x 2.0x 1.6x
tminlet3M 107 2.2x 1.9x 2.0x 1.4x
perf009ar 108 0.8x 0.9x 1.9x 1.5x
elasticity-3d 10° = 1.3x = 1.5x
Ifm_augbM 102 | 2.1x 2.0 2.0x 1.7x
Long_Coup_dt0 10%? 1.4x 1.4x 2.0x 1.6%
CarBody25M 10" — 0.6 — 1.4x
thmgaz 10" | 1.5x 1.2x 2.0x 1.4x

@ Up to 2x time and memory reduction, even for ill-conditioned problems
@ GMRES-IR usually more expensive than LU-IR, but more robust

[Amestoy, Buttari, Higham, L'Excellent, M., Vieublé, TOMS 2022] 25 /42



Attainable accuracy of GMRES, continued

Algorithm Backward Forward Reference
Householder GMRES Ug K(A)ug Drko%ov4 et al. (1995)
MGS-GMRES Ug K(A)ug Paige et al. (2006)
Flexible GMRES K(Zk)ug K(A)K(Zi)ug Arioli and Duff (2009)

Left-precond. MGS-GMRES
products with M~1A in prec. up

Amestoy, Buttari, Higham

1
ug +(A)p  K(MTA) g + B(A)0) | e et ML Viewblé (2024)

26 /42



Attainable accuracy of GMRES, continued

Algorithm Backward Forward Reference
Householder GMRES Ug K(A)ug Drko%ov4 et al. (1995)
MGS-GMRES Ug K(A)ug Paige et al. (2006)
Flexible GMRES K(Zk)ug K(A)K(Zi)ug Arioli and Duff (2009)

Left-precond. MGS-GMRES
products with M~1A in prec. up

Amestoy, Buttari, Higham

1
ug +(A)p  K(MTA) g + B(A)0) | e et ML Viewblé (2024)

Modular GMRES modular modular Buttari, Higham, M., Vieublé (2025)

@ Modular GMRES framework to:

e unify all existing results
o derive new results more easily
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Attainable accuracy of GMRES, continued

Algorithm Backward Forward Reference
Householder GMRES Ug K(A)ug Drko%ov4 et al. (1995)
MGS-GMRES Ug K(A)ug Paige et al. (2006)
Flexible GMRES K(Zk)ug K(A)K(Zi)ug Arioli and Duff (2009)

Left-precond. MGS-GMRES
products with M~1A in prec. up

Amestoy, Buttari, Higham

1
ug +(A)p  K(MTA) g + B(A)0) | e et ML Viewblé (2024)

Modular GMRES modular modular Buttari, Higham, M., Vieublé (2025)
= CGS2-GMRES Ug K(A)ug "
= s-step GMRES K(Zk)ug K(A)K(Zi)ug Carson and Ma (2025)
= sketched GMRES K(Zk)ug K(A)K(Zi)ug Burke, Carson, Ma (2025)
= mixed precision GMRES see next slide Buttari, Liu, M., Vieublé (2025)

@ Modular GMRES framework to:

e unify all existing results
o derive new results more easily
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Mixed precision preconditioned GMRES

Attainable forward error (Buttari, Liu, M.,

Vieublé, preprint 2025)
o Left:

Mixed precision preconditioned GMRES

_ _ 1: = b— AXO VF}
/{:(M 1A)Ug ‘I— K/(M 1A)Um + /{(A)Ua 2: sp = Mflro Um
3: B=|soll, i =50/8, k=1 ug
o Right: g: repeat
—1 : Zx = Avk us
K(AM™ N r(M)ug + k(M)u,, + k(A)u, 6w =M1z e
) 7: fori=1,...,k do
@ Flexible: 8: hix = v wy ug
—1 9: = — h,' fi u
K(AM™ N k(M)ug + k(A)u, 10. N e
110 bk = Iwill, vierr = Wi/ brya i ug

o 12: Vk=[V1,...,Vk]
Key observations 13 He = {higjicersscih
@ For a given preconditioning style, the term 14:  y. = argmin, ||Ber — Hiy | ug

0 08 B 15 k=k+1
in front of each precision is different 16 until ||Ber — Hiyill < eim

170 xx = x0 + Vikyk ug

@ For a given precision, the term in front of
it depends on the preconditioning style
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Mixed precision preconditioned GMRES

Attainable forward error (Buttari, Liu, M.,

Vieublé, preprint 2025) Left Right Flexible
o Left: Uy = Um < Ug  exists
k(MrA)ug + k(MPA)um + k(A)u, Us = Ug < U exists
Uz < Ug = Unm
o Right: Uy K Ug <K Uy

K(AM V) k(M)ug + k(M)um, + k(A)u, Uy K Um < Ug
Ug L Uy = Uy
o Flexible: Ug K Uy K Uy

K(AMil)/{(M)Ug + H(A)Ua Up K Uy = Ug
Um < Uy K Ug
Ug = Um <K U,
Ug L Um K Uy
@ For a given preconditioning style, the term Um < Ug < U,

in front of each precision is different

Key observations

@ For a given precision, the term in front of
it depends on the preconditioning style
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Adaptive precision SpMV: theory and algorithm

Target precision
()
+ T +
Unimportant bits

@ Goal: compute y = Ax, where A is a sparse matrix, with a target accuracy e
@ Given p available precisions u; < e < up < ... < up, define partition

9 6HAH 6IIAII/U:% 6HAH/Uz +00
w_/ H/—/ ~— H/—/
drop precision uz  precision up  precision ug

= the precision of each element is chosen inversely proportional to its magnitude

Error bound for adaptive precision SpMV (Graillat, Jézéquel, M., Molina, SISC 2022)

The computed y satisfies y = (A + AA)x, ||AA| < ce||A|l.
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Adaptive precision SpMV: implementation and results

@ The more precisions we have, the more we can reduce storage = exploit custom
precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]
@ Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and

potentially much more for larger €.

5

£

100 100 : : : ‘ ‘
[ drop
[ rp16
80 [rp24 80 - 1
I fp32 —
P 40 S
2 60 [rp48 <= 60+ 1
g [ P56 S A
= I fp64 SN
T 40 g 07 ]
. Q
= O
20 + 4
20 —%— Uniform storage
—6— Adaptive storage
8753 27‘45 27‘37 27‘29 27‘24 2—16 2—)8
953 945 9-37 920 9-21 916 o-8 fp64 pH6 rp48 rp40 fp32 rp24 rpl6
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Adaptive precision SpMV: implementation and results

@ The more precisions we have, the more we can reduce storage = exploit custom
precisions with memory accessor [Graillat, Jézéquel, M., Molina, Mukunoki, Europar 2024]

@ Gains are entirely matrix-dependent. Here, storage reduced by at least 30% and
potentially much more for larger €. Time cost matches storage!

100 1004 : : T T T
I drop T~
16 T~
80+ [rp24 | 80+ RNy
32 _ .
P I 40 S 8
£ 60f s E 0] X T
= [ P56 S
= I fp64 X .
B 40} ] E or -
SN &) —s#— Uniform storage
20 | |—e— Adaptive storage
20 - B Uniform time
- © - Adaptive time
8753 27‘45 27‘37 27‘29 27‘24 2—16 2—8
953 945 9-37 920 9-21 916 o-8 fp64 pH6 rp48 rp40 fp32 rp24 rpl6

€
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Block low-rank (BLR) matrices

complete domain

P
. -
Y,
,———-'{Fﬁ'
Ajj

1A = XYy || < e[| A
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Block low-rank (BLR) matrices

complete domain

Block low-rank matrix
[Amestoy et al., 2015]
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BLR LU factorization

BLR LU factorization (CFU variant)

LoNOT Hwh

for k=1: p do
COMPRESS:
fori=k+1: pdo ~
éfk = Xy Y] such that “é"k — Aill < €llAll
Aii = inY}Zi— such that [|Ax — Akl < €Al
end for
FACTOR:
Ak = Lige Ui
fori=k+1: pdo
Lie = AncU" = XaYip (Y = UgTYi)
Ui = Ligt A = Xi Y[ (Xii = Ligt Xa)
end for
UPDATE:
for i=k+1: pdo
for j=k+1: pdo

Aj < Ay — LyUg = Aj — X (YT X)) Y,I

end for
end for

: end for

Backward stability (Higham and M.,

IMAJNA 2021)

The computed BLR LU factors satisfy
LU=A+ AA, ||AA| < (chu+ )| Al

Asymptotic complexity (Amestoy, Buttari,

L'Excellent, M., SISC 2017)

Work Space

Dense matrices*
O(n®) — O(n?) 0(n?) — O(n%/?)
Sparse matrices*
O(n?) — O(n*3)  O(n*3) — O(nlog n)

*assuming constant ranks, Tregular 3D problem
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Communication-avoiding BLR factorization and solve

Right-looking Left-looking
[ read once [ read at each step
I written at each step I written once

= 0= 0 0= =] = == = =

N I [

= = 0= = = =5 == = =

1 N O 1 I\

= == = 0=

[ 0

@ Left-looking factorization avoids accessing uncompressed blocks
[Amestoy, Buttari, L'Excellent, M., TOMS 2019]
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Communication-avoiding BLR factorization and solve

X X

[

@ Left-looking factorization avoids accessing uncompressed blocks
[Amestoy, Buttari, L'Excellent, M., TOMS 2019]

@ Solve with many RHS suffers from uncompressed RHS accesses (both in right and
left looking)
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Communication-avoiding BLR factorization and solve

AN : 1% { D\ : W
N n ||
[ e = = el |
[ s NN
I s HE ||

@ Left-looking factorization avoids accessing uncompressed blocks
[Amestoy, Buttari, L'Excellent, M., TOMS 2019]

@ Solve with many RHS suffers from uncompressed RHS accesses (both in right and
left looking) = hybrid algorithm only requires a single pass on RHS
[Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M., SIMAX 2024]
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BLR + iterative refinement

@ Error analysis: replace us by ug + € in the convergence rate
[Amestoy, Buttari, Higham, L'Excellent, M., Vieublé, TOMS 2022]

o lllustrative result on tminlet3M matrix (n = 3 x 10°, k(A) = 107):

fp324+-BLR(e) LU factorization + refinement to fp64 accuracy

time gain memory gain

LU-IR GMRES-IR LU-IR GMRES-IR
e=10"% | 2.2x 2.0x 2.1x 1.5%
e=10"° 4.2x 3.7x 2.9x 2.6
e=10"* — 3.3% = 3.4x%

@ GMRES-IR allows to push BLR further!
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Adaptive precision BLR

Ul Us Ay X

V]; precision u;
v, precision u;
e/ u 28 precision u3

e/us

Error bound (Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M., IMAJNA 2022)

Given p precisions u; < e < up < ... < Up, partition each block A;; = Z‘;Zl U2y VkT
such that ||X4|| < e||Al|/uk and let Ux = fl(Ux) and Vi = fl (V). Then

p
IA=>" Ui V|| < (20 — 1)e Al
k=1

@ Can also be used in BLR LU factorization while preserving stability
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Performance impact illustration

@ Adastra MUMPSA4FWI project led by WIND team [Operto
et al., The Leading Edge 2023]

@ Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

@ Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
@ FR cost: flops for one LU factorization= 2.6 x 10'¢;

Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)
FR (Full-Rank); BLR with ¢ = 10™°; 48 000 cores (500 MPI x 96 threads/MPI)
FR: fp32; Adaptive precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage
LU size (TBytes) Flops Time BLR + Mixed (sec) | Scaled Resid.
FR BLR +adapt. FR BLR+adapt. | Analysis Facto  Solve BLR-+adapt.
73 34 26 | 2.6 x 10™ 0.5 x 10" 446 5500 27 7x10"

Efficiency on 48 000 cores?
@ Theoretical peak: 3686 TFLOPS (48000 x 2.4GHz x 2 (fp32) X 16 flop/cycle)
@ Speed w.r.t. BLR flops: 364 TFLOPS (10% of the peak) (0.5 x 10 x 4 (complex)/5500/10'2)
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Other important topics

@ Krylov solver variants
e Augmented/deflated GMRES [Jang, Jolivet, M.]
o Relaxed/inexact GMRES [Agullo, Giraud, Jolivet, M., Tabouret]
@ BiCGStab [Anciaux-Sedrakian, Dorfsman, Guignon, Jézéquel, M.]
@ Domain decomposition
o Mixed precision [Caruso, Jolivet, M., Nataf, Tournier|
Hierarchical /multilevel BLR matrix formats
e MBLR [Amestoy, Buttari, L'Excellent, M., SISC 2019]
@ BLR? [Ashcraft, Buttari, M., SIMAX 2021]
o Butterfly [Gribonval, M., Riccietti]
Low-rank approximation algorithms
o Mixed precision randomized LRA [Buttari, M., Pacteau, SISC 2025]
e Randomized interpolative decomposition [Buttari, Hoogveld, M.]
o lterative refinement/emulation for LRA [Baboulin, Kaya, M., Robeyns, SISC 2025]
Tensors
@ Error analysis [Baboulin, Kaya, M., Robeyns|
@ Neural networks
o Error analysis [Beuzeville, Buttari, Gratton, M.]
e Mixed precision [El Arar, Filip, M., Riccietti]
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Some perspectives

Many open problems and promising research directions!

@ Emulation

e Towards increasingly specialized hardware and increasingly lower precisions
= need hardware-driven algorithms

@ Adaptive precision

e How do we industrialize approximate computing?
= need robust, almost black-box algorithms

@ Al & approximate computing
o Computing for Al and Al for computing
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Final take-aways

@ Need rigorous error analyses to understand and control accuracy
= need numerical analysts!

o Challenging to efficiently translate approximations into performance
= need HPC researchers!

@ Performance and accuracy can only be meaningfully assessed on real-world data
= need application scientists!
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